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Diffraction in TEM

CHAPTER PREVIEW

This chapter will set the stage for our discussion of imaging using diffraction contrast. Put
simply, diffraction contrast arises because the intensity of the diffr3acted beams is different
in different regions of the specimen. These variations may arise because of changing
diffracting conditions or because of differences in specimen thickness. In our study of
diffraction in the TEM, we will see spots—lots of them. Sometimes the ‘spots’ will be
small faint points and other times they will be large disks, which themselves contain
‘structure’ and more information. Other patterns will contain lines that we will examine in
Chapters 19–21.

We need to know how to use the information that these spot patterns (diffraction
patterns or DPs) contain. We will discuss the practical question of how we can best record
the DPs, so that we can maximize the information they contain, but we will not try to give a
rigorous proof of every equation used. These DPs give direct crystallographic information
about small areas of the specimen. This capability is one of the most important features of
the TEM, because we can relate the crystallography to the images we see.

In reading this chapter you should remember our discussion of the scattering of waves
using an array of slits (Chapter 2). Much of the analysis is geometrically the same as we
found for visible light—it’s essentially the same physical optics. The big differences are that
we have ‘modulated’ holes which are located in 3D space and both our wavelengths and the
spacing of the ‘holes’ are very small.

A note on history: spot patterns in DPs have always been recorded using a photographic
emulsion but many TEMs no longer have photographic plates. The CCD has a much greater
dynamic range but you may need to record the DP using several different camera lengths.
Plus—burning a hole in photographic film is one thing, doing the same to theCCD is another.

11.1 WHY USE DIFFRACTION IN THE TEM?

Let’s begin by looking at an experimental DP. The
pattern shown in Figure 11.1, like those we introduced
in Chapter 2, was recorded from a thin specimen, in this
case silicon. The main features to note are there are
many spots and the spots vary in intensity and size
(these are related effects).

We can list some of the questions you might ask on
first seeing such a DP.

& What is it?
& What can we learn from it?
& Why do we see it?
& What determines the scale? What determines the dis-
tances between the spots or the positions of the lines?

What do we want to know about our specimen? To
a materials scientist, perfect crystals are often pretty

boring and can usually be better studied using such
techniques as X-ray diffraction (for structural charac-
terization), the electron microprobe (for chemical
characterization), etc., although new EM techniques
may change this situation. The TEM is the instrument
of choice when the specimen is not perfect, particularly
when the feature of interest is what makes the material
imperfect or, paradoxically, useful!

The questions that we can address using DPs
obtained in the TEM include the following

& Is the specimen crystalline? Crystalline and
amorphous materials have very different properties.

& If it is crystalline, then what are the crystallographic
characteristics (lattice parameter, symmetry, etc.) of
the specimen?

& Is the specimen monocrystalline? If not, what is the
grain morphology, how large are the grains, what is
the grain-size distribution, etc.?
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& What is the orientation of the specimen or of
individual grains with respect to the electron beam?

& Is more than one phase present in the specimen? If
so, how are they oriented?

In general, if we see spots then the specimen is at least
partly crystalline. (We’ll discuss quasicrystals later.) The
ability to determine crystallographic orientations
locally (down to the nm level) gives TEM its great
advantage over SEM and visible-light microscopes.
Later on we can make this determination even more
precise (to an accuracy of �0.0018) using convergent-
beam patterns, as we’ll see in Chapter 21.

In this chapter we will restrict the discussion to the
geometry of the spot patterns. These are necessarily asso-
ciated with crystalline materials. We’ll see that spot patterns
provide a great deal of information themselves; they also
provide the basis for understanding other DPs.Wewill find
that standardDPs which are common to a group ofmateri-
als allow us quickly to recognize particular orientations and
even certain grain boundaries and twin boundaries, etc.,
without having to index the pattern from scratch. For
example, in a particular orientation, all cubic crystals give
the same array of spots although some of the spots may
have no intensity!We will consider the intensity of the spots
in Chapter 12.

Remember, however, that SADPs patterns are not
always the most useful DPs, since CBED (Chapters 20 and
21) can give you other useful information. Nevertheless, we
are emphasizing SADPs here, since we use them to explain
the contrast in TEM images, in Part III.

11.2 THE TEM, DIFFRACTION CAMERAS,
AND THE TV

The use of electron diffraction formaterials studies began
around 1930 using diffraction cameras which very much
resembled X-ray tubes in their physical appearance.
Later on, if you pursue TEM in depth, you will find
many of the earlier texts on electron diffraction useful
for gaining a deeper understanding of TEM. It will be
helpful to bear in mind some of the historical circum-
stances behind these developments when reading some of
these texts. For example, many articles show ray dia-
grams with the optic axis horizontal. One reason for
this is that much of the early theoretical analysis was
developed as an extension of X-ray diffraction (XRD)
or by researchers who were actively using either X-ray or
electron-diffraction cameras. In each case, the optic axis
of the instrument was horizontal as is still the case for
visible-light optical benches. The optic axis of all electron
microscopes is now vertical although the beammay orig-
inate at either the top or the bottom of the column.
Actually, more than one of the early TEMs, e.g., the
Philips EM100, was built with the optic axis horizontal
and the electron beam directed at the observer. This
arrangement is similar to that used for television, but
remember that in TEM we are using very high energy
electrons (�100keV rather than 20keV used in a TV).
References to some of the early texts, and their historical
significance, are given at the end of this chapter. When
you are reading early texts on TEM remember that many
were written at a time when most TEMs operated at
100kV. This fact may easily be overlooked but it affects
many features of diffraction including the camera length.

We will be talking about positions of spots and not
their intensities for most of the time in this book. This
type of analysis differs from many X-ray studies. The
reason that beam intensities are not measured in TEM
is that the electron beams are diffracted many times in a
typical TEM specimen. A similar, but not identical, situa-
tion actually occurs when producing powder patterns by
X-ray diffraction (XRD); diffraction then occurs inmany
different grains at the same time. We can compare the
electron-diffraction pattern with that encountered in
XRD. In the X-ray case, if you have a single crystal,
then you either have to rotate the crystal to ‘see’ all the
beams or use ‘white’ radiation (i.e., essentially use a range
of wavelengths). Electron diffraction is very different.We
can use a single wavelength and still see many diffracted
beams. The techniques differ also with respect to the time

FIGURE 11.1. An experimentally observed DP showing the central,

intense, direct beam and an array of diffraction spots from different

atomic planes. Such a pattern, with sharply focused spots, is best obtained

by underfocusing the beam.
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it takes to record a DP on a photographic plate; XRD
takes minutes or hours unless you have a synchrotron or
a position-sensitive detector to count every photon, while
electron-diffraction patterns can be recorded in <1 sec-
ond although longer is usually better because it means
you will have ‘spread the beam’ (made the incident beam
more parallel); for photographic film you’ll use several
seconds to a minute or more.

Much of the discussion of electron diffraction fol-
lows directly from the analysis of XRD. This has advan-
tages and disadvantages, depending on whether or not
you are familiar with XRD. Several references to XRD
are given at the end of the chapter. When considering
diffraction, remember that there are important differ-
ences between electrons and X-rays:

& Electrons have a much shorter wavelength than the
X-rays commonly encountered in the research lab.

& Electrons are scattered more strongly because they
interact with both the nucleus and the electrons of
the scattering atoms through Coulomb forces.

& Electron beams are easily directed because electrons
are charged particles.

It is particularly important that the electron beam
can be deflected off the optic axis a short distance above
the specimen and then pass through the specimen; this
process of tilting the beam was described in Section
9.1.D. The most obvious effect of this deflection on the
DP is that the whole DP is translated relative to the
viewing screen. The more subtle effect results from the
change in the direction of the incident beamwith respect
to the crystal lattice, as we will discuss in subsequent
chapters.

11.3 SCATTERING FROM A PLANE
OF ATOMS

If you go back to Chapter 3 on elastic scattering you’ll
see that we introduced the two different ways of think-
ing about diffraction: the Laue conditions and Bragg’s
law. In this chapter we’ll derive Bragg’s law again,
introducing a vector notation that we’ll use throughout
the rest of the book. In Chapter 12, we’ll do the same
with the Laue conditions.

The simple diagram in Figure 11.2 shows an initial
wavefront, WI, being scattered by a plane of atoms to
produce a diffracted wavefront, WD. Whether or not
WD corresponds to a diffracted beam will depend on
whether the atoms are scattering in phase, which itself
is determined by the angles between the incident
beam, the diffracted beam, and the diffracting planes.
The conditions for the individual waves being in
phase are known as the Laue conditions, which we
introduced in Section 3.10.B. To analyze the situation

we first simplify the diagram as shown in Figures 11.3
and 11.4. These figures define the wave-propagation
vectors, which we will refer to simply as the wave
vectors or the k-vectors. We begin by considering
scattering from only two atoms.

Notice that we are already mixing the concepts of
waves and beams.

(A) (B) (C)

FIGURE 11.3. Definition of the scattering vectors: (A) the incident

wavefront normal is kI, the diffracted wave normal is kD; (B) K is the

difference vector (= kD – kI); (C) sin y is defined as K/2KI.

FIGURE 11.2. Scattering from two planes of atoms. WI and WD are the

incident and diffracted wavefronts, respectively.
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We’ll only consider plane wavefronts, i.e., the wave-
front is flat and k is normal to this wavefront. The
diagrams in Figure 11.3A and B define vectors kI, kD,
and K and gives us the following important equation
(which is just vector addition)

K ¼ kD � kI (11:1)

where kI and kD are the k-vectors of the incident and
diffracted waves, respectively. The vector K is thus the
change in k due to diffraction. An important feature of
this analysis is that this construction can be made for
any kD and thus for any value of K; the angle y shown
here need not be a Bragg angle.

Following our discussion in Section 3.10.B, we can
always write that

k1j j ¼ kDj j ¼
1

l
¼ kj j (11:2)

providing the energy of the electron is unchanged during
diffraction, i.e., the scattering process is elastic. From
Figure 11.3C we can write an expression for y using
simple trigonometry

sin y ¼ Kj j=2
kIj j

(11:3)

or

Kj j ¼ 2 sin y
l

(11:4)

|K|, like |kI|, has units of nm
–1 if l is measured in nm.

K and kI are then referred to as reciprocal-lattice vectors.
Note that this scattering process is taking place inside
the crystal and therefore the k-vectors are all appropri-
ate to the electrons inside the crystal (rather than in the
vacuum).

If we now extend this argument to consider the inter-
ference between waves scattered from two points (which
you can visualize as being atom sites) then we have the
situation sketched in Figure 11.4. This figure should
remind you of the idea of constructive and destructive
interference which we discussed back in Section 3.10. You
will recognize that the geometry of Figure 11.4 is essentially
a cross section of the two slits used by Young to demon-
strate the wave nature of light (see also Section 2.10). We
can then define two planes P1 and P2 to be normal to the
vectorCBwhich has length d. The distance traveled by ray
R1 is then larger than that traveled by ray R2 by the path
difference AC+CD. Simple geometry shows that

ACþ CD ¼ 2d sin y (11:5)

which is the basis for Bragg’s law, as we’ll now see.

11.4 SCATTERING FROM A CRYSTAL

We introduced the Bragg angle in Figure 3.9 as the most
important scattering angle in TEM; at the Bragg angle
the electron waves interfere constructively. If we now
analyze Figure 11.4 further, we see that when y equals
the Bragg angle, yB, equation 11.4 becomes

Kj j ¼ 2 sin yB
l

(11:6)

When y is yB, the path difference in equation 11.5 is
nl, where n is any integer, and the equation becomes

nl ¼ 2d sin yB (11:7)

This is Bragg’s law (equation 3.21). If n is 1

2 sin yB ¼
l
d

(11:8)

but we already know from equation 11.6 that, at the
Bragg angle,

2 sin yB ¼ ljKj (11:9)

FIGURE 11.4. Two beams are scattered from two points, C and B, which

lie on different planes, P1 and P2. The rays travel different distances giving

a path difference of AC + CD.

EQUATION 11.4 IS VERY IMPORTANT
Whenever you see the term sin y/l remember that it is
just K/2 and is thus related to a change in wave
vector.

200 ................................................................................................................................................................................ D IFFRACT ION IN TEM



so when we are at the Bragg angle, the magnitude of the
vector K has a special value, KB,

KBj j ¼ 1

d
(11:10)

and we define this vector, KB, to be g so that

KB ¼ g (11:11)

This sequence of steps may seem rather pedantic but the
conclusion is extremely important. Bragg’s law and the
geometry used to ‘prove’ it will be used so frequently in
our discussions that it is worthwhile to delve a little into
what it really tells us. Although it is not really a valid
treatment of the phenomenonwe are seeing, Bragg’s law
gives us a very useful physical picture of the diffraction
process because the diffracting planes appear to behave
as mirrors for the incident electron beam. Therefore, the
diffracted beams, or the spots in the DP, are often called
‘reflections’ and we sometimes refer to the vector g as
the diffraction vector. This derivation is simply geome-
try. In Section 12.3 we will derive the Laue equations
and hence deduce Bragg’s law from first principles.

The reason that this derivation of Bragg’s law is not
really valid (it just gives the right answer) is that it really
applies to scattering at a glancing angle where the beam
exits the same surface as it enters, not transmission.

We mentioned earlier that the angles shown in all of
our figures are exaggerated for the case of diffraction in
the TEM. For example, for 111 planes in Cu, d is 0.21nm;
l is 3.35pm (0.00335nm or 0.0335 Å) for 120-kV elec-
trons; equation 11.8 then gives y = 7.97 mrads (0.468)
for n=1. As a rule of thumb, the Bragg angles of interest
are usually no more than 18 when we are forming images
(although important informationmaybe present inDPs at
much larger, 10–208, angles). You will find it useful to
remember the order of magnitude of these numbers.

We can now generalize from single atoms to planes
of atoms. Let’s imagine that Figure 11.4 shows two
‘planes of atoms,’ P1 and P2, and that the points B and
C are not necessarily atoms but are simply points on
these planes and that d is the shortest distance between

the two planes. How is the ‘in-phase’ nature changed if
we move atom B but keep it on plane P2?

Consider scattering from a single plane as shown in
Figure 11.5. Geometry shows that while ray R1 travels a
distance EJ, ray R2 travels a distance HF and that these
two distances are equal. Thus there is no path difference
for scattering from atoms located anywhere on a partic-
ular plane. This seemingly trivial result means that we
can generalize our conclusions from Figure 11.4.

This result is summarized in Figure 11.6. Rays R1, R2,
and R3 all scatter in phase if y=yB.

Next we extend this analysis to includemany parallel
planes each a distance d from its neighbors, as is shown
in Figure 11.7.

In the special case of Bragg diffraction, the scattering
semiangle between the incident beam and the Bragg-
diffracted beam is twice the Bragg angle (2yB). See
Figure 11.7 and refer back to Section 2.12.DIFFRACTION, NOT REFLECTION

Don’t forget we are really dealing with diffraction,
not reflection, and we derived Bragg’s law by con-
sidering just two atoms. We still examine reflections,
but they’re not.

DEGREES AND RADIANS
Remember 10mrads is 0.5738, i.e., about 0.58.

SCATTERING FROM A PLANE
It does not matter how the atoms (scattering centers)
are distributed on these two planes; the scattering
from any two points on planes P1 and P2 will produce
the same path difference 2d sin y.

FIGURE 11.5. Two beams are scattered from two points, E and F, which

lie on the same plane P1. This simple diagram shows that the two beams

travel the same distance since triangles EHF and FJE are congruent.
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The Bragg reflection, g, is then perpendicular to
the set of planes. Clearly this is just another way of
expressing equation 11.11. Figures 11.2 and 11.7
remind us that Bragg diffraction occurs when K has
the value g.

11.5 MEANING OF n IN BRAGG’S LAW

As is shown in Figure 11.7, and in the DP in Figure 11.1,
in practice there will not just be one Bragg reflection but a
series of reflections which are periodically spaced along a
line; these are known as a systematic row of reflections,
–G, 0, G, 2G, 3G, etc., with corresponding diffraction
vectors, g�, 0, g, 2g, 3g, etc.

Notation: When discussing beams in diffraction pat-
terns, the letter O will refer to the ‘direct’ beam
which is present even when there is no specimen; the
letter G (not bold—it’s not a vector) will refer to any
single diffracted beam; the number 0 (bold) will refer
to the diffraction vector for beam O (it is a vector of
zero length) and the letter g (always bold to remindus
that it is a vector)will denote the diffraction vector (in
the DP) for beam G. Having said that, many micro-
scopists use G and g interchangeably, so beware.

These other reflections (ng, where n 6¼ 1), called
higher-order reflections, are particularly important in
TEM. Pictorially, you can imagine them as arising
from the interference of electrons scattered from planes
which are a distance nd apart, where n is a rational
fraction. To understand the physical meaning of this
statement, put a plane P3 half way between P1, and P2
as shown in Figure 11.8.

Now planes P1, P2, and P3 will scatter in phase when

2
d

2

� �
sin y ¼ l (11:12)

because the new ‘d ’ is d/2. Thus coherent scattering will
occur when

g2j j ¼
2

d
(11:13)

i.e., when

jg2j ¼ 2jgj (11:14)

C

B

R1

R1

R2

R2

R3

R3

θ

E

P1 P2

d

FIGURE 11.6. Scattering from three points on two planes. The path

difference for scattering from points B and C is 2d sin y, so the path

difference for scattering from points C and E is also 2d sin y. Hence,

scattering in the direction of the diffracted beam from all points shown

will be in phase if 2d sin y = nl.

P1

O
G

2G
3G

4G
5G

6G

g

θB
d

θB

2θB

-G

Incident
beam

Diffracted
beam

Direct
beam

FIGURE 11.7. Diffraction from a set of planes a distance d apart. The

planes have been oriented to be in the Bragg diffracting condition (yB is

the incident angle). Note that the planes are not parallel to the incident

beam. The resultant diffraction spots (reciprocal-lattice points) are

labeled G, 2G, etc. The vector g from the origin (O) to the first diffraction

spot G is normal to the diffracting plane.

THE BRAGG ANGLE
Be very careful with this definition; it is too easy to
assume that the Bragg angle, yB, is the scattering
semiangle: it is not! In all other cases, y really is the
semiangle.

BAR g
The vector g is pronounced ‘‘bar g’’ and connects O to
�G, which is pronounced ‘‘minus g’’! You will also
hear g pronounced ‘‘g bar.’’
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As we noted in the discussion of Figure 11.3, this
scattering from plane P3 will occur no matter how the
atoms (scattering centers) are distributed on this
plane—even if there are no atoms on the plane! Thus
we will always see g2=2g and similarly g3=3g, etc.
So we can generalize equation 11.12 to be

2
d

n

� �
sin y ¼ l (11:15)

or rewrite this as

2d sin y ¼ nl (11:16)

which gives a physical explanation for the n in
equation 11.7.

To summarize: electrons are diffracting from a set
of planes of spacing d such that we have both construc-
tive and destructive interference. We can consider n in
equation 11.15 as indicating that electrons are diffract-
ing from a set of planes with spacing d/n rather than d.
This equation can then be applied to planes that are
occupied by different atoms. Although this treatment
is not rigorous, it will prove to be very useful in prac-
tice. The alternative, but equivalent, view is obtained
by considering the Laue equations which we will do
in Chapter 12. You might consider why we don’t
have diffraction from planes which are nd apart instead
of d/n.

11.6 A PICTORIAL INTRODUCTION
TO DYNAMICAL EFFECTS

Dynamical diffraction traditionally strikes fear into the
heart of the non-mathematician. Unfortunately, in
TEMmost practical imaging situations involve dynam-
ical scattering. The terminology derives from X-ray
theory (where it is not nearly so important). The reason
it is very important in electron diffraction is that the
electron beam interacts so strongly with the atoms in the
crystal. For most purposes, dynamical diffraction can
be thought of in quite a simple manner, as you can see
in Figure 11.9.

DYNAMICAL DIFFRACTION
The beam, which has been strongly Bragg diffracted
once, is necessarily in the perfect Bragg orientation to
be diffracted back into the direct beam by the same
set of planes.

FIGURE 11.8. Scattering from three planes with plane P3 positioned

exactly half way between planes P1 and P2.

FIGURE 11.9. The beam can be scattered more than once. Any beam

which is oriented so as to be Bragg scattered once is automatically in the

ideal orientation to be rescattered. This gives rise to the phenomenon of

dynamical scattering because the beam can be scattered again and again.
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This beam is then said to be a rediffracted beam. The
likelihood of this process occurring will increase as the
thickness of the specimen increases. Clearly, the redif-
fracted beam is also perfectly oriented to be diffracted
again, and so on. The two beams in Figure 11.9 are said
to be dynamically coupled.

11.7 USE OF INDICES IN DIFFRACTION
PATTERNS

In Chapter 18 we’ll teach you how to indexDPs, i.e., how
to associate a spot in the DP with a diffracting plane in
the specimen. For the time being it will be useful if we just
introduce the conventions, rather than the methods, of
indexing patterns.

First remember that a particular crystal plane is
defined by the Miller indices (hkl); crystallographically
equivalent (hkl) planes are denoted as the {hkl} planes.
We define the direct beam as the 000 reflection and each
diffracted beam as a reflection with different hkl indices.
It is a crystallographic convention to refer to the diffrac-
tion spot from a specific (hkl) plane, as hkl, i.e., without
the parentheses. If we assign hkl to g, then the second
order (2g) spot is 2h 2k 2l, the 3g spot is 3h 3k 3l, etc.
Similarly, the –g reflection is hkl. We’ll discuss these
points further in Section 12.3.

Now we can explain why we see so many spots in the
DP. If we look along a zone axis in a crystal, we will see
sets of planes in the edge-on orientation. Remember
that a zone axis is the direction along the intersection
of two or more planes.

Notation: The zone axis, [UVW], is a direction
which is common to all the planes of the zone. So
[UVW] is perpendicular to the normal to the
plane (hkl) if the plane is in the [UVW] zone.
Later, we will see that [UVW] is defined as the
incident beam direction. This result applies to
all crystal systems and gives the Weiss zone law
hU+kV+lW = 0.

If there are many planes close to the Bragg orienta-
tion, then we will see spots from many different planes.
We still have not explained why we can see the 200 spot
and the 400 spot in the same pattern: they clearly can’t
both satisfy the Bragg condition at the same time. We
see both spots because of the physical shape of the TEM
specimen, as we’ll discuss in Chapters 12 and 17.

11.8 PRACTICAL ASPECTS OF
DIFFRACTION-PATTERN FORMATION

Remember from Chapter 9, we can form diffraction
patterns in the TEM in two complementary ways,
SAD and CBED patterns.

SADPs are sharply focused spot patterns that we
use to select reflections for all imaging modes. We can
easily associate the sharp spots with our diffraction
vectors, g.

CBDPs are arrays of disks. We can associate a g

vector with each disk but the location of g requires
more extensive consideration. For this reason, we’ll
delay more detailed discussion of CBDPs while we
develop diffraction theory and then devote Chapters
20 and 21 to the topic, because it is very important.

11.9 MORE ON SELECTED-AREA
DIFFRACTION PATTERNS

We discussed how you form a DP in the SAD mode in
Chapter 9. Now we will discuss some of the practical
implications and drawbacks of the method.

Why do we want to select a specific area to contribute
to the DP? All foils are distorted to some extent so that
diffraction conditions change as we move around the
specimen; hence we need to select areas of constant orien-
tation. Also, we may wish to determine the orientation
relationship between two different crystals, which we can
do by selecting the interfacial region. Alternatively, we

BFP

Plane of the
objective lens

Back focal plane
of the objective lens

O

Specimen
plane

G

Image plane

FIGURE 11.10. The diffraction pattern is formed at or close to the back

focal plane of the objective lens. O is the direct beam and G is the

diffracted beam.
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maywant to study theDP from a small particle within the
foil. Figure 11.10 is a reminder that the DP is formed at
the back focal plane (BFP) of the objective lens. A similar
diagram was shown in Figure 9.13.

The SAD method for selecting an area is to place an
aperture in the first image plane below the objective
lens. In this case we really are selecting an area, which
is the area in an image, but we always refer back to the
volume of the diffracting specimen. Since we are work-
ing at an image, plane we do not need to focus the
condenser lens, in fact we generally weaken (underfo-
cus) this lens to give more parallel illumination so that
all the rays are focused at the same plane, i.e., the BFP.
The spots in the DP then become sharper. In practice,
you will generally need to ‘fine-tune’ the focus of the
DP since its focus depends on the excitation of the
condenser lens.

The key practical steps in forming an SAD pattern
were described in procedure #4 in Section 9.3.A. The
two key points to remember are (i) be sure that you are
at the eucentric focus position, with an image of the area
of interest focused on the screen and (ii) remember to
focus the DP with the intermediate lens (diffraction
focus).

Remember that using an aperture to select an area in
the image plane gives an additional advantage: the area
has already been magnified, typically 25�. Thus a 50-mm
diameter aperture will select a 2-mmdiameter area on
the specimen.

You might ask: why can’t we just use a smaller SAD
aperture to select a smaller area? We can provide the
answer by looking at Figure 11.11: the objective lens is
not perfect. As we saw in Chapter 6, the beams which
are farther away from the optic axis are bent more
strongly as they pass through the objective lens. For
rays entering the objective lens at an angle b to the
optic axis, the image formed at magnification M is
translated a distance rM given by

rM ¼MCsb
3 (11:17)

So the area we select using the SAD aperture corre-
sponds to the area PP1 in the object plane only for the
direct beam. The error increases as b increases, so that
it’s larger for a larger Bragg angle or for a larger g. The
result is illustrated schematically in Figure 11.12 with
values given in Table 11.1. (Note that we divide rM byM
to give the distance at the specimen.) The values in the
middle column were calculated for a Cs of 3.3mm and
100-keV electrons. If you use a smaller aperture, select-
ing an area of less than 1-mm diameter, even the fourth-
order 111 reflection, i.e., the 444 reflection, from this
area would not contribute to the SADP. Instead, a
different area, possibly even an adjacent crystal, would
contribute.

We will produce another selection error if the aper-
ture is not located at the image plane. This effect can be

Specimen

B

C

O

Objective
lens

BFP

P P1

MCsβ3 MCsβ3

β

FIGURE 11.11. Formation of an SAD pattern showing that there is an

error in selecting the area if the beams do not travel at the same angle to

the optic axis. This difference is due to spherical aberration in the objec-

tive lens. B is the diffraction spot position for a perfect lens and C is the

spot position with spherical aberration.

FIGURE 11.12. Schematic diagram showing the effective error in area

selection, due to spherical aberration, for different reflections in the 111

systematic row for Al (a0= 0.404 nm) assuming 100-keV electrons andCs

= 3mm. The 000 and 111 disks almost exactly overlap (the translation is

13 nm). The diameter of each disk in the top row is 1mm, and the diameter

of each disk in the bottom row is 0.5mm.
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seen clearly in Figure 11.13 where the objective lens is
focused on plane Pf rather than on the specimen. The
effect is seen by simple geometry if you extend the
diffracted rays back to the specimen plane. The dis-
placement at the first image plane (where the SAD
aperture is located) corresponds to a distance y at the
specimen plane where y is given by

y ¼ Db (11:18)

On some older machines, a ‘click’ on the medium
image focus control (i.e., of the objective lens) corre-
sponded to a change in focus,D of�3 mm.You will still
find onmany TEMs that the aperture in the SAD plane
is not always in focus when the DP is in focus. You
might also consider the implications when we study
very thick specimens. Remember that these two
sources of error may be additive and therefore quite
substantial.

You may still sometimes want to use an aperture
which conventional wisdom tells you is ‘too small for
SAD.’ Perhaps the best advice when this is the case is, if
possible, use CBED. However, you should remember
that ‘conventional wisdom’ is often based on Table 11.1,
which was first calculated by Hirsch et al. in �1963 and
applied to a machine built in the 1950s! A modern
300-kV machine may have a Cs of �1mm and a l (at
300 kV) of 1.968 pm. The values for Csb

3 then become
much smaller as shown in the right-hand column of
Table 11.1. Clearly you could now use a much smaller
SAD aperture, but 10mm is about the smallest that can
be manufactured.

One question which is often asked is: if the SAD
aperture is placed at the first image plane, how can it
affect the DPwhich is formed above it? The relationship
between the SAD pattern and the image(s) can be illus-
trated by forming a multiple dark-field image of the
type illustrated in Figure 11.14A. To do this, you must
first form the SAD pattern in the usual way. Then
increase the strength of the intermediate lens so that
it’s focused below the BFP in Figure 11.14B. Instead
of a point we then see a disk, because the beam is
convergent at the BFP. To understand what is

happening we must realize that the magnification of
the specimen at the BFP is zero (i.e., when ‘X’ in Figure
11.14B is in the BFP plane)! As we increase the strength
of the intermediate lens, staying in diffraction mode, we
increase the magnification of these images (one bright-
field image and many dark-field images). Of course,
these images are not in focus but this can be corrected
by adjusting the strength of the objective lens, which is
just conventional focusing.

Now you can appreciate directly that each disk cor-
responds to a reflection in the SADP. The reflections
that were bright now correspond to bright disks; the

TABLE 11.1 The Displacement Distance of the Image Formed
by ‘Reflection G’ Due to Spherical Aberration

Reflection in SAD pattern Csb
3 (nm) old TEM Csb

3 (nm)

now IVEM

111 13 1.2

222 100 9.1

333 350 31.9

444 760 69.3

555 1620 150

666 2800 250

β

Incident beam

Specimen plane

000

D

‘In focus’
plane, Pf

y

hkl

FIGURE 11.13. If the lens is not focused on the SAD plane, images

associated with the different g vectors will be shifted with respect to

one another. D is the defocus. The shift in the selected area is given

by y = Db.
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area was close to the Bragg condition for that reflection.
It is at first surprising to realize that none of the disks is
uniformly bright. Conversely most of the disks are
partly bright! We’ll examine the reasons for this varia-
tion in Chapter 13.

This uncertainty in the area selected to form the
SADPs is one reason that CBDPs can have some

advantage whenever you want to get crystallographic
information about specific regions of your specimen.

We’ll end with some more practical points.
You can change the detail present in your DP

simply by changing the C2 lens setting and the expo-
sure time.

To record the SADP you should never use an expo-
sure of <10 seconds (but you will). You don’t need to
use a 1-second exposure to limit drift! If you’re inter-
ested in the details in the diffraction pattern you should
take as many as three exposures; on film, youmight use
10, 30 and 100 seconds. So spread the beam with C2
and remove that beam stop (better still, don’t use it;
you’re damaging your specimen if the beam is that
intense). Correct the astigmatism in the intermediate
lens after you’ve spread the beam; this astigmatism
becomes noticeable when your spots are small (not all
microscopes allow you to do this). Focus the spots to
sharp points with the diffraction (intermediate) lens;
now you’ve focused the DP. Just for the exercise, focus
the spots in the SADP as you generally view it with the
beam condensed down to a minimum diameter. Now
spread the beamwith C2 and refocus the spots; you will
see quite a difference in how sharp the spots are. Use
the binoculars for focusing the spots after you’ve
spread the beam. Unless the pattern is well focused,
you will miss many of the fine details that make SAD
so useful.

Deciding which pattern is best really depends on
what information you require. If you would like to see
fine detail in your SADP, you will probably need to
underfocus the beam using C2. If the beam of interest
is of low intensity, you may need to increase the expo-
sure time at the risk of broadening the more intense
spots, hence the need to record patterns with a range
of exposures. DPs can be recorded on video or sent
directly to the computer using a video camera. The use
of a CCD camera can give a much greater range of
intensities than the photographic film; this will become
the preferred method of recording DPs in the future.
However, you may have no alternative (i.e., no
darkroom).

Cooling your specimen can reduce the thermal-
diffuse scattering and thus reduce the background inten-
sity considerably. Changes in the lattice parameter will
not usually be a problem in SAD since we are not
looking for that level of accuracy, but they will be
noticeable in the HOLZ CBDPs (see Chapter 21).

Finally, if your specimen charges, you’ll probably
have to coat it with a thin film of carbon. Do practice
this. Repeat several thin coatings if necessary and be
sure that the charging is not due to your specimen not
contacting the specimen holder or the holder not con-
tacting the ground.

(A)

(B)

FIGURE 11.14. (A) Multiple dark-field images formed by defocusing the

SADP revealing dark-field images in each diffraction disk defined by the

objective aperture. Close inspection reveals that each image (of a twin bound-

ary) is slightly shifted from the adjacent images, reflecting the increased error

in area selection for higher-order reflections; (B) formation of a disk occurs

because a defocused beam is either convergent or divergent at the BFP. An

underfocused convergent beam is preferred, since it is more parallel than an

overfocused divergent beam (see Figure 6.5).
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CHAPTER SUMMARY
DPs are the basis of all image formation in the TEM as well as all crystallographic analysis
and defect characterization. We can understand DPs in terms of Bragg reflection from
planes of atoms in the specimen and we can define the diffraction vector g associated with
each Bragg reflection and associate each gwith a crystal plane hkl. The diffracting planes are
all in a specific zone axisUVW,whichwe can define as parallel to the incident beamdirection.

DIFFRACTION AND OPTICS
Bragg, WL 1965 The Crystalline State I Ed.WL Bragg Cornell University Press Ithaca NY (first published

in 1933). Find it in your library and browse.
Hecht, E 2001 Optics 4th Ed. Addison-Wesley Reading MA. Very readable and current.

James, RW 1965 The Optical Principles of the Diffraction of X-Rays,The Crystalline State IIEd.WL Bragg
Ed. Cornell University Press Ithaca NY (first published in 1948). Ditto.

Schwartz, LH and Cohen, JB 1987Diffraction fromMaterials 2nd Ed. Springer New York. One of the two

standard texts.

THE COMPANION TEXT
We’ll use this theory throughout the companion text but won’t refer to it specifically.

SELF-ASSESSMENT QUESTIONS
Q11.1 List the three major differences between electron diffraction and X-ray diffraction.
Q11.2 If TEM imaging, coupled with electron diffraction, is so wonderful, why do some researchers use X-rays

instead for both purposes?
Q11.3 Why do we usually not measure intensities of spots in TEM DPs?
Q11.4 Why do we need to specify planes in a lattice?

Q11.5 What are the major differences between SADPs and CBDPs?
Q11.6 Formation of an SADP shows that there are errors in selecting the area. Why do the errors occur?
Q11.7 Why do the spots in the DP vary as we move across the specimen?

Q11.8 Why do we need to change the C2 setting and exposure time as we change location on the
specimen?

Q11.9 How can we limit thermal-diffuse scattering and thus reduce background intensity?
Q11.10 Summarize the advantages of TEM over SEM and visible-light microscopes.

Q11.11 What is necessary for constructive interference to occur?
Q11.12 Write down Bragg’s law.
Q11.13 How does the specimen thickness affect dynamical scattering?

Q11.14 Why do you underfocus the condenser lens when obtaining SAD patterns?
Q11.15 Why don’t you always use the smallest selected-area aperture possible when obtaining an

SADP?

Q11.16 When recording an SADP pattern, how long should the exposure time be?
Q11.17 How does the SAD approach work if the aperture is not actually in the specimen plane?
Q11.18 What critical information can you readily obtain from a TEM DP?
Q11.19 In the case of Bragg diffraction, how is the semiangle between the incident beam and the Bragg-

diffracted beam related to the Bragg angle?
Q11.20 What is a ‘zone axis’?
Q11.21 Give a pictorial explanation for the meaning of n in Bragg’s law.

Q11.22 What is the most basic characteristic of your specimen indicated by the presence of spots in
a DP?

Q11.23 Prove that there is no path difference for scattering from atoms located on the same plane.

TEXT-SPECIFIC QUESTIONS
These questions are not difficult since we are just introducing DPs.

T11.1 Using equations in the book, deduce Table 11.1. Summarize all the parameters you use in making an

extended version of the table.
T11.2 Examine Figure 11.14. If the specimen is Si, index theDP. If it’s a 300-kVTEM, deduce the camera length.
T11.3 Explain why Figure 11.14 could not be from Cu.
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T11.4 Consider Figure 11.10. There are five rays and four planes. Number them in the order in which you
would draw these lines. Discuss how you would modify this figure so as to draw it to scale.

T11.5 TheDP in Figure 11.1 was obtained from a polycrystalline sample. Identify the single-crystal DPs in this

figure.
T11.6 In Figure 11.14, the disks all appear to show the same area of the specimen. Do you expect this to be

exactly the same area? Discuss.

T11.7 Consider Figure 11.14. Using a reasonable value for the beam divergence, estimate the value forDf using
information in the figure.

T11.8 Consider Figure 11.12. Assess the accuracy of this drawing. Do a similar drawing for a value of
Cs = 0.7 mm with everything else being the same.

T11.9 We will see later that a critical challenge for high-resolution imaging is image delocalization (MSWord
suggests demoralization is a better word). How has this concept been introduced in Chapter 11? If we
could correct Cs, how would SAD in the TEM be improved?

T11.10 Deduce the Weiss zone law using vector multiplication.
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12
Thinking in Reciprocal Space

CHAPTER PREVIEW

In the previous chapter, you’ve already encountered vectors k and g and seen that they have
lengths with units of nm–1. These vectors are referred to as reciprocal-lattice vectors. Now
we are going to discuss what this reciprocal lattice is. The reciprocal lattice is simply a lattice
in reciprocal space. Note that this lattice is just as real as the ‘real lattice’ in ‘real’ space. It’s
like a newworld inGulliver’s Travels but the relationship to ‘our’ world is not a linear scaling
factor but a reciprocal one. If something (an object or a length) is large in real space, then it’s
small in reciprocal space.

When you see an object in real space you need to think, ‘‘What would it look like in
reciprocal space?’’

The reciprocal lattice is a purely geometrical construction. We’ll separate the discus-
sion into two parts: (i) the math and (ii) the properties of this lattice. The first is the same as
you will meet in any text on condensed-matter physics; the second relates to how we use
this construction in TEM. What we will find is that the lattice gives us a method for
picturing the geometry of diffraction; it gives us a ‘pictorial representation’ of diffraction.
It helps us to visualize how DPs will vary as the orientation and physical characteristics of
the specimen vary.

12.1 WHY INTRODUCE ANOTHER LATTICE?

If you’re new to the field of diffraction, the concept of
reciprocal space may seem a daunting theoretical proposal.
You must persevere. This model gives a physical picture
of diffraction geometries that is extremely helpful to you,
the experimentalist. The best approach is to think of any
crystal as having two lattices. The first describes the arrange-
ment of the unit cells of atoms in the crystal (your specimen).
The second is an array of points which is uniquely defined
for any given crystal but does not correspond to arrays of
atoms; instead, each point is associated with a particular set
of planes in the crystal. Of course, the reciprocal lattice is
just as real as the ‘real’ lattice; both are simply geometrical
constructions. We’ll use the reciprocal lattice to give a
physical picture of what happens when a crystal diffracts.

In Chapter 11 we showed that Bragg diffraction of
electrons by crystals occurs when K is equal to g. The
reciprocal-lattice concept allows us to define a lattice
where all the lattice points correspond to the possible g
vectors.

To understand why we use the reciprocal lattice,
remember that we can always write Bragg’s law (equa-
tions 11.2 and 11.3) as

2 sin yB
l

¼ n

d
¼ Kj j (12:1)

Thus the vector K is reciprocally related to d and vice
versa. Before using this new lattice, however, wemustwork
through its formal definition.

HISTORICAL NOTE
The reciprocal lattice was rediscovered independently
by Ewald and Laue in 1911–1914, but it had been
described by Gibbs in 1881 and by Bravais (in a
somewhat less useful form) in 1850! The discussion
in 1962 of Ewald’s contribution to the subject is
recommended reading.

RECIPROCAL
Think of any crystal as having two lattices, one real
and the other reciprocal. In the reciprocal lattice, sets
of parallel (hkl) atomic planes are represented by a
single point located a distance 1/dhkl from the lattice
origin.
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12.2 MATHEMATICAL DEFINITION
OF THE RECIPROCAL LATTICE

In this section we will go through the definition of the
reciprocal-lattice as a mathematical construction and
prove some of the special mathematical properties of
the vector, g. You don’t need to learn the proofs but you
will need to know these equations.

The mathematics of the reciprocal-lattice construc-
tion is simple vector algebra.

In real space, we can define any lattice vector, rn, by
the equation

rn ¼ n1aþ n2bþ n3c (12:2)

where the vectors a, b, and c are the unit-cell translations
in real space and n1, n2, and n3 are all integers.

Any reciprocal-lattice vector, r*, can be defined in a
similar manner

r* ¼ m1a*þm2b*þm3c* (12:3)

where a *, b*, and c* are the unit-cell translations in
reciprocal space andm1,m2, andm3 are all integers. The
directions of these new vectors are defined by the
relations

a* � b ¼ a* � c ¼ b* � c ¼ b* � a ¼ c* � a ¼ c* � b ¼ 0 (12:4)

In words, a* is normal to both b and c, etc.
We define the lengths of these vectors by another set

of relations

a* � a ¼ 1; b* � b ¼ 1; c* � c ¼ 1 (12:5)

Equation 12.5 then uniquely defines the length of the
vector a* in terms of the length of the vector a. There-
fore, these equations give the scale or dimension of the
reciprocal lattice. The product of the projection of a* on
the vector a multiplied by the length of a is unity. Be
careful; this result does not mean that a* is parallel to a

(think about this!). The direction of a* is actually com-
pletely defined by equation 12.4. It is perpendicular to
both b and c and must therefore be the normal to the
plane containing b and c.

The vector, a*, is always perpendicular to the plane
(100) even when a is not.

We can see that if a, b, and c are large, then the
corresponding reciprocal-lattice vectors will be small if
we choose conventionally shaped unit cells.

Since Vc, the volume of the unit cell, is given by
a�b^c, then from equation 12.5 we can write a* as

a* ¼ b ^ c

Vc
(12:6)

This definition emphasizes that the vector a* is
orthogonal to the vectors b and c. However, just as a,
b and c need not be normal to one another, a*, b*, and
c* are also not necessarily normal to one another. We
use the usual clockwise convention in defining the vec-
tor product in equation 12.6.

12.3 THE VECTOR g

We can generalize our definition of g a little more. Any
vector in reciprocal space can be defined as a combina-
tion of the vectors a*, b*, and c*. In particular, we can
write K in a form for use later

K ¼ x a*þ Z b*þ z c* (12:7)

Here x, Z, and z are any three numbers, not necessa-
rily integers. A particularly important reciprocal-lattice
vector is the vector ghkl which is defined as

ghkl ¼ ha*þ kb*þ lc* (12:8)

where h, k, and l are all now integers and together define
the plane (hkl).

The definition of the plane (hkl) is that it cuts the a, b,
and c axes at 1/h, 1/k, and 1/l, respectively. If you look at
Figure 12.1, you’ll see that the vector AB can be written
as b/k – a/h. This vector and all vectors in the (hkl) plane

(hkl)C

A

B

N

O

x

y

z

OA  = a
h

OB  = b
k

OC  = c
l

FIGURE 12.1. The plane ABC has Miller indices (hkl ). The vectorsOA,

OB, andOC have lengths a/h, b/k, and c/l. The vectorON, which may be

written as n, is normal to the plane (hkl ). In the text we see that the

reflection, g, which is associated with diffraction from the (hkl ) planes, is

parallel to n and normal to all vectors in (hkl ).
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are normal to the vector ghkl defined in equation 12.8.
You can prove this by taking the dot product ofAB and
g and using equations 12.4 and 12.5. Therefore, the
vector ghkl must be normal to the plane (hkl )

b

k
� a

h

� �
� ha*þ kb*þ lc*ð Þ ¼ 0 (12:9)

The vectors AB, BC, and CA all lie in the plane (hkl)
and each is normal to ghkl. All that we now have to prove
is that the length of the vector, |ghkl|, is given by (dhkl)

�1.
To show this relationship, consider a unit vector, n,
normal to the plane (i.e., parallel to ghkl) and take the
dot product with any unit vector inclined to this plane
(e.g., a/h or b/k).

The unit vector, n, parallel to g is simply g/|g|. There-
fore, the shortest distance from the origin O to the plane
is the dot product of n with vector OB (or OC, etc.)

n � a
h
¼ g

gj j �
a

h
¼ ha*þ kb*þ lc*ð Þ

gj j � a
h
¼ 1

gj j (12:10)

where we again used equations 12.4 and 12.5. Since the
origin, O, by definition lies on a plane in this family of
planes, equation 12.10 gives the distance between par-
allel (hkl) planes, so that

dhkl ¼
1

gj j (12:11)

as we required.

& The definition of the (hkl) indices is OA¼ a/h; OB¼
b/k; OC ¼ c/l.

& The plane ABC can then be represented as (hkl).

We should emphasize a few points before moving on.

& Remember: the reciprocal lattice is so called because
all lengths are in reciprocal units.

& If you are familiar with the derivation of band-gap
concepts in elementary solid-state physics, you will
have already used these ideas. The difference is that
the energies of the electrons being produced in the
microscope are �100 keV, whereas those in solids
are �1 eV. This will affect the magnitudes of k but
the a*, etc., will not change with kV.

& Reciprocal-space notation. We introduced the use
of brackets in Section 11.7. Now we’ll extend this
notation to the reciprocal lattice: (hkl) is shorthand
notation for a particular vector in reciprocal space
because it is normal to the (hkl) plane in real space;
{hkl} is then the general form for these reciprocal-
lattice vectors. [UVW] is a particular plane in recip-
rocal space, e.g., it may contain many {hkl} points so
that in real space it would be a direction—the zone
axis for the {hkl} real-space planes (see Table 12.1).

When indexing diffraction spots, you will often find
that the brackets have been entirely omitted; this is a
sort of convention. You should use brackets if there
is any ambiguity or for emphasis.

& In non-cubic material, some special vectors may be
parallel to one another, but most pairs will not be
parallel. This difference can surprise even the experi-
enced microscopist, particularly if you’re used to
studying cubic metals. For example, if you orient
the electron beam to be along the [123] zone axis in
an orthorhombic crystal such as olivine, the beam
will not be normal to the (123) plane.

12.4 THE LAUE EQUATIONS AND THEIR
RELATION TO BRAGG’S LAW

To understand the value of the reciprocal lattice, we will
now reconsider some of the terms we discussed pre-
viously. We use Bragg’s law (Section 11.5) because it is
so useful. It gives us a physical picture of the construc-
tive-interference phenomenon, but it does not really cor-
respond to the actual situation in TEM. Our justification
in using Bragg’s law is that we can derive it as a special
form of the Laue equations, which really do describe
diffraction in the TEM.

So we’ll now derive Bragg’s law from the Laue equa-
tions using simple vector algebra. For much of our
discussion we assume that the crystal is infinitely large;
we can always take the reciprocal lattice to be infinite.
We can then use intuition to see that constructive inter-
ference will only occur when

K ¼ g (12:12)

FromFigure 12.2 we can see that the magnitude ofK
is always (2 sin y)/l. At the Bragg condition it is also

TABLE 12.1. Notation for Planes, Directions, and Reflections

Real space Reciprocal space

Particular direction Particular plane [UVW]

General direction General plane <UVW>

Particular plane Particular direction (hkl )

General plane General direction {hkl }

Diffracting plane Indexed reflection hkl

WARNING
Real-lattice vectors and reciprocal-lattice vectors
with the same indices (e.g., [123] and plane normals
(123)) are parallel only in the case of cubic materials.
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equal to the magnitude of g, i.e., 1/d. Therefore, at the
Bragg condition we can write

2 sin y
l
¼ 1

dhkl
(12:13)

Hence we can write

l ¼ 2d sin y (12:14)

which is Bragg’s law.
Equation 12.12 represents the Laue conditions for

constructive interference; so we will refer to this as the
condition for Laue, or Bragg, diffraction. Prove for
yourself that g�rn is always an integer, N. Then we can
use equation 12.2 to write the Laue conditions

K � rn ¼ N (12:15)

This equation tells us that we must satisfy certain
conditions on K in order to have Bragg (or Laue)
diffraction.

Using equation 12.7 and multiplying this dot
product we can see that this equation only holds when

{n1 x + n2 Z + n3 z} is an integer; K�rn ¼ N when x, Z,
and z are the integers h, k, and l.

Note: this is a very special case. By setting rn equal to
the three unit vectors in turn, equation 12.15 gives three
relationships

K � a ¼ h (12:16)

K � b ¼ k (12:17)

K � c ¼ l (12:18)

Of course, these equations are the same Laue diffrac-
tion conditions which we introduced back in Section
3.10.B, as given in equation 12.15. In Section 11.5 we
quoted Bragg’s law, with an ‘n,’ as

nl ¼ 2d sin y (12:19)

We also discussed the physical reason for n. We can
now treat the same situation mathematically. If the
integers h, k, and l have a common factor then we can
write

ndnh;nk;nl ¼ dhkl (12:20)

So the n is implicit in the d used in equation 12.14.
You will find that there are many other methods for
treating this problem. We have chosen this approach to
emphasize the underlying geometric principles.

12.5 THE EWALD SPHERE
OF REFLECTION

The reciprocal lattice is a 3D array of points, each of
which we will now associate with a reciprocal-lattice
rod, or relrod for short, which is centered on the point.
Furthermore, we will arrange each relrod to be normal
to the thin foil, but to have a finite thickness parallel to
this foil normal. This geometry of the relrods holds even
when we tilt the specimen. The fact that we have rods is
the result of the shape of our TEM specimen. At this
stage this is purely an empirical construction to allow us
to explain why we see spots in the DP even when the
Bragg condition is not exactly satisfied.We will examine
the shape of these rods and their origin in Chapter 16.

We now construct a sphere of radius 1/l. The sphere is
known as the sphere of reflection or generally, and more
simply, the ‘Ewald sphere’ in honor of its inventor P.P.
Ewald. Due to Ewald’s German origins, Ewald is pro-
nounced ‘A. Valt’ rather than ‘E. Walled.’ Ewald’s paper
which first described the sphere was published in 1913 and
was entitled ‘Contributions to the Theory of Interferences
of X-rays in Crystals.’ It appears, in translation, in the
monograph edited by Cruickshank et al., along with sev-
eral of his other papers; the articles collected in this review

FIGURE 12.2. The geometric relationship between kI, kD, K, y, and l.
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give a wonderful insight into the whole development of
the theory of diffraction.

The sphere is usually represented in two dimen-
sions by a circle and in most figures is drawn
together with a two-dimensional section through the
reciprocal lattice as shown in Figure 12.3.

The key point is that when the sphere cuts through
the reciprocal-lattice point the Bragg condition is satis-
fied.When it cuts through a rod you still see a diffraction
spot, even though the Bragg condition is not satisfied.

We combine the concept of the reciprocal lattice, the
relrods, and the Ewald-sphere construction to picture
how the intensity of each diffracted beam varies as we
tilt the specimen or the electron beam. You may see the
position of a spot in the DP move when the Ewald
sphere is moved relative to the reciprocal lattice.

We can draw a sphere of radius 1/l in reciprocal space
so that it passes through the origin of the reciprocal lattice,
point O, as defined in Chapter 11. If any point in the
reciprocal lattice intersects the surface of the sphere, the
set of planes corresponding to that point must satisfy the
Bragg equation and hence the planes will diffract strongly.
Equation 12.11 suggests that we define a vector g which
can represent the quantity d�1. The vector has a length and
a direction. We choose the obvious length for g to be d�1

and make g the only unique vector for the plane (hkl), i.e.,
parallel to the normal to this plane.

Of course, the diagram drawn in Figure 12.3 shows a
cut through the Ewald sphere. We usually draw such a
diagram to include the vector describing the incident
beam CO but this is not a requirement; in fact it is the
exception, since our diagram is a two-dimensional cut
through a 3D sphere. When we draw such a diagram we
usually choose the plane of the diagram to contain the

point O, since this point represents the direct beam. A
common cause for confusion concerns the location of
the center of the Ewald sphere, C. The point C is not the
origin; the origin is the point O. In fact C will probably
not coincide with a reciprocal-lattice point.

Now you can appreciate that it is only when the inci-
dent beam lies in our chosen plane that the vectorCOwill
lie in that plane. For example, we may choose the plane to
be parallel to the optic axis of the microscope but tilt the
incident beam off this axis; in such cases we will still often
be interested in the plane containing both the optic axis
and the incident beam. Also notice that kD could be any
vector which begins at C and ends on the sphere.

Consider the relative dimensions of dhkl and l. We can
see that forX-rays where l is�0.2nmand 1/l is�5nm�1,
the Ewald sphere can only intersect a small number of
relrods because 1/d is only �3nm�1. This explains why it
is necessary in X-ray diffraction to use white radiation
(giving a wide range of l) or to oscillate, rotate, or powder
the specimen (thus producingmany variations of d and y) in
order to produce enough diffraction spots to analyze the
structure. For 100-keV electrons, however, l is 3.7pm and
1/l is 270nm�1. So the surface of the Ewald sphere is
almost planar (but fortunately, as we will see in Section
12.6, not quite) in comparison with the array of reciprocal-
lattice spots. Therefore, in a TEM, the Bragg condition is
nearly satisfied for many planes and, as we saw in Figure
11.1, many diffraction spots are observed from a thin speci-
men corresponding to a section through the reciprocal
lattice.

Rather than carry out the exercise of identifying
arrays of spots for every orientation of the specimen, it
is common practice to orient the specimen such that

FIGURE 12.3. The Ewald sphere of reflection is shown intersecting a

non-cubic array of reciprocal-lattice points. The vector CO represents kI,

the wave vector of the incident wave, and O is the origin of the reciprocal

lattice. kD is any radius vector. When the radius of the sphere is similar to

the spacing between the points in the reciprocal lattice, as is the case for X-

rays, the sphere can only intersect a few points.When l is much smaller, as

for 100-keV electrons, the radius is much larger, the sphere is flatter, and it

intersects many more points.

WHERE IS C?
The vector CO is kI and has length 1/l; this defines
where C is located, i.e., we start with O and measure
back to C.

INTENSITY AND RECIPROCAL SPACE
We can associate an ‘intensity’ with any position in
reciprocal space, and in particular with any position
along one of these rods.
The value for this intensity is such that if the Ewald
sphere cuts through that point in reciprocal space,
then the diffracted beam, g, will have that intensity.
In general, if the Ewald sphere moves, the intensity
will change. The important idea to keep in mind is
that the reciprocal lattice is just a construction we use
to give us a pictorial way of looking at diffraction.
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the beam is incident almost parallel to a low-index zone
(U,V, andW are all small numbers), and then to compare
the observed zone-axis pattern (ZAP) with standard
ones. We’ll show you some standard patterns in Chapter
18. This approach is fine if you already know the crystal
structure of your material. However, you’ll need to know
the full procedure if you have a material whose structure
you don’t knowor if you are not able to rotate it to a low-
index zone axis. This situation might arise, for example,
when you are characterizing a grain boundary.

12.6 THE EXCITATION ERROR

We’ll now introduce a new quantity, s, known as the
excitation error or the deviation parameter. Always use
these terms carefully! If the beam is exactly parallel to
any zone axis then, according to the Laue conditions,
there should be no spots in the DP. Clearly there are
many spots (e.g., see Figures 1.6 and 2.13B), so there is
intensity in the diffracted beams even when the Bragg
condition is not exactly satisfied. The actual intensity
will depend on how far we are away from the Bragg
condition. This distance is measured by a vector, s, in
reciprocal space such that

K ¼ gþ s (12:21)

The Ewald sphere intersects the reciprocal-lattice
point at the center of a relrod when s = 0. Equation
12.21 is very imprecise! Although g is well defined, K
is not, because it depends on kD, which could be any
vector terminating on the Ewald sphere. In Figure 12.4,
we show two special values of s by choosing two special
values of kD. In one, kD lies along the vector CG so sc is
also parallel to CD; in the second, sz is chosen to be
parallel to vector CO, the incident-wave vector. A third
special situationwould be to define sm as being perpendic-
ular to the surface of the specimen, but we don’t know
where that is. Actually, we will often assume that sm is
perpendicular to OG, but this need not be the case. We
will refer to s in several ways: sg will emphasize that s is
defined for a particular gwhile szwill emphasize that s lies
along the z-axis, which often corresponds to the incident-
beam direction and the foil normal. We write s when we
are not being specific.

When we drew Figure 12.4, you noticed that we placed
the point G outside the Ewald sphere. Note that we
are using G to emphasize that we are referring to the
point, not the vector, g, from the origin to the point. In

Figure 12.4, the rowof reciprocal-lattice points is essentially
at 908 to the incident beam. If we take all such rows, we
define a plane of points (only G is shown) which are all at
908 to the incident beam. This plane of points is called the
zero-order Laue zone (ZOLZ). We can now number all
the planes of points which are parallel to the ZOLZbut do
not contain the point O, and call these the higher-order
Laue zones or HOLZ. The first of these (going toward C)
is the FOLZ, the second is the SOLZ, and the rest are just
HOLZ.

If we now draw the Ewald sphere as shown in
Figure 12.5, you can see that it will intersect points in
the FOLZ and other HOLZ.We’ll see examples of these
kinds of DPs in Chapters 20 and 21.

We can change the value of s in two ways.

& First, if we tilt the specimen, the row of spots moves
but the Ewald sphere does not.

& Second, if we tilt the beam above the specimen, the
Ewald spheremoves, becausekI tilts, becauseCmoves!

FIGURE 12.4. Two special values of s are illustrated. When kD lies along

CG then sc is parallel to CD. Alternatively, we can choose s to be parallel

to the incident beam direction CO; then s = sz. and kD becomes k0D. In
each case, kD ends on the Ewald sphere.

THE VECTOR s
This vector, s, is a measure of how far we deviate
from the exact Bragg condition.

SIGN CONVENTION
We define the sign of s to be negative when G is
outside the sphere, while s is positive when G is inside
the Ewald sphere.
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Convince yourself of this. The DPs with different
values of smay appear identical, but be cautious (more
about this in the next chapter). The difference between
these two processes is shown in Figure 12.6.

We’ll conclude this section by giving you an experi-
mental DP to think about. Figure 12.7 is from a slightly
misoriented twin boundary: all you need to know is that
different grains are diffracting to give two different DPs.

You can identify a ring of bright spots from each crystal.
The question is: why are the rings displaced from one
another? Yes, you’re right, there is much more to this
pattern than first meets the eye, as we’ll see in Section 17.3.

12.7 THIN-FOIL EFFECT AND THE EFFECT
OF ACCELERATING VOLTAGE

Wewill return to this topic in detail in Chapter 17 after
we’ve examined a little more of the underlying theory.
Here, we will briefly remind you that the radius of the
Ewald sphere changes as we change kV. As the kV
increases, the surface of the sphere becomes flatter.
In a way, we were lucky with the initial choice of
100-keV electrons for TEMs since the sphere for
100-keV electrons has a very useful curvature. How
does this curvature affect the DP? Well, we know that
kI�kD=K= gwhere |g| is d�1. Therefore, g does not
change as we change l. Since d does not change but
l does, then Bragg’s law tells us that y must
decrease as the kV increases. Therefore, if you keep
the camera length constant, it will appear that the
length of g in the DP decreases as l decreases. Notice
that the key word here is ‘appear.’ If you look back at

FIGURE 12.5. The Ewald sphere intercepts points in higher-order Laue

zones (HOLZ) at large angles to the incident-beam direction. If the radius

of the sphere increases (higher kV beam) then the sphere flattens and the

HOLZ interception is at still larger angles.

(A)

(B)

(C)

FIGURE 12.6. In (A) sz¼ 0 for 4G. We can change sz in two ways; (B) if

we tilt the specimen through angle Z, the row of spots moves inside the

sphere; (C) if we tilt the beam through Z above the specimen, in the

opposite direction, the sphere moves outside the row of spots.

FIGURE 12.7. DP taken across a near-twin boundary in MgAl2O4

spinel. The rings of bright spots show where the Ewald sphere intercepts

the reciprocal lattice of the crystals on either side of the twin boundary.

TABLE 12.2. Particular Values of l and l
�1

as a Function
of Beam Energy

E l (pm) Radius, l�1 (nm�1) (v/c)2

100 keV 3.701 270.2 0.3005

120 keV 3.349 298.6 0.3441

200 keV 2.508 398.7 0.4834

300 keV 1.969 508.0 0.6030

400 keV 1.644 608.3 0.6853

1 MeV 0.8719 1147. 0.8856

12 .7 TH IN-FO IL EFFECT AND THE EFFECT OF ACCELERAT ING VOLTAGE .................................................................................. 217



Section 9.6.B, you’ll realize that the problem is that
you must recalibrate the camera length for the new
accelerating voltage.

The specimen is unchanged so the reciprocal lattice is
the same.However, as the kV increases, the radius of the
Ewald sphere increases and the diffraction spots appear
to move closer together.

What is very important for TEM is that because l is
small, the radius of the Ewald sphere, l�1, is large and

hence the Ewald sphere is quite flat. Note that this is
very different from what we find in LEED or a typical
back-reflection Laue X-ray pattern. The result is that
we see many spots in the DP. Some values of the radius
of the Ewald sphere are given in Table 12.2. You’ll
find it a useful exercise to generate this table yourself
using a spreadsheet. Use the values from Chapter l:
m0 ¼ 9.109�10�31kg, c¼ 2.998�108m/s, h¼ 6.626�10�34
Nm s and 1eV=1.602�10�19Nm.

CHAPTER SUMMARY
When combined with the Ewald-sphere construction, the reciprocal lattice gives us a very
simple way of thinking about diffraction. When the sphere exactly cuts through a point,
Bragg’s law or the Laue equations are exactly satisfied. When the sphere just misses a point,
we define a distance s to quantify this excitation error. In other words, s is a measure of
where we cut the relrod. Ideally you will become as familiar with tilting reciprocal lattices in
space as you are with tilting real lattices in your specimen holder. Remember that the lattices
are rigidly connected to one another: when one turns the other does by exactly the same
amount. Although Lilliput does not exist, reciprocal space does—at least for the electron
microscopist!

Keep in mind the geometry and the dimensions.

& The Ewald sphere has a radius of 1/l and always passes through the point O in the
reciprocal lattice.

& Reciprocal-lattice dimensions are nm�1 although you’ll still see Å�1.Youknow10 Å=1nm;
it’s not as easy to remember that 1 Å�1 = 10nm�1.
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RECIPROCAL SPACE
Cullity, BD and Stock, SR 2001 Elements of X-Ray Diffraction 3rd Ed. Addison-Wesley ReadingMA. The
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THE COMPANION TEXT
The contents of this chapter are used throughout the companion text but not explicitly.

SELF-ASSESSMENT QUESTIONS
Q12.1 How does the size of an object in real space relate to its size in reciprocal space?
Q12.2 When are (hkl) and [hkl] parallel for all values of h, k, and l ?

Q12.3 Why does the incident-beam direction always point toward the 000 reflection of reciprocal lattice in the

Ewald-sphere construction?

Q12.4 Why does electron diffraction in the TEM show planes of the reciprocal lattice?
Q12.5 Define excitation error and explain why we want to change its value.
Q12.6 How are the radius and the surface of the Ewald sphere affected if kV increases?
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Q12.7 What happens to the diffraction spots and the reciprocal lattice when kV increases?
Q12.8 How are the higher-order Laue (HOLZ) lines affected by increasing the kV?
Q12.9 Define what we mean by ‘reciprocal lattice.’

Q12.10 Define the vector g.
Q12.11 What is the sphere of reflection and where is its center?
Q12.12 Define what we mean by ‘zero-order Laue zone.’

Q12.13 What is the simple relationship between K and g that represents the Laue conditions for constructive
interference and how does it relate to Bragg’s law?

Q12.14 How is dnh, nk, nl related to dhkl?
Q12.15 Is d123 the same as d321 for an orthorhombic crystal?

Q12.16 What happens to the Ewald sphere when the specimen is tilted?
Q12.17 What happens to the Ewald sphere when the incident beam is tilted?
Q12.18 In real space, the following notation [UVW] and (hkl) signifies a particular crystalline direction and a

particular plane, respectively. What does the same notation mean in reciprocal space?
Q12.19 Define the reciprocal vector a.
Q12.20 What is the sign convention for the deviation parameter?

TEXT-SPECIFIC QUESTIONS
T12.1 Consider Figure 12.7. Determine the angle of misorientation between the two grains and the axis of

rotation. Take the perfect twin alignment to be zero misorientation.
T12.2 Consider Figure 12.6A. If G is the 220 reflection for Ge and you are using a 200-kV TEM, what is the

value of s for the O, G, 2G, and 3G reflections. Repeat the question for 400-kV electrons and comment on

the difference.
T12.3 For question 12.2, what is the Bragg angle for the excited reflection? (Give your answer in degrees and

radians.)

T12.4 Consider Figure 12.4. The two values of s differ significantly and the vectors are inclined to one another.
Choosing the 220 reflection in Cu and 100-keV electrons, which effect (magnitude or direction) is likely to
be more important?

T12.5 Consider Figure 12.5. How has this figure been exaggerated? Describe a material which could give the

geometry shown here.
T12.6 Generate Table 12.2 given the data in the text.
T12.7 If G in Figure 12.6 is Cu 220, estimate l (ignoring relativistic effects) and hence suggest the kV.

T12.8 Assuming two major grains give rise to the DP in Figure 12.7, identify them (a tracing is fine). Then
explain why there are two different rings of bright spots.

T12.9 More challenging and specialized. Use historical sources to describe the relationship between Laue,

Ewald, and the Braggs and to explain their interactions.
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13
Diffracted Beams

CHAPTER PREVIEW

In Chapter 11 we discussed why diffraction occurs; in this chapter we give a more detailed
mathematical treatment. It may be more detailed than you need at this stage. Diffraction is
one of those phenomena that lends itself directly to a detailed mathematical modeling, but
there is a danger: don’t become so engrossed in the math that you miss the principles involved;
conversely, don’t ignore the subject because it is mathematically daunting! The topic of this
chapter is one which causes major problems for many microscopists. The treatment we will
follow is known as the ‘dynamical theory.’ Later we will make some gross simplifications,
partly because this is instructive and partly because these simplifications do apply to some
important special cases; the kinematical approximation is one such simplification. Many
other texts begin with the so-called ‘kinematical’ treatment and then advance to the more
realistic, more general dynamical case. We will not do this but we will introduce the words
and assumptions in Chapter 27.

The main principle of dynamical scattering was discussed in Chapter 11: an electron
beam can be strongly scattered by a set of planes of atoms. When these planes are suitably
oriented with respect to the beam, they produce a diffracted beam. This diffracted beam can
then be rediffracted by a second set of planes in the same specimen, and so on. The physical
reason for this repeated, or dynamical, diffraction, is that the electron beam and the atoms
in the crystal interact strongly due to Coulomb forces. (X-rays are much less strongly
affected by atoms and are thus more likely to be only scattered once, i.e., kinematical
scattering.) This repeated scattering between the diffracted beams and the direct beam is
the persistent topic of this chapter.

If you have a strong background in physics, youmay find the simplifications used in this
treatment somewhat unsatisfactory because we should be considering Bloch waves in a
periodic object (our crystalline sample). We will discuss the analysis of Bloch waves in
Chapter 14. Remember that experimentally we will associate arrays of spots in DPs with
Bragg beams. Then we will relate these beams to images.We see both images and ‘beams’ on
the screen of the TEM.

In future chapters, we will always discuss the thickness of the specimen in terms of the
extinction distance. This is a term which we introduce here as a characteristic length for a
particular diffracted beam. So, even in a rigorous Bloch-wave analysis, it is still important to
understand the origin of the terminology introduced here (Table 13.1). Remember that the
reason for looking at these equations is that they are directly useful to you when you are
using the microscope, because they describe both the intensity of the electron beam in DPs
and the contrast seen in TEM images of crystalline materials.

13.1 WHY CALCULATE INTENSITIES?

In this chapter, we will consider only scattering from
perfect, defect-free, crystalline materials.

Ultimately we want to understand the images we see
in the microscope. The detail we see in these images is
determined by the intensity of the electron beam or
beams and this varies for different positions in the

image. Our motivation for calculating the intensity of
diffracted beams is, therefore, to understand contrast
features in TEM images.

In general, the analysis of the intensity of diffracted
beams in the TEM is not simple because a beamwhich is
diffracted once will easily be rediffracted. We call this
repeated diffraction ‘dynamical diffraction.’ In a perfect
crystal, imagine dividing the crystal into two halves, one
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above the other. The upper half diffracts the direct
beam. The lower half further diffracts the direct beam
but also rediffracts the diffracted beam. Don’t confuse
this rediffraction with the term ‘double diffraction,’
which has a special meaning, described in Chapter 23.
If instead of cutting the specimen into two, you cut the
specimen into many thin slices, you have multiple,
instead of just double, diffraction. We call this effect
dynamical diffraction.

Because of dynamical diffraction, we cannot use the
intensities of spots in electron DPs (except under very
special conditions such as CBED) for structure determina-
tion, in the way that we use intensities in X-ray patterns.
Actually, a more important practical consideration is that
the intensity of the electron beam varies strongly as the
thickness of the specimen changes; the thickness may
change across distances which are much smaller (as small
as 1.5nm or less) than the lateral dimensions of the elec-
tron beam (typically >1mm in the TEM imaging mode).
As we will see in Chapters 24–27 when we discuss images,
the beam intensity also changes when lattice defects are
present which is why we can ‘see’ defects in the TEM.

13.2 THE APPROACH

The approach we take here is to develop the basic equa-
tions describing the diffraction process and to identify
parameters which will be important in understanding
the contrast in the image. The different images will then
be discussed in Part 3.

Inside a crystallinematerial, we should think in terms of
Bloch waves because only certain wave-propagation vec-
tors are allowed in infinite periodic structures: fortunately
you don’t need to have a thorough understanding of Bloch
waves to understand contrast features in the microscope.
However, we will consider them in Chapter 14, because a
full understanding of the fundamental principles of dif-
fraction from crystals will require this knowledge. What
we ‘see’ in a DP relates directly to ‘beams’ because the
DP,whether in themicroscope or on a print, is outside the
crystal. In this chapter, we will follow the analysis of

Chapter 11, considering the amplitudes of beams simply
because this gives a good intuitive understanding of the
images—what we see in the TEM is the intensity, which is
directly related to the amplitude (I / |f|2).

So, what do we need to calculate? We need to calculate
the intensity of the beam at the exit surface of the speci-
men, e.g., at all points, such as P in Figure 13.1, because
this becomes the ‘image’ after suitable magnification.

TABLE 13.1 Terminology and Notation

CT at P The total wave function of the electron beam as measured at a point P at the bottom of the specimen. This wave function is a solution to

the Schrödinger equation both inside and outside the specimen. What interests us is not CT but fg and f0

fg The amplitude of the diffracted beam for reflection G. The intensity is |fg|2

f0 The amplitude of the direct beam. Don’t use the term ‘transmitted’ beam; all the beams we are studying are transmitted. Don’t call it the

‘forward-scattered’ beam; diffracted beams can also be forward scattered. f0 is a special value of fg for the case where g = 0

y The angle between a particular set of lattice planes and the direction of the beam scattered constructively by those planes

yB The Bragg angle; a specific value of y when s = 0

dz The thickness of a diffracting slice. This thickness can be as small as we wish to make it; it is not limited to atomic planes

xg A characteristic length for reflection g; it is called the extinction distance

D, G D is a diffracted beam; G is a special D and indicates that it is a Bragg-diffracted beam (neither is bold) (see Section 11.5)

w The electron wave vector in a vacuum

k The electron wave vector in the specimen

A NOTE ON TERMINOLOGY
In Figure 13.1 we have labeled both the diffracted
beams and the spot in the DP, Gi (i=1, 2, etc.). When
discussing images we will often refer to g1, the diffrac-
tion vector for the beamG1. Then colloquially we will
call g the ‘reflection g’; the origin for this terminology
goes back to the diagram for Bragg diffraction: geo-
metrically it looks like ‘reflection.’

Diffracted
beam G1

Diffracted
beam –G1

Thin specimen

P

Incident beam

O G1 G2–G2 –G1

Direct
beam

FIGURE 13.1. Defining the point P. The incident beam is scattered inside

the thin sample. We want to know the intensities of the direct beam (O)

and the diffracted (Gi) beams for each point P at the bottom surface of the

specimen (the exit surface).
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Before concluding this topic, we will briefly discuss
the approximations we are making. One of the most
important of these is the column approximation,
which is introduced almost without being noticed. It is
not a necessary assumption but it simplifies calculations
and again aids intuitive understanding. You will also
recognize many similarities to visible-light microscopy,
but be wary, there are also many differences.

13.3 THE AMPLITUDE OF A DIFFRACTED
BEAM

In the analysis of diffracted beams we will consider only
crystalline materials. Since any crystal can be constructed
by stacking unit cells, we begin by remembering the ampli-
tude scattered by a single unit cell.We can rewrite equation
3.18 so that the amplitude of the electron beam scattered
from a unit cell is

Acell ¼
e2pikr

r

X
i

fiðyÞe2piK�r (13:1)

where the summation is over all i atoms in the unit cell and y
is the angle at which the diffracted beam is traveling relative
to the incident beam.Wehave included the termoutside the
summation because of how the wave propagates; the r�1

term is present because we have a constant flux of electrons
traveling through an expanding spherical surface, radius r.
The quantities k, K, and r were defined in Chapter 11 and
f(y) is the atomic-scattering factor. You will often see the
sign of the exponent after f(y) reversed. Unfortunately,
there are two conventions! These conventions are discussed
in Section 13.12; we will use the positive convention to be
consistent with most materials-science texts.

Figure 13.2 reminds us that K=kD� kI. The vec-
tors r and ri are different: r is the distance from a point P

on the bottom of the specimen to the scattering center
and ri defines the position of an atom in the unit cell.
Remember that fi (y) is the scattering strength for the ‘i ’
atom (fi (y) is greater for Au than for Al, etc., as we saw in
Figure 3.5). Since we are summing over all the atoms in
the unit cell, we can rename this sum asF(y), the structure
factor of the unit cell. (It’s just the scattering factor of the
unit cell.) Notice that F(y) depends on the nature of all
the atoms in the unit cell, their positions, and the direc-
tion in which the beam is propagating (related to K and
hence y). Go back and check Section 3.9.

Therefore, expression 13.1 can be rewritten as

Acell ¼
e2pik�r

r
FðyÞ (13:2)

To find the intensity at some point P, we then sum
over all the unit cells in the specimen. For simplicity, we
will not solve this problem mathematically here but
simply quote the result and discuss its meaning. Let’s
say we have n unit cells per unit area on a plane parallel
to the crystal surface and a is the distance between these
planes. The volume of a unit cell, Vc, is simply a/n. The
amplitude in a diffracted beam (in the direction identi-
fied by y) is denoted as fg and is given by

fg ¼
pai
xg

X
n

e�2piK�rne�2pikD�r (13:3)

Here rn denotes the position of each unit cell. (Think
about the signs in this equation.) In this analysis, the
quantities f(y) and F(y) both have dimensions of length.
We’ll now explain what the length xg means in equation
13.3; it is a length because fg, the scattering amplitude, is
dimensionless (x is pronounced ‘ksi,’ rhymingwith ‘sigh’).

The derivation of these equations involves some
tricky manipulation which we will return to later.
Some analyses actually make the unrealistic assumption
that the intensity of the direct beam, |f0|

2, remains
unchanged. This assumption is usually not justified,
especially when the specimen has a finite thickness! If
|fg|

2 is not zero then |f0|
2 cannot still be 1.

13.4 THE CHARACTERISTIC LENGTH xg

At this stage in our analysis it is best to think of the
quantity xg as a ‘characteristic length’ for the diffraction
vector g so as not to have any preconceived ideas of
what it represents. A detailed analysis shows that the
magnitude of xg can be expressed as

xg ¼
pVc cos yB

lFg

(13:4)

where Fg is the F(y) for reflection g (i.e., Fg is a special
value of F(y) when y is the Bragg angle).

(A) (B)

FIGURE 13.2. (A) A reminder that K = kD � kI. The vector kD repre-

sents the propagation vector for any wave. It does not have to be a

diffracted beam but it will only give a spot in the DP when it does

correspond to a diffracted beam. (B) shows the relation between the

radius of the spherical wavefront, r, the position vector of the ith atom,

ri, and the point where the intensity is calculated, P.
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The quantity xg is an extremely important one; it
gives us a way of thinking about nearly all diffraction-
contrast phenomena. It is measured in nanometers (or
Å) and is known as the ‘extinction distance’ for reasons
that will become obvious.

From equation 13.4, you can see that the magnitude
of xg is related to Fg (and through Vc to the lattice
parameter) and the wavelength of the electrons, l. If
the structure factor (Fg) is large, xg will be small. There-
fore, xg will be small for Au but large for Si. Fg is large
when the atomic number is large, because the Coulomb
interactions are larger and f(y) is large. Similarly, as the
accelerating voltage is increased, xg, for a particular
material, will increase because the wavelength of the
electrons decreases. Table 13.2 lists some useful extinc-
tion distances (all for 100-keV electrons).

The effect of the lattice parameter on xg is illu-
strated nicely by comparing values of x111 for diamond,
Si, and Ge: the value for Si is larger than for Ge, as
expected, because of the smaller atomic number but
note that xg for Si is also larger than that for diamond,
which has a lower atomic number! Diamond has a
particularly small lattice parameter, hence there are
more atoms in a given volume.

13.5 THE HOWIE-WHELAN EQUATIONS

The direct and diffracted beams are detected outside the
crystal and we see them on the viewing screen. Now we
can think of the wave function inside the crystal as being

the sum of the beams passing through the crystal. The
direct beam has amplitude f0 (bold 0 to emphasize that
the diffraction vector has zero length) and the ampli-
tudes of the diffracted beams can be written as fg1

, fg2
,

etc. Each beam has an appropriate phase factor. We
write cT, the total wave function, as a series

cT ¼ f0e
2piwo�r þ fg1

e2piwG1 �r þ fg2
e2piwG2 �r þ . . . . . .(13:5)

where the wave vectors are wO and wD (w (chi) is pro-
nounced ‘kai’ and rhymes with sky); wO is often written
simply as w. We use wO here to emphasize that it is a
vector which terminates on the point O in reciprocal
space; wG1

terminates on the ‘point’ G1, etc. At this
stage, we are using wave vectors wO and wD which
describe the wave in the vacuum rather than in the
crystal. We will change to being inside the crystal
shortly. Most of the time, you could write w as k, but
there are occasions when the difference is important so
we start with w and then change over.

First, we simplify equation 13.5 by considering only
one diffracted beam G, i.e., we make a ‘two-beam
approximation’ (O is the other beam). This is a very
important approximation, which we’ll use often. Two-
beam conditions mean that we tilt the crystal so there is
only one strong diffracted beam (with s = 0). All other
diffracted beams are weak (s >> or << 0), and we
ignore their contribution to fg. Then if the amplitude
fg changes by a small increment as the beam passes
through a thin slice of material which is dz thick we
can write down expressions for the changes in fg and
f0 by using the concept introduced in equation 13.3 but
replacing a by the short distance dz

dfg ¼
pi
xg
f0e

2piðwO�wDÞ : r þ pi
x0

fg

( )
dz (13:6)

df0 ¼
pi
x0

f0 þ
pi
xg

fge
2piðwD�wOÞ : r

( )
dz (13:7)

Here wO�wD is the change in wave vector as the fg

beam scatters into the f0 beam. Similarly wD�wO is the
change in wave vector as thef0 beam scatters into thefg

beam. Now the difference wO�wD is identical to kO�kD
although the individual terms are not equal. Then
remember that kD�kO (=K) is g + s for the perfect
crystal.

Youmight wonder whywe have introduced the wave
vector w when it appears to be the same as the k we used
in equation 13.1. The reason is that equation 13.1 is a
very general equation describing scattering from any
group of atoms, but we are now going to consider two
special cases, namely, an electron in the vacuum (wave
vector w) and one in a crystal (wave vector k). Inciden-
tally, the excitation error, s, should really be written as
sg, since it refers to a particular g vector. You can think

SUMMARIZE xg

xg is the characteristic length for the diffraction vec-
tor g. We call it the extinction distance because of a
property we’ll discover later.

Note that xg is a scalar quantity. xg depends on the
lattice parameters (through Vc), the atomic number
(through Fg), and the kV used (through l).

TABLE 13.2 Examples of Extinction Distances (in nm)*

Material

hkl = 110 111 200 220 400

Al � 56.3 68.5 114.4 202.4

Cu � 28.6 32.6 47.3 76.4

Au � 18.3 20.2 27.8 43.5

MgO � 272.6 46.1 66.2 103.3

Fe 28.6 � 41.2 65.8 116.2

W 18.0 � 24.5 35.5 55.6

Diamond 47.6 � 66.5 121.5

Si 60.2 � 75.7 126.8

Ge 43.0 � 45.2 65.9

*For two-beam condition at 100 kV.
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of the parameter x0 as the characteristic length for for-
ward scattering, i.e., scattering from any beam into
itself, whereas xg corresponds to scattering through an
angle corresponding to a diffraction vector g.

The change in fg depends on the magnitude of both
fg and f0.

These two equations (13.6 and 13.7) can then be
rearranged to give a pair of coupled differential equa-
tions. We say that f0 and fg are ‘dynamically coupled.’
The term dynamical diffraction thus means that the
amplitudes (and therefore the intensities) of the direct
and diffracted beams are constantly changing, i.e., they
are dynamic

dfg

dz
¼ pi

xg
f0e

�2pisz þ pi
x0

fg (13:8)

and

df0

dz
¼ pi

x0
f0 þ

pi
xg

fge
2pisz (13:9)

Microscopists usually refer to this pair of equations
as the ‘Howie-Whelan’ equations after Howie and Whe-
lan (1961), who laid the foundations for understanding
diffraction contrast in the TEM; you may also see them
referred to as the ‘Darwin-Howie-Whelan equations’
since Darwin (1914) developed the dynamical theory
for X-rays! Note that we are further simplifying the
expression by writing

e�2pis�r ¼ e�2pisz (13:10)

In doing so, we aremaking the approximation that s and
r are both parallel to z, i.e., at this time, we ignore
components of s that are not parallel to the electron
beam. The approximation may be written as

sg
�� �� ¼ sz (13:11)

We then drop the z subscript; just remember it is still
there. There are situations where the difference can
become important.

Although this approach is totally phenomenological
(i.e., we haven’t really given any physical justification
for the assumptions we have made and actually we
know we should use Bloch waves), you will see that it
provides enormous insight into the interpretation of
your images and DPs. In Chapter 25, we will use these
ideas to understand why we see defects in the TEM.

The fundamental idea is that, at any given position
in the specimen, the change in the amplitudes of both the
direct beam and the diffracted beam depends on the
amplitude of both beams. The fact that part of the
change in f0 is due to the magnitude of f0 itself, gives
rise to the term forward scattering; remember the origin
of scattering from Section 2.2. Note that scattering from

fg to fg is also forward scattering, although it takes
place in a different forward direction (i.e., y= yB and
scattering is parallel to kD rather than kO). So forward
scattering does occur but it does not change the direc-
tion of the beam. However, it does have a characteristic
length, x0; this length is another way of saying we have a
refractive-index effect for electrons which we’ll address
later in Section 14.4.

13.6 REFORMULATING THE HOWIE-
WHELAN EQUATIONS

From here on, the math is quite straightforward. What
we are going to do may seem like a lot of work to derive
one equation (13.48) but the result will allow you to
picture more clearly what is happening. If you don’t
want to bother with the math, you can skip to equations
13.47 and 13.48 but you must not miss those two equa-
tions; they are essential for understanding images of
crystalline materials.

The pair of equations, 13.8 and 13.9, can be simpli-
fied by making the substitutions (i.e., a transformation
of variables)

f0ðsubÞ ¼ f0e
�piz
x0

(13:12)

and

fgðsubÞ ¼ fge
2pisz�pizx0 (13:13)

Then equations 13.8 and 13.9 become

dfgðsubÞ
dz

¼ pi
xg

f0ðsubÞ þ 2pisfgðsubÞ (13:14)

and

df0ðsubÞ
dz

¼ pi
xg

fgðsubÞ (13:15)

Since f0 and f0(sub) only differ by a phase factor, we
will ignore the difference in calculating intensities since
only the amplitude is then important; similarly for fg

andfg(sub). The result of our substitution is that we have
removed the phase factor involving x0, i.e., we’ve
removed the refractive-index effect. Equations 13.14
and 13.15 can be combined to give the second-order
differential equation for f0

DIRECT
Remember: don’t refer to the direct beam as the
unscattered or the transmitted beam!
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d 2f0

dz2
� 2p is

df0

dz
þ p2

x2g
f0 ¼ 0 (13:16)

We can obtain a similar equation for fg and then
obtain solutions for these reformulated expressions.

Note that the only other quantities appearing in this
equation for f0 are z, s, and xg: z and s are geometric
parameters; the nature of the material only enters
through xg.

13.7 SOLVING THE HOWIE-WHELAN
EQUATIONS

If we can solve the Howie-Whelan equations, then we
can predict the intensities in the direct and diffracted
beams (i.e., |f0|

2 and |fg|
2 in the two-beam case). If we

take it step by step, then we know that solutions to
equation 13.16 (a second-order differential equation in
one variable, f0) must have the form

f0 ¼ C0e
2pigz (13:17a)

So we can write that

df0

dz
¼ 2pigC0e

2pigz (13:17b)

and

d2f0

dz2
¼ �4p2g2C0e

2pigz (13:17c)

What we need to determine is the phase g and the
amplitude C0. Note that since z is a distance in real
space, then g must be a distance in reciprocal space.
Substituting this expression into equation 13.16 shows
that g must be a solution to the algebraic equation

g2�sg�
x�2g

4
¼ 0 (13:18)

Now fg is related to f0 through equation 13.15. By
substituting equation 13.17a into equation 13.15 we find
that for each f0, we also have a fg given by

fg ¼ 2xggC0e
2pigz (13:19)

To emphasize the similarity to equation 13.17a we
can define

fg ¼ Cge
2pigz (13:20)

Then we can see directly that

Cg

C0

¼ 2xgg (13:21)

We’ve actually got this far without solving any equa-
tion! There are two solutions to the quadratic equation
(13.18), using the standard formula

x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
(13:22)

to give

gð1Þ ¼
s�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

x2g

q� �

2
(13:23a)

and

gð2Þ ¼
sþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

x2g

q� �

2
(13:23b)

We have now found two solutions to the Howie-
Whelan equations.

There are two different values for f0 and two corre-
sponding values for fg.

Now we need to understand what these solutions
mean physically. Specifically, what can we learn about
g(1) and g(2) ? Note that they are always real but may be
positive or negative depending on the sign and size of s
and that they are independent of z.

13.8 THE IMPORTANCE OF g (1) AND g (2)

Since g(1) and g(2) are solutions of equation 13.18 from
the properties of quadratic equations or by combining
equations 13.23a and b, we know that

gð1Þ þ gð2Þ ¼ s (13:24)

which is a purely geometric quantity, and

gð1Þ � gð2Þ ¼ � 1

4x2g
(13:25)

which is a property of thematerial. Remember that g is a
length in reciprocal space.

In order tomake the equations easier to workwith, it
is useful to define another quantity, w, which is dimen-
sionless but has the same sign as s.

w ¼ sxg (13:26)

In practical situationswmay vary from 0 to�10.We
can then express the two forms of equation 13.21
(because there are two values of g) in terms of g or,
more conveniently, in terms of w

C
ð1Þ
g

C
ð1Þ
0

¼ 2xgg
ð1Þ ¼ w�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 1

p
(13:27)
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and

C
ð2Þ
g

C
ð2Þ
0

¼ 2xgg
ð2Þ ¼ wþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 1

p
(13:28)

(the superscripts on Cð1Þg , etc., correspond to the super-
scripts on g(1) and g(2), i.e., the two solutions to the original
quadratic equation). Now it is useful to make another
substitution (or transformation) to simplify these relation-
ships. We define b by

w ¼ cot b (13:29)

Now we can impose a restriction on the absolute
magnitudes of f0 and fg so that they satisfy the
relations

C
ð1Þ2
0 þ Cð1Þ2g ¼ 1 ¼ C

ð2Þ2
0 þ Cð2Þ2g (13:30)

By normalizing these values forC separately for each
value of g, we are restricting the intensity of the beam to
values between 0 and 1 (see below). Then if we substitute
equation 13.29 into equation 13.27 and then into equa-
tion 13.28 we find (using 1�cos b = 2 sin2 (b/2) and
sin b = 2sin(b/2)cos(b/2)) that the C values have the
following simple forms

C
ð1Þ
0 ¼ cos b2 C

ð1Þ
g ¼ � sin b

2

C
ð2Þ
0 ¼ sin b

2 C
ð2Þ
g ¼ cos b2

(13:31)

Now you can understand why we introduced b in
equation 13.29. The two independent solutions to the
reformulated Howie-Whelan equation for f0 (13.16) are
then f0=C0

(1)exp(2pig(1)z) and f0=C0
(2)exp(2pig(2)z)

and each value has a corresponding value for fg.
We can already see that the ratio of the amplitudes

of the diffracted and direct beams, Cg to C0 (and there-
fore the intensities), in equation 13.21 depends on g,
the phase of the wave, and hence on s, the excitation
error. Hence the ratios in equations 13.27 and 13.28
depend on how close the specimen is to the Bragg
orientation. We are particularly concerned about the
Bragg condition because we have chosen a two-beam
situation.

In the two-beam approximation, equation 13.5 is
expressed in terms of f0 and fg, both of which depend
on g (equation 13.17), so equation 13.5 can then be
written in terms of both values of g (and hence C0

(1),
C0

(2), etc.), giving two independent quantities b(1) and
b(2). Either of these two functions could be cT, the total
wave function. Alternatively, the total wave function
could be some combination of them, i.e., part b(1) plus
part b(2). Both of these wave functions are dependent
on r and have their own values of k that we identify
as k(j).

Each value of g gives a different value of k that we
call k(j).

Thus we can write expressions for b(1) and b(2).

bð1Þ kð1Þ; r
� �

¼ C
ð1Þ
0 e2pi k

ð1Þ�r þ Cð1Þg e2piðk
ð1ÞþgÞ�r (13:32)

and

bð2Þ kð2Þ; r
� �

¼ C
ð2Þ
0 e2pi k

ð2Þ�r þ Cð2Þg e2piðk
ð2ÞþgÞ�r (13:33)

Remember: each of these Bloch-wave functions
could be a wave in the crystal—each one depends on
only one of the k values. In general, the total wave
function will be a combination of these two waves.
We’ll return to the important relationship between k

and g in Section 13.9. We use the letter ‘b’ here because
we’ve actually obtained expressions for the Bloch waves
mentioned in Section 13.2, which we’ll discuss in the
next chapter.

13.9 THE TOTAL WAVE AMPLITUDE

We have now found two different wave functions
which can both propagate in the crystal. We still have
to determine whatf0 andfg are. The total wave vector,
cT, is a combination of the two (Bloch) waves, b(1)

and b(2)

cT ¼ Að1Þbð1Þ þ Að2Þbð2Þ (13:34)

where the constants A(1) and A(2) determine the relative
contribution of each (Bloch) wave. We can now com-
bine the last few equations (13.31�13.33 and 13.34) to
give

cT ¼ Að1Þf cos b2 e2pik
ð1Þ�r � sin b

2 e
2piðkð1ÞþgÞ�rg

þAð2Þf sin b
2 e

2pikð2Þ�r � cos b2 e
2piðkð2ÞþgÞ�rg

(13:35)

All that now remains is to determine the magnitudes
ofA(1) andA (2) which we can do by remembering that we
have a thin TEM specimen. In mathematical terminol-
ogy the constants A(1) and A(2) must now be determined
using the boundary conditions.

It is helpful to rearrange equation 13.35 first

THE SUBSTITUTION
Because of this simple substitution you can easily
confirm that, for this two-beam situation, the prob-
ability of finding the electron in one beam or the
other remains unity (|cT|2 = 1). Hence the reason
we use a normalized intensity in equation 13.30.
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cT¼fAð2Þsinb
2e

2pikð2Þ�r�Að1Þcosb2e
2pikð1Þ�rg

þfAð2Þcosb2e2pik
ð2Þ�r�Að1Þsinb

2e
2pikð1Þ�rge2pig�r

(13:36)

Only the second term depends on g, so this must be
the fg term. We know that at the top of the specimen (r
= 0), f0 is unity and fg is zero (independent of g)—the
amplitude of the diffracted beam is zero before it’s
diffracted! It follows directly that

Að1Þ ¼ cos
b
2

(13:37)

Að2Þ ¼ sin
b
2

(13:38)

These equations (13.37 and 13.38) tell us that A in
equation 13.34 is just determined by the value of s, i.e.,
the deviation from the Bragg condition. So you can
adjust the values of A by changing s, which we now
know just involves tilting the specimen.

Now, finally, we can write down the general expres-
sions forf0 andfg, each as a function of z. First we need
to modify equation 13.5 by using the substitution of
equations 13.12 and 13.13, so it becomes

cT ¼ f0e
2pi k�r þ fge

2piðkþ gÞ�r (13:39)

(Remember that wD= wO+ g+ s (or kD= kO+ g+ s),
where kO is written as k and D is G1 in equation 13.5;
then you’ll see that the term containing s in equation
13.13 drops out.) The f0 and fg components in equa-
tion 13.36 are easily recognized by the presence of
exp(2pig�r). Comparing equations 13.36 and 13.39 (hav-
ing replaced A using equations 13.37 and 13.38) we see
that

fg ¼ sin
b
2
cos

b
2

e2piðk
ð2Þ�KÞ�r � e2piðk

ð1Þ�KÞ�r
n o

(13:40)

Since we are only considering the z component, we
know, from equations 13.17 and 13.19, that the expo-
nential term must have the phase 2pigz, i.e.,

ðkð2Þ � KÞz ¼ gð2Þ and ðkð1Þ � KÞz ¼ gð1Þ (13:41)

What we are interested in is the magnitude of g(1) and g(2).
We can now manipulate equation 13.40 using equa-

tion 13.41 and the expression eiy=cos y+i sin y to give

f0 ¼ cos pzDkð Þ � i cosb: sinðpzDkÞf gepisz (13:42)

and

fg ¼ þi sinb: sinðpzDkÞ:episz (13:43)

In these equations Dk is simply |k(2) � k(1)|. Leaving
the term episz in these equations does not affect the

amplitudes of f0 and fg or the beam intensities but it
will make it easier for you to check that these expres-
sions satisfy, for example, equation 13.16.

13.10 THE EFFECTIVE EXCITATION ERROR

We can now write down the intensity at the bottom (exit
surface) of the specimen (z = t) and manipulate the
equations by substituting for Dk and w. The term Dk
in equations 13.42 and 13.43 is the same as Dg, i.e.,
g(2)� g(1) (see equation 13.41). We can therefore write
down Dk by considering equations 13.27 and 13.28

Dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 1
p

xg
(13:44)

The intensity in the diffracted beam, |fg|
2 = fgfg*,

is obtained from equation 13.43

Ig ¼ fg

�� ��2¼ sin2 b: sin2 ptDkð Þ (13:45)

Ig ¼ fg

�� ��2¼ 1

w2 þ 1
sin2

pt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 1
p

xg
(13:46)

We can make this equation look more familiar by
defining an effective excitation error, seff

seff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 þ 1

x2g

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ 1
p

xg
(13:47)

Now the equation becomes

fg

�� ��2¼ pt
xg

 !2
:
sin2 ptseffð Þ
ptseffð Þ2

(13:48)

This equation gives us the intensity in the Bragg-
diffracted beam. In writing down equation 13.47, we
have defined another important new quantity seff, so
labeled because it’s the effective excitation error.

A KEY RESULT
We have shown directly that f0 in equation 13.39 is a
mixture of terms containing k(1) and k(2). This is why
fg depends on Dk.

THE REALLY IMPORTANT EQUATION
It’s so important, we’ll repeat it

fg

�� ��2¼ pt
xg

 !2
:
sin2 ptseffð Þ
ptseffð Þ2
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One important result shown directly by equation 13.45
is that the intensity, Ig, in the diffracted beam emerging
from the specimen is proportional to sin2(ptDk) and
thus I0 is proportional to cos2(ptDk). Ig and I0 are both
periodic in both t and seff. As fg increases and decreases,
f0 behaves in a complementary manner so that

I0 ¼ 1� Ig (13:49)

Remember when testing this formula that I = ff*
(f* is the complex conjugate of f).

The effective excitation error, seff, is a very important
quantity. We can summarize some important properties

& The quantity seff is never zero.
& When s is zero, seff is xg

�1.
& When s is very large, then seff becomes essentially the
same as s.

13.11 THE COLUMN APPROXIMATION

When we form an image, we try to focus the objective lens
on a plane in or below the specimen (remember that here,
belowmeans underfocus). One special planewe can choose
is the plane which corresponds to the bottom of the speci-
men, assuming that this plane is perpendicular to the direc-
tion of the propagating beam. Whatever plane we choose,
what we see depends on the beams that finally leave the
bottom of the specimen, so let’s concentrate on this one
plane. Look at Figure 13.3A; P is the point at the bottomof
the specimen, and we are calculating the values of f0 and
fg at this point to construct our image. Where do the
electrons come from in order to contribute to f0 and fg?
The answer is the cone APBwhere the angle APB is�2yB.
In other words, we don’t just have a diffracted beamwhich

propagates through the specimen from the top to point P.
There is actually a cone of material which contributes to
the intensity at point P. The shape of the cone can be
calculated using the Fresnel-zone construction, which was
actually developed nearly 200 years ago for visible-light
optics. Figure 13.3B, which is how the cone is usually
drawn, summarizes the relevant parameters; don’t forget
that a cone, not a triangle, of material contributes to the
intensity at P. A clear derivation is given by Hecht. Why is
it a Fresnel diffraction? The answer is that we form an
image, i.e., look at a plane, which is very close to where the
diffraction ‘event’ occurred, we are in the near-field, or
Fresnel, regime (see Section 2.9).

Let’s consider some actual numbers: At 100 kV, l=
3.7 pm, yB� 0.01 radians or�0.58. So if the thickness of
the specimen is 100 nm, then AB is � 2 nm. If we
increase the t, then the width of the column will also
increase. However, if we increase the accelerating vol-
tage so as to increase the thickness we can penetrate, the
wavelength decreases causing the Bragg angle also to
decrease. This allows us to make the approximation
shown in Figure 13.4A and B when calculating f0 and
fg. This model is known as the column approximation.

The great advantage of this approximation is that it
allows us to calculate the scattering from slices which have
a constant width as we pass down the column, which itself
lies in awell-defined direction (generally parallel tokD).We
might anticipate problemswith very small defects on a very

P

Electron
Beam

2θΒ

P

Electron
Beam

A B

t

(A) (B)

FIGURE 13.3. (A) The intensity of the beams at point P at the bottom of

the specimen is influenced by all the scattering within a cone of material.

The solid angle of the cone is determined by the diameter of the Fresnel

zones which, in turn, are principally determined by l. The cross section
(B) is the more typical view of the cone.

(A) (B)

P P(G)

Incident
Beam

Incident
Beam

Scattered
Beam

d

FIGURE 13.4. The column approximation for (A) the direct beam and

(B) a diffracted beam. A column replaces the cone. The diameter of the

column (d) should be the average diameter of the cone it replaces (AB/2 in

Figure 13.3). (B) This value will depend on the thickness of the sample. In

practice it is usually taken to be �2 nm.

FOCUSING
As usual, we should focus only by moving the speci-
men up and down, but we don’t.
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fine detail, especially when these features can vary their
positions in the foil. The more correct, non-column treat-
ment was introduced byTakagi; the analysis byHowie and
Basinski is what we use in computer programs.

13.12 THE APPROXIMATIONS
AND SIMPLIFICATIONS

In order to minimize the mathematics and to emphasize
the underlying physical principles involved in the analysis
of diffracted beams, we have made a number of assump-
tions, simplifications, and approximations. Although we
are not going to cover all of these points, you should be
aware of some of them

& We have completely neglected any effects due to
backscattering of the electrons. This approximation
is reasonable since we are dealing with electrons
which have very high energies. However, if you are
familiar with SEM, you will have encountered back-
scattered electron (BSE) imaging and possibly, rock-
ing-beam channeling patterns (RCPs) or electron
backscattered diffraction (EBSD) patterns. So
some electrons must be backscattered.

& In some parts of the discussion, it is an implicit
assumption that the crystal has a center of symmetry.
This assumption is hidden in our use of xg. If the
material is non-centrosymmetric, then the BF image
and images formed using only a systematic row of
reflections will not be affected. Differences will occur
in some DF images or when non-systematic reflec-
tions contribute to the image. In these cases, you will
need to use a computer program to predict or inter-
pret the contrast.

& From Chapter 11, you know that it is impossible to
set up a true two-beam condition for a thin TEM
specimen. There will always be more than one dif-
fracted spot visible. So how dowemeasure xg exactly?
The answer is that we don’t, but we can make a very
good estimate.

& Remember the use of z and t. When we consider
the diffracted beam, then z and t are measured
along the direction of the diffracted beam. In
general, this distance will be different for each
beam. The saving feature is that we are usually
concerned with small Bragg angles. As a thought
exercise, you might consider the effect of having
a steeply inclined wedge or a specimen which,
although parallel sided, is steeply inclined to the
electron beam.

& The full analysis of scattering includes a term in
r�1 which says that the intensity falls off as r�2.
This is just the standard flux relation—the number
of electrons passing through a spherical surface
around the scattering point is constant. (The sur-
face area of a sphere is proportional to r2.) This
term has been omitted throughout our discussion
since it only affects the absolute intensity. A prac-
tical lesson from this is that you should use the
lowest magnification that will give you the desired
resolution; remember that the highest useful
magnification in a TEM image is about 106 (see
Section 6.6.B).

In the quantum mechanical convention, the time-
dependent Schrödinger equation is written as

h2

8p2m
r2c ¼ �i h

2p
dc
dt

(13:51)

with the full solution being

cðr; tÞ ¼ Aeþiðk�r�otÞ (13:52)

& The concept of a refractive-index effect for electron
waves is directly analogous to that for visible-light
waves, or any other electromagnetic radiation, in
that the potential of the crystal causes a change in
the kinetic energy of the electrons (because their
total energy is unchanged) and therefore, their veloc-
ity is changed. Normally, of course, we think of this
as a change in the wavelength of the electrons. The
magnitude of k will always be larger than that of w.

& We have not mentioned the absorption of Bragg
beams, yet we know that this must occur since we
can only examine thin specimens in the TEM.
Absorption of beams is considered in Section 14.6
and Section 23.8.

TWO OPPOSITE CONVENTIONS

Two conventions are used to describe the exponential
dependence on k and r; both are commonly used.

e2pik�r or e�2pik�r

These conventions have been discussed by Spence. In
our analysis, we have chosen to use e2pik.r which
Spence has termed the ‘quantum-mechanical’
convention.
Note that Spence uses the alternative ‘crystallo-
graphic’ convention, except when he discusses Bloch
waves.

COLUMN APPROXIMATION
The column approximation often hides itself very
well, but it is actually used in many calculations of
images.
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13.13 THE COUPLED HARMONIC
OSCILLATOR ANALOG

The expression for the intensity of the diffracted beam is
particularly simple when s = 0. Then from equation
13.48 we can write

fg

�� ��2¼ sin2
pt
xg

 !
(13:53)

and similarly

f0j j2¼ 1� sin2
pt
xg

 !
(13:54)

Both equations now only have one variable, the
thickness of the specimen. We will refer to these equa-
tions when we discuss images in Chapter 23, but we
can note immediately that Ig is zero at t= 0 and again
at t= xg (or in general at t= nxg, where n is an integer).
This is the reason we call xg the extinction distance.
This situation corresponds to two coupled simple-
harmonic oscillators with energy (i.e., intensity, I0 and
Ig) being continuously transferred from one to the other
and back again. Notice that Ig can only increase to unity
when s = 0.

CHAPTER SUMMARY
In this chapter, we have derived equations and introduced terminology that will form the
basis for our discussion of diffraction-contrast images. It is not necessary for you to be able
to reproduce the mathematical derivations but equations 13.47 and 13.48 are crucial and
must be understood. Our analysis was quickly limited to two beams, the direct beam and
one Bragg-diffracted beam. In deriving the Howie-Whelan equations, we must consider
both forward scattering and Bragg diffraction. We introduced a new parameter, the critical
length xg, and explained why this parameter is called the extinction distance. This length was
defined in equation 13.4 which shows that xg depends on thematerial, the reflection, and the
wavelength of the electrons. Two particular points you need to remember are

& If the voltage increases then l decreases and xg increases.
& The contribution of each Bloch wave is determined by s.

In Section 24.3, we’ll show how the two-beam analysis can be extended using the concept of
the scattering matrix.

REFERENCES
This treatment of diffracted beams follows that given by Hirsch and Whelan and the textbook by Hirsch

et al. that built on Darwin’s treatment of X-ray diffraction.
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Hecht, E 1987 Optics, 4th ed., Addison-Wesley, Reading MA.
Howie, A and Whelan, MJ 1961 Diffraction Contrast of Electron Microscope Images of Crystal Lattice
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Howie, A and Basinski, ZS 1968 Approximations of the Dynamical Theory of Diffraction Contrast Phil.
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NOTATION
Spence, JCH 2003 Experimental High-Resolution Electron Microscopy 3rd Ed. Oxford University

Press New York. Uses the quantum-mechanical convention rather than the crystallographic

one.

THE COMPANION TEXT
The H-W equations are the basis of many home-written programs including those available in the text by
Head et al. If you are taking the time to simulate diffraction-contrast images, you might as well use a

package which will allow you at least to assess the influence of beams in the systematic row and then see
how suchmulti-beam images compare to those predicted by this analytical treatment. A complete chapter is
devoted to this topic in the companion text.

SELF-ASSESSMENT QUESTIONS
Q13.1 What does xg, the characteristic length, depend on?
Q13.2 How is the structure factor related to the characteristic length, xg?
Q13.3 What do we mean by the phrase two-beam condition and when is it satisfied?

Q13.4 Can forward scattering change the direction of the beam?
Q13.5 What does dynamical diffraction mean in the two-beam case?
Q13.6 What is the difference relationship between the constant A(1) and A(2) and s?

Q13.7 How can we change the value of the constants A?
Q13.8 Explain in words how changing the accelerating voltage affects the characteristic length, xg?
Q13.9 Why do we use the column approximation?

Q13.10 What will happen to the width of the column if the thickness of the specimen increases. How can we
change the width of the column?

Q13.11 How does dynamical diffraction affect the interpretation of DPs?
Q13.12 What is the structure factor and what does it depend on?

Q13.13 Why is xg, the characteristic length, better known as the extinction distance?
Q13.14 What is the total wave function and why should we really be talking about Bloch waves?
Q13.15 What is the relationship between the intensity of the incident beam and the intensity of the diffracted

beam? Give the equations and the name they go by.
Q13.16 Write down an expression for the effective excitation error.
Q13.17 Give an equation for the intensity in the Bragg-diffracted beam using the effective excitation error seff for

a specimen thickness t.
Q13.18 What happens to the effective excitation error when s= 0? Can the effective excitation error ever equal

zero? (Explain your reasoning.)

Q13.19 What value does the effective excitation error approach as the excitation error, s, becomes large?
Q13.20 Define what fg and f0 mean in the context of this chapter and how they relate to the beam intensities Ig

and I0?
Q13.21 In principle, could the intensities predicted by the Howie-Whelan equations affect what you see in DPs?

Is this likely to occur in practice?

TEXT-SPECIFIC QUESTIONS
T13.1 Examine Table 13.2. (a) Discuss whyMgO, 111 looks odd. (b) Explain why x220 for diamond is less than

x220 for Si and why this appears unexpected at first.
T13.2 Taking reasonable values for the different parameters: Vc, yB, l, and F, deduce x111 for Cu andW using

equation 13.4.
T13.3 Starting with equations 13.6 and 13.7, deduce equations 13.8 and 13.9 showing where we make the

approximations.
T13.4 We state that we know we should use Bloch waves. Why is this so? Would this be true if the specimen were

amorphous? If not, what would you recommend (assuming that you have to work with amorphous
materials)?

T13.5 Derive equation 13.18.
T13.6 We show that there are two solutions to the Howie-Whelan equations. Explain in words why this is so.

What is the physical significance of this result?
T13.7 Show that equations 13.42 and 13.43 do satisfy equation 13.16.

T13.8 Consider the Cu220 reflection in a 200-kVTEM. Increase s in six equal increments to a value of 2� 10�3 Å�1

(six values excluding 0 but including 2� 10�3 Å�1). Construct a table to show how seff varies. Give your

results in Å�1 and nm�1.

232 .....................................................................................................................................................................................DIFFRACTED BEAMS



T13.9 In Figure 13.4 d is said to be �2 nm. Consider five samples of Si with thickness 20, 50, 100, 200 nm, and
1 mm in a 200-eV TEM with 220 excited. What value should we use for d in each case?

T13.10 Repeat question 13.9 for Cu and 111.

T13.11 We state that the highest useful magnification in a TEM is about 106. How is this changed if we add a
CCD camera? What is the lowest useful magnification with and without a CCD camera (excluding the
DP)? How is this changed if you use a FEGTEM?

T13.12 For the perfect crystal situation, what is the ratio of |fg|
2 to |f0|

2 when s is 10�1 Å�1 and 10�2 Å�1 for the
220 reflection in Cu and Si at 100 kV. Explain any assumptions you make.

T13.13 Do you think Darwin’s papers are really relevant to the Howie-Whelan equations?
T13.14 Using reasonable values for f, deduce values for xg for

a) Cu with 220 and 100 keV
b) Si with 111 and 200 keV
c) W with 100 and 300 keV.

What assumptions have been made in applying this formula?
T13.15 Are the values given in Table 13.2 for Al, Fe, and Ge consistent?
T13.16 We differentiate between w and k. Do you expect there is a significant difference? Discuss the magnitude

of this difference, how it varies with kV and how you might assess this magnitude.
T13.17 Using earlier equations, deduce equations 13.8 and 13.9.
T13.18 How will dynamical scattering of X-rays compare to that for electrons?

T13.19 After equation 13.16 we state that the nature of the material only enters through xg. Argue against this
statement.

T13.20 Consider Figure 12.6A for Cu G=220 and 100-keV electrons. Deduce w in equation 13.26. Hence,
determine b in equation 13.2.

T13.21 Use the results of the previous question to deduce C
ð1Þ
0 , etc., in equation 13.31.
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14
Bloch Waves

CHAPTER PREVIEW

This topic is rather mathematical, with long sequences of differential equations. The
discussion of Bloch waves given here follows the treatment of Hirsch et al. which, in turn,
was based on the original analysis of electron diffraction by Bethe (1928). The notation we
will use closely follows that used by Bethe. Remember that g can be any reciprocal-lattice
vector, although we will also use it to represent a specific vector.

This analysis leads directly to one of the most important concepts used to understand
images of defects in thin foils: it explains the physical origin of the extinction distance, xg,
and thus shows why it is so important. So again it is worth persevering. However, many
successful microscopists have skipped this topic. We suggest you first skim through this
chapter. Then, when you’ve recognized its importance and seen the key equations, go back
to the beginning and work your way through.

We make certain assumptions about the materials we are considering and what voltages
are used. Youmust keep these assumptions inmindwhen applying these concepts. Themost
important point is that, within the limits of our approximations, the analysis is rigorous and
we can really understand the meaning of xg. If you’ve previously come across the idea of
kinematical diffraction, this chapter will make it clear why this theory is, at best, only an
approximation to reality.

We start by considering the property of a crystal which we know quite well, namely, the
inner potential. You should remember that, strictly speaking, everything we are about to go
through in this section applies only to perfect crystals; crystals with surfaces are not
‘perfect.’ The periodic nature of the crystal potential leads to the concepts of Bloch func-
tions and Bloch waves.

We include a discussion of the two-beam case, since this can easily be solved analytically
and can be related directly to the results discussed in Chapter 13 on diffracted beams. In
Chapter 15 we will discuss a graphical representation of the equations we are deriving here.
As with the Ewald sphere and reciprocal lattice, the diagrams make for an easier under-
standing and give a useful guide when you are actually using the TEM. We will consider
absorption of Bloch waves here but when we use it in, e.g., Section 24.7, the physical
significance will be more obvious.

14.1 WAVE EQUATION IN TEM

We are going to modify the Schrödinger equation for
use in TEM to explain why the Bloch waves have the
form they do. We are not going to try to be mathe-
matically rigorous in deriving this modified equation;
reference texts for this purpose are listed at the end of
the chapter. Let’s start with the time-independent
Schrödinger equation

� h2

8p2m
r2 þ VðrÞ

� �
cðrÞ ¼ EcðrÞ (14:1)

The first term (in r2) represents the kinetic energy
and the second term, the potential energy; E represents
the total energy. In TEM we usually talk in terms of
the accelerating voltage and the crystal potential and,
therefore, we rearrange this equation in terms of vol-
tages. In doing so, we have to be careful about signs
since the charge on the electron is negative and the
applied electric field (associated with the accelerating
voltage) points toward the gun! All that equation 14.1
says is that the electron has a kinetic energy due to the
acceleration it is given in the gun. Initially, this is the
total energy of the electron. When the electron passes
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through the crystal, it will have a potential energy due
to the periodic potential associated with the atoms in
the crystal.

Now we can rearrange equation 14.1 in terms of the
accelerating voltage and the crystal potential

r2cðrÞ þ 8p2me

h2
Vþ VðrÞ½ �cðrÞ ¼ 0 (14:2)

The task before us is obvious: we have to solve equation
14.2. In general, however, this is a difficult problem!
What makes it possible for us is that V(r) has special
properties because we are only considering crystalline
materials.

14.2 THE CRYSTAL

The basic property of a crystal is that its inner potential,
V(r), is periodic. We can therefore express this property
as

VðrÞ ¼VðrþRÞ (14:3)

where R represents any lattice vector of the crystal
and, as usual, r represents any real-space vector.
Equation 14.3 is the fundamental definition of a perfect
crystal: the environment at point r is identical to that at
point r+ R. We can draw this inner potential as shown
in Figure 14.1 for the one-dimensional case and you can
imagine it in 3D. The atomic nuclei are positively
charged; the surrounding electrons gradually screen
this charge and the atom appears neutral from the out-
side. In a crystal, a nucleus is never far away, so an
electron which we ‘shoot’ through the crystal will always

see a positive potential; hence V(r) is always positive as
noted in Section 14.1 and in Figure 3.1.

The electron beam can be described by its total
wave function ctot which must always be a solution of
the Schrödinger equation; i.e., this equation describes
how an electron behaves both inside and outside the
crystal.

In the discussion which follows, we will use poten-
tials so the units will be volts. You can always change to
the energy formalism, but remember that the charge on
the electron is a negative number.

We know that for any crystal the inner potential
must be real, i.e., the potential energy must be real, so
that V(r) and its complex conjugate, which we denote as
V*(r), are identical

VðrÞ ¼ V �ðrÞ (14:4a)

Now tomake the treatment simple, we consider the case of
crystals with a center of symmetry

VðrÞ ¼ Vð�rÞ (14:4b)

The case of non-centrosymmetric crystals, such as
GaAs, could be considered, but the equations would

THE SIGNS
& The charge on the electron, q, is a negative num-
ber, –e, where e is a positive number.

& The accelerating voltage, –V (usually between
100 kV and 1MV), is negative for a positive
charge leaving the gun. This quantity, –V, is really
the ‘electric-field potential.’

& The initial energy given to the electron is a posi-
tive number, E (in eV); it is just the charge times
the accelerating voltage. We can write this as eV
where both e and V are positive numbers.

& The potential inside the crystal, V(r), is a positive
number reaching a local maximum at the nucleus
of an atom; the nucleus is positive.

& The potential energy, V, of the electron outside the
crystal is zero; it decreases when the electron is
inside the crystal (V is q times V(r), i.e., –eV(r))
and is therefore always a negative number.

(A)

(B)

0

Potential
energy
–eV(r)

Becomes
very positive

Crystal
inner
potential
V(r)

Position of
atomic
nucleus

Electron-cloud
between atoms

FIGURE 14.1. (A) The local charge sensed by the beam electron as it

passes through a metal, represented as a row of ‘ion’ cores (black circles)

in a sea of electrons. The local charge is very large and positive in the

vicinity of the ion and becomes small, but not zero between the ions. The

difference between theminimum charge and zero corresponds to themean

inner potential of the crystal, which is a few eV (positive). So the beam

electron experiences a small positive attraction as it enters the crystal,

hence its kinetic energy (velocity) increases. (B) V(r) is the potential of the

electrons, so their potential energy is negative and becomes more so, the

closer they pass by the ions.
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become much more complicated. Since V(r) is periodic,
we can express it as a Fourier series in which we sum
over all the lattice points in reciprocal space

VðrÞ ¼
X
g

Vge
2pig � r (14:5)

Here Vg is, by definition, the g component of V in the
Fourier series. Now, in order to make future equations
simpler we define a parameter Ug related to Vg by

Vg ¼
h2

2me
Ug (14:6)

In the Fourier series given in equation 14.5 andmodified
by equation 14.6, Vg and Ug are referred to as the Fou-
rier coefficients. Equation 14.5 becomes

VðrÞ ¼ h2

2me

X
g

Uge
2pig � r (14:7)

Now V(r) has been expanded as a Fourier sum; all the
conditions on Vg also apply to each Ug so that

Ug ¼ U�g ¼ U�g (14:8)

You can check these relationships by just replacing r

by –r, etc. Before continuing, however, you may find it
useful to review the relative magnitudes of the energies
which are summarized in Table 14.1.

Much of what we are now discussing is mathemati-
cally the same as you may have seen in condensed-
matter physics. The big difference is that we are injecting
electrons with kinetic energies which are 5–6 orders of
magnitude greater than the band gap of Si. Notice that
the mean inner potential energy is V in equation 14.1.
The actual value of V is not as precise as it might
sometimes appear. You should remember that it is the
average background potential energy and is directly
related to the characteristic length x0 that we introduced
in Chapter 13. More values of V are given in Table 14.2.
One interesting feature of this table is that the magni-
tude of V only varies by a factor of 3 when the atomic
number changes from 4 to 74.

14.3 BLOCH FUNCTIONS

Since the electron is in a periodic potential its wave
function must have the symmetry of the crystal. The
solutions to the Schrödinger equation which always
have the required translation property are known as
Bloch waves. Since these wave functions, c(j)(r), are
special, we’ll define them as

cðjÞðrÞ ¼ b kðjÞ; r
� �

¼ bðjÞðrÞ (14:9)

The reason for the ‘j ’ is that each Bloch wave has a single
value of k (each Bloch wave is a plane wave) which we can
denote as k(j); in general, there will be more than one Bloch
wave for a particular physical situation. The notation we
will use is such that, whenever we have k(j) in an expression,
we will identify this by the superscript which implies that
the function varies withk(j). Bloch’s theorem states that this
wave function in a periodic potential can be written as

bðjÞðrÞ ¼ b kðjÞ; r
� �

¼ m kðjÞ; r
� �

e2pik
ðjÞ� r ¼ mðjÞðrÞe2pikðjÞ� r (14:10)

such that the Bloch function, m(j)(r), can itself be
expressed as a Fourier series since m(r) is also a periodic
function of r

mðjÞðrÞ ¼
X
g

CðjÞg kðjÞ
� �

e2pig � r (14:11)

We’ll call C
ðjÞ
g the j-sub-g plane-wave amplitude

and generally refer to the C values as the plane-wave
amplitudes; they depend on which k(j) we are consider-
ing, but not on r. We combine these definitions to give b
which is itself dependent on j

bðjÞðrÞ ¼
X
g

CðjÞg e2piðk
ðjÞ þ gÞ � r (14:12)

Using our notation, the superscript on C indicates that
C( j) depends on j because it is associated with k( j). We
can now write the expanded expression for b(j)(r), which
is a solution to the Schrödinger equation

TABLE 14.1 A Comparison of the Orders of Magnitudes of
the Energies Being Discussed in This Chapter

Quantity Energy (eV)

kT (room temp.: T = 293 K) 0.025

Band gap of Si 1.1

Mean inner potential energy for Si �11

Energy of electrons in TEM � 100,000

TABLE 14.2 Comparison of Mean Inner Potential Energies
for Different Elements

Element Inner Potential Energy (eV)

Be 7.8 � 0.4

C 7.8 � 0.6

Al 12.4 � 1

Cu 23.5 � 0.6

Ag 20.7 � 2

Au 21.1 � 2

Si 11.5

Ge 15.6 � 0.8

W 23.4

ZnS 10.2 � 1
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bðjÞðrÞ ¼ C
ðjÞ
0 e2pik

ðjÞ� r þ CðjÞg e2piðk
ðjÞ þ gÞ� r þ � � � (14:13)

The first term in this series is C0; the subscript is
zero is because the length of this g vector is 0. Much
of the following analysis is exactly the same as you
may have encountered in studying semiconductor
band-gap theory. The difference will be that we
can make certain approximations which are only
valid because the electrons used in TEM have much
higher energies (100keV to 1MeV) than the inner
potential of the crystal (�7–24 eV). It is always impor-
tant to keep in mind the magnitude of the quantities we
are considering and remember that the Bloch function
has the periodicity of the lattice. When you are reading
other texts, you’ll see that physics textbooks will tend to
omit the term 2p in such expressions so that |k|
becomes 2p/l instead of 1/l.

We haven’t done anything yet, just restated the prob-
lem and remembered Bloch’s theorem. The analysis we’ve
just completed follows the original treatment of Bethe
(1928).We can now expressctot using equation 14.9 to give

ctot ¼
Xn
j¼ 1

AðjÞcðjÞ ¼
Xn
j¼ 1

AðjÞb kðjÞ; r
� �

(14:14)

In this equation, A (j) will be determined by the specimen
type, the specimen orientation, etc., i.e., the boundary
conditions. The As are known as the Bloch-wave excita-
tion coefficients, since they tell us the relative contribu-
tions of each Bloch wave, i.e., how strongly each Bloch
wave is excited.

14.4 SCHRÖDINGER’S EQUATION FOR
BLOCH WAVES

Whatwe are now going to do is to rewrite the Schröding-
er equation to incorporate the properties of Bloch
waves automatically. If you wish, you can skip this
section and just accept the result given in equation
14.27. The way we include the periodicity is to express
the inner potential in equation 14.2 as the Fourier series
given in equation 14.7

r2cðrÞ þ 8p2me

h2
Eþ h2

2me

X
g

Uge
2pig � r

 !
cðrÞ ¼ 0 (14:15)

Now we simplify the algebra to give

r2cðrÞ þ 4p2
2me

h2
Eþ

X
g

Uge
2pig � r

 !
cðrÞ ¼ 0 (14:16)

and hence

1

4p2
r2cðrÞ þ 2me

h2
Eþ

X
g

Uge
2pig � r

 !
cðrÞ ¼ 0 (14:17)

Next, we can introduce a new quantityKwhich is defined by
the equation

K2 ¼ 2meE

h2
þU0 ¼ w2 þU0 (14:18)

With this definition we have removed theU0 term from the
sum over all g, so that equation 14.15 is now

1

4p2
r2cðrÞ þ K2cðrÞ þ

X
g 6¼0

Uge
2pig � rcðrÞ ¼ 0 (14:19)

The reason for doing this is that we are going to be con-
cerned with different diffraction vectors, g. The U0 term
does not depend on g. We call U0 the (scaled) mean inner
potential of the crystal; this potential is thus a ‘background’
or continuum property of the crystal; it does not directly
depend on the crystal structure. (You may recognize this
manipulation as the refractive-index idea reappearing.)

WhenV(r) is 0, thenU0 is 0 so thatK
2 takesonaspecial

value which we have already called w2

w2 ¼ 2meE

h2
(14:20)

The mass,m, is actually the relativistic mass, not the rest
mass; eE is the kinetic energy of the electron (in the
vacuum between the gun and the specimen). We know
that

1

2
mv2 ¼ mvð Þ2

2m
¼ p2

2m
¼ hkð Þ2

2m
(14:21)

where v is the velocity, p the momentum, and k a wave
vector. Thus w is the wave vector of the electron outside
the crystal as we had in Chapter 13.

The meaning of K is now clear: K is the wave vector
of the electron inside the specimen, i.e., after correcting
for the refractive-index effect. SinceU0 is a positive num-
ber, K is always larger than w. Hence the kinetic energy of
the electrons in the crystal is greater than in the vacuum.
The potential energy inside the crystal is negative so, even

EACH BLOCH WAVE
The main point to remember is that each Bloch

wave is associated with just one k(j) but it is a con-
tinuously varying function of r. Each Bloch wave is a
sum over all the points in reciprocal space. In other
words, each Bloch wave depends on every g, and
conversely, each g beam depends on every Bloch
wave!

238 ................................................................................................................................................................................................BLOCH WAVES



though it may be counterintuitive, you now know that
electrons travel faster in the crystal! The wavelength of the
electrons in the crystal is therefore smaller than the wave-
length outside (l is the reciprocal of k).

Remember that light is electromagnetic radiation.
The refractive index for light is n = c/v and is always
�1; c is the velocity of light in a vacuum and v is the
velocity in any other material. This is one of those cases
where we have to be wary when applying ideas derived
for light waves to electron waves.

Equations 14.18 and 14.20 are dispersion relations.
Such equations relate the magnitude of the wave vector,
K or w, to the energy of the electron.

We want to simplify equation 14.19. We know that
c(r) is a Bloch wave (given by equation 14.12) so we can
obtain an expression forr2c(r) by differentiating b(j)(r).
Remember that C

ðjÞ
g does not depend on r

r2cðrÞ ¼
X
g

CðjÞg r2 e2pi kðjÞ þ gð Þ � r
� �

(14:22)

Thus we can write

r2cðrÞ ¼ � 2pð Þ2
X
g

kðjÞ þ g
�� ��2CðjÞg e2pi kðjÞþgð Þ � r (14:23)

Now we insert this expression in equation 14.19

1

4p2
�4p2

X
g

kðjÞ þ g
�� ��2CðjÞg e2pi kðjÞþgð Þ � r

 !
þ

K2
P
g

C
ðjÞ
g e2pi kðjÞþgð Þ � r þ

P
h6¼0

Uhe
2pih � r

P
g

C
ðjÞ
g e2pi kðjÞþgð Þ � r ¼ 0

ð14:24Þ

In doing so we replace the g in the summation in equa-
tion 14.19 by h just for clarity (!); both are called
‘dummy’ variables. If we sum over all the values of a
variable we can ‘center’ the variable wherever we wish.
We can further simplify the third term in equation 14.24
by combining the exponential terms and renaming g

X
g

X
h 6¼0

UhC
ðjÞ
g e2pi kðjÞ þ gþ hð Þ� r

¼
X
g�h

X
h6¼0

UhC
ðjÞ
g�he

2pi kðjÞþgð Þ� r (14:25)

Now the sum over all g–h vectors is the same as the sum
over all g vectors so we replace g–h by g. (Remember, all
we are doing is renaming these dummy variables in a
consistent way.) Then equation 14.24, and hence 14.19,
becomes much simpler

X
g

� kðjÞ þ g
�� ��2þK2

n o
CðjÞg þ

X
h6¼0

UhC
ðjÞ
g�h

 !
e2piðk

ðjÞþgÞ � r ¼ 0

ð14:26Þ
We can obtain a useful relation by noting that the coeffi-
cients of each term in exp(2pig�r) must separately be
equal to zero. The only way that equation 14.26 can be
true is if the term inside the bracket is always zero. The
result is a series of equations (one for each value of g)

� kðjÞ þ g
�� ��2þK2

n o
CðjÞg þ

X
h 6¼0

UhC
ðjÞ
g�h ¼ 0 (14:27)

This is another really important setof equations; they restate
the Bloch-wave expression of the Schrödinger equation.

Notice that we are not summing over g in equation
14.27. The reason for excluding h=0 from the sum is
that we have already included it in the first term.

14.5 THE PLANE-WAVE AMPLITUDES

We can rewrite and reorder equation 14.27 by, yet
again, renaming the variable h as g–h. When we do
this, we must exclude h= g in the sum

K2 � kðjÞ þ g
�� ��2n o

CðjÞg þ
X
h 6¼g

Ug�hC
ðjÞ
h ¼ 0 (14:28)

The reason for making this change is that it emphasizes
that the ‘U’ terms are the features which couple together
the ‘C’ terms. In other words, this equation tells us how
the potential of the crystal, the U terms, mixes the
different Bloch waves. The C terms are the Bloch-wave
amplitudes. This is the dynamical coupling concept.

This equation represents a set of equations which are
the fundamental equations of the dynamical theory.
(They are called the secular equations in condensed-
matter physics texts.) This equation also links the con-
cepts of Bragg beams and Bloch waves.

Ug–h is the component of the inner potential which
couples the Bragg beams with reciprocal-lattice vectors
g and h to one another.

Now we again simplify the situation by limiting the
treatment to two beams, O and P; i.e., we consider the
case where the only values of Cg which are non-zero are
C
ðjÞ
0 and C

ðjÞ
p but Up and U–p are both allowed.

DISPERSION
When discussing light, the word dispersion means
separation of electromagnetic radiation into constitu-
ents of different wavelength. In electron optics, the
meaning is exactly the same but we emphasize differ-
ent k vectors or different energy.

ELECTRON SPEED IN A CRYSTAL
Electrons travel faster in the crystal. Light slows
down in a crystal.
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Remember that the superscript onC indicates that k(j) is
a variable. Note that P could be any diffracted beam.
Letting g= 0 in equation 14.27 gives

K2 � kðjÞ
�� ��2� �

C
ðjÞ
0 þU�pC

ðjÞ
p ¼ 0 (14:29)

In deriving this and the following equation, we consider all
the possible values of h which would give us C

ðjÞ
0 or C

ðjÞ
p .

Next let g = p in equation 14.28 and reverse the
order of terms to emphasize that we have two equations
in C0 and Cp

UpC
ðjÞ
0 þ K2 � kðjÞ þ p

�� ��2� �
CðjÞp ¼ 0 (14:30)

There are no other possible equations, so to solve these
two equations we set the determinant of the coefficients
equal to zero

K2 � kðjÞ
�� ��2 U�p

Up K2 � kðjÞ þ p
�� ��2

�����

�����
¼ K2 � kðjÞ

�� ��2� �
K2 � kðjÞ þ p

�� ��2� �
�UpU�p ¼ 0

(14:31)

The mean inner potential of the crystal is usually 	20V
while the energy of the electrons is �100,000 eV. Because
|k(j) + p| and |k(j)| are both very close to K, it’s the differ-
ence that is important. Since P could be any diffracted
beam, we can rename it G to make it look more familiar!

K2 � kðjÞ
�� ��2 U�g

Ug K2 � kðjÞ þ g
�� ��2

�����

�����
¼ K2 � kðjÞ

�� ��2� �
K2 � kðjÞ þ g

�� ��2� �
�UgU�g ¼ 0

(14:32)

Now we can use the simple algebraic relation

x2 � y2 ¼ ðx� yÞðxþ yÞ (14:33)

and make the high-energy approximation that |k(j)|,
|k(j)+ g|, andK are all similar inmagnitude. Then equa-
tion 14.32 becomes

kðjÞ
�� ��� K
� �

kðjÞ þ g
�� ��� K
� �

¼ UgU�g
4K 2

¼
Ug

�� ��2
4K 2

(14:34)

It is important not to confuse k(j) with kI or kD and to
remember that |K| (= |kD� kI|) is notK. Incidentally, it
is not until we write this equation that we use the
assumption that the crystal has a center of symmetry
(see equation 14.4b).

Equation 14.34 is a more complex dispersion rela-
tion than equations 14.18 and 14.20. Since k(j) can point
in any direction, this dispersion relation defines a sur-
face, known as the dispersion surface, which is just the
locus of all allowed k(j) vectors for a particular fixed
energy. (See Chapter 15.) The simpler relations given in

equations 14.18 and 14.20 each defined a sphere; the
vectors K and w can point in any direction.

From equation 14.29 (renaming p as g), we have

C
ðjÞ
g

C
ðjÞ
0

¼
kðjÞ
�� ��2�K2

U�g
(14:35)

which we can rewrite as

C
ð jÞ
g

C
ð jÞ
0

¼
kð jÞ
�� ��� K
� �

kð jÞ
�� ��þ K
� �

U�g



2K kð jÞ
�� ��� K
� �
U�g

(14:36)

Thus we can, in principle, say how C
ðjÞ
0 and C

ðjÞ
g are

related.
Now we could extend this analysis to show how all

the values of C are related in a many-beam situation. If
we did that we could write a new expression

AðjÞ CðjÞg

n o
¼ 0 (14:37)

where C
ðjÞ
g

n o
now denotes a column vector with ele-

ments C
ðjÞ
g . A(j) is a matrix defined by

agg ¼ K2 � kðjÞ þ g
�� ��2 (14:38)

with the off-diagonal elements given by the Fourier
coefficients of the crystal potential

agh ¼ Ug�h (14:39)

Here, g refers to rows and h to columns in the Amatrix.
Except in special cases, such as the two-beam case in
equation 14.31, you’ll only encounter this formalism in
computer programs! A particularly clear case is given by
Metherell and is adapted here for five beams, compris-
ing g, 0, g, 2 g, and 3g beams. The 5 � 5 matrix can be
written out (using g and h rather than g and h) as

A ¼

a�g�g U�g�0 U�g�g U�g�2 g U�g�3 g

U0�ð�gÞ a00 U0�g U0�2 g U0�3 g

Ug�ð�gÞ Ug�0 agg Ug�2 g Ug�3 g

U2 g�ð�gÞ U2 g�0 U2 g�g a2g2g U2 g�3 g

U3 g�ð�gÞ U3 g�0 U3 g�g U3 g�2 g a3g3g

0
BBBBBB@

1
CCCCCCA

(14:40)

In the first column h is –g; in the second, h is zero, etc. In
the first row ‘g’ is –g; in the second, ‘g’ is zero. So we can
simplify this matrix as

A ¼

a�g U�g U�2 g U�3 g U�4 g

Ug a0 U�g U�2 g U3 g

U2 g Ug ag U�g U�2 g

U3 g U2 g Ug a2 g U�g

U4 g U3 g U2 g Ug a3 g

0
BBBBBB@

1
CCCCCCA

(14:41)
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Some points to notice are

& The terms Ug, C
ðjÞ
g , and ag are related by a set of

linear equations (the matrix in 14.37).
& We can’t solve for actual values of theC

ðjÞ
g terms, but

we can find the ratios C
ðjÞ
g =C

ðjÞ
0 .

We won’t take this topic much further here but refer
you again to the excellent article by Metherell who
shows that equation 14.37 can be expressed as an eigen-

value equation where C
ðjÞ
g

n o
appears as the eigenvectors

and the wave vectors k(j) appear as the eigenvalues. He
expresses this equation as

MfCðjÞg
o
¼ gðjÞ CðjÞg

n o
(14:42)

where the matrix M has diagonal elements mgg and off-
diagonal elements mgh. The reason we mention this fact
here is that the mgg terms correspond to the excitation
errors, sg, and the mgh terms correspond to the extinc-
tion distance xg–h. Remember that h is the column and
notice that the subscript here is g–h; this extinction
distance is related to the interference between the g

beam and the h beam. Now if you’re intrigued and
your math is strong, see Metherell’s article.

If you’re familiar with this math approach, you’ll
recognize that eigenvectorsmust satisfy certain relations
for normalization and orthogonality. If you look back
to Chapter 13, you’ll see that we normalized C

ðjÞ
g in

writing equation 13.30.
As you can see, the math is beginning to become

tricky! In the next chapter, we will derive explicit expres-
sions for x0 and xg in the two-beam case, namely

x0 ¼
2K cos yB

U0

(14:43)

and

x0 ¼
2K cos yB

Ug

¼ 1

Dk
(14:44)

In our derivation we will use a graphical representa-
tion of the dispersion equations. This approach has
much in common with the Ewald-sphere/reciprocal-
lattice approach to understanding diffraction. It’s par-
ticularly useful since it gives you, the microscopist,
another picture, this time related to imaging.

14.6 ABSORPTION OF BLOCH WAVES

When we have just two beams excited, O and G, we
showed in Section 13.9 that we can express the wave
function c as

c rð Þ ¼ Að1Þbð1Þ rð Þ þ Að2Þbð2Þ rð Þ (14:45)

where

Að1Þ ¼ cos
b
2

; Að2Þ ¼ sin
b
2

(14:46)

We can plot these curves for A(1) and A(2) in relation to
the positions of the atoms in a simple-cubic crystal
where the electron beam is close to the [001] zone axis.
Figure 14.2 shows that the intensity in Bloch wave 1 is
centered on the column of atoms (Figure 14.2A) while
that in Bloch wave 2 is centered between the atoms
(Figure 14.2B). (If you read Hirsch et al., you should
note that they have 1 and 2 reversed.) Therefore Bloch
wave 1 interacts more strongly with the column of
atoms and will be ‘absorbed’ preferentially. Conversely,
Bloch wave 2 will be channeled through the specimen.
The intensity in the g beam depends on the thickness of
the specimen because of the interference between these
two Bloch waves. This preferential absorption means
that we may expect to ‘lose’ this thickness dependence
even though we can still ‘see’ through the specimen.
We’ll return to this topic in Chapter 24.

(A) (B)

FIGURE 14.2. The two types of Bloch wave in the crystal aligned at the

Bragg condition: (A) the maximum lies along the ion cores and Bloch

wave 1 interacts strongly; (B) the maximum lies between the ions so that

the interactions are weaker.
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CHAPTER SUMMARY
We told you at the beginning of the chapter that this discussion would seem to be just theory
or manipulating equations. There are, however, some really important ideas

& A basic property of a crystal is that its inner potential, V(r), is periodic and positive.
& An electron in a crystal can be described by a sum of Bloch waves which themselves are
solutions to the Schrödinger equation.

& The wave functions f0 and fg are not solutions to this equation and therefore don’t
actually exist as waves in the crystal.

& All Bloch waves have the same total energy.

Therefore, if we really want to understand what goes on in the crystal, wemust be able to
understand the concept of Bloch waves. However, you can understand how to relate images
to the structure of the specimen without considering Bloch waves. You just have to accept
that the analysis using beams (hence f0 and fg) is phenomenological. Equations 14.27 and
14.28 give you the essential clue to what really happens: each set of equations tells us how the
Bloch waves are coupled. When you’ve worked through this chapter, go through Sections
13.8 and 13.9 again.

There are many possible solutions to the Schrödinger equation, and each Bloch wave is a
plane wave; that is, it can be associated with well-defined propagation vector k(j) as shown in
equation 14.9.

The Bloch waves are generally different because theUg terms are different, i.e., they have
different potential energies. Therefore, they have different kinetic energies and different
wave vectors.

Finally, a word on relativity. We’ve kept our treatment as simple as possible, but you
should remember that the equations should be relativistically corrected; most texts have
ignored relativistic effects when discussing this topic.

REFERENCES
This chapter follows the treatment given by Hirsch et al. in Chapter 9 of their classic text; the details are

provided by Metherell.

BLOCH WAVES
Ashcroft, NW and Mermin, ND 1976 Solid State Physics W.B. Saunders Co. Philadelphia PA. Chapter 8

(2p/l is used).
Bethe, HA 1928 Theorie der Beugung von Elektronen an Kristallen Ann. Phys. Lpz. 87 55–129. Another
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Howie, A 1971 in Electron Microscopy in Materials Science 275–305 Ed. U Valdré Academic Press New

York.
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Metherell, AJF 1975 in Electron Microscopy in Materials Science II 397–552 Eds. U Valdré and E Ruedl

CEC, Brussels. This is perhaps the clearest and most comprehensive article available on this subject

(over 150 pages long). It is strongly recommended reading if you’ve made it through this chapter and

want to begin programming.

THE COMPANION TEXT
EMS can be used to simulate HRTEM images using the Bloch-wave approach.

SELF-ASSESSMENT QUESTIONS
Q14.1 Summarize the reasons for assigning the sign we do to the accelerating voltage, the sign of the energy of

the electron, the sign of the potential, and the sign of the potential energy.
Q14.2 Even when the atomic number varies from 4 to 74, the inner potential energy only changes by a factor

of �3. Why?
Q14.3 You’re told that the inner potential energy of W is 23.4. Comment on this value.

Q14.4 What is a Bloch wave?
Q14.5 What is a Bloch function?
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Q14.6 What is the Bloch theorem?
Q14.7 Why are we talking about plane waves throughout this chapter?
Q14.8 Write down an equation relating K and w.
Q14.9 Write down an expression relating K to E outside the crystal.
Q14.10 Write down the Bloch-wave expression for the Schrödinger equation. What does this equation tell you?
Q14.11 Explain in words the meaning of the term Ug–h.

Q14.12 In a crystal, light slows down but electrons speed up. What is the fundamental difference between these
two phenomena?

Q14.13 The terms Ug, C
ðjÞ
g and ag are related by a set of linear equations through the matrix A. Write down the

matrix A for the situation where only g�, 0, g, 2g, and 3g are important.

Q14.14 In the two-beam diffraction situation, how many Bloch waves are important?
Q14.15 The ‘U’ terms are the features which couple together the ‘C’ terms. What does this mean?
Q14.16 Ug–h is the component of the inner potential which couples together the Bragg beams with reciprocal-

lattice vectors g and h. We don’t really have Bragg beams in a crystal. Explain this apparent
inconsistency.

Q14.17 How is it possible for all Bloch waves to have the same energy?

Q14.18 In the TEM image, we lose thickness dependence even though we can still see through the specimen.
How does Bloch wave theory explain this effect?

Q14.19 If your sample is YAG (bcc with a = �1 nm) rather than a model, mono-atomic, simple-cubic crystal,

how will your Bloch wave analysis be affected?
Q14.20 If you have a Si/SiO2/Si sandwich of equally thick (20 nm) layers such that the beam passes through the

layers in succession, how will this affect your discussion of Bloch waves?

TEXT-SPECIFIC QUESTIONS
T14.1 For discussion, compare how the velocity of electrons and light change when they enter a crystal.

Consider (i) how this will be affected if the specimen is amorphous; (ii) if the accelerating voltage is
increased from 100 kV to 1MV; (iii) if the microscope were a TPM (p: positron) instead.

T14.2 Consider equation 14.44. Calculate a value for Dk when s= 0 for 100 kV, Cu 220. How does this value
compare to g and l–1 and why do we ask?

T14.3 Evaluate equation 14.20 for 100- kV electrons.
T14.4 How does Figure 14.1A differ for [001], [110], and [111] in Si and Cu?
T14.5 How would you modify Figure 14.1B to explain the values of Table 14.2 more clearly?

T14.6 Consider Figure 14.2. Imagine that the crystal is an extinction distance thick. Draw the intensity plots for
the Bloch waves at depth x/4, x/2, 3x/4, and x.

T14.7 Excluding the other III–V compounds which are closely related to GaAs, list five other crystal types that

do not have a center of symmetry.
T14.8 Consider equations 14.1 and 14.2. Where does the relativistic correction enter?
T14.9 In equations 14.45 and 14.46, A(1)2 + A(2)2 is 1. Why is this?

T14.10 The vectors k and c differ because of the refractive-index effect. How large is the refractive index and
how does this quantity relate to (if it does) the refractive index for light?

T14.11 (Challenging) If the extinction distance depends on Ug for a crystal, can amorphous specimens show
thickness fringes?

T14.12 (Challenging) Why does xg decrease when both 220 and 2�20 are excited?
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15
Dispersion Surfaces

CHAPTER PREVIEW

The analysis of Bloch waves given in the previous chapter is closely related to the classic
analysis of waves that you’ve seen in condensed-matter physics or semiconductor theory. In
semiconductors in particular, we often talk of band diagrams and indirect or direct band
gaps. We use terms like conduction bands, valence bands, and Brillouin-zone boundaries
(BZBs). We visualize these quantities by drawing diagrams of E(k), the electron energy
(which is a function of k) versus k, the wave vector. This plot of E(k) versus k is known as a
dispersion diagram. To remind you of the magnitudes involved, the band gap in Si is 1.1 eV
and that of Ge is 0.7 eV. In a good insulator, it can be 10 eV. We now follow the same
approach to represent pictorially what we described in equations in Chapters 13 and 14.
Remember that the big difference from the solid-state physics approach is that the energy of
the electrons in the beam in the TEM is �100 keV.

In this chapter we will see the real origin of the extinction distance xg, which we
introduced in equation 13.4. We will discuss how it relates to particular materials and
why it varies with the diffraction vector being used. We will then discuss the physical origin
of the concept of the effective extinction distance: i.e., the value which the extinction
distance appears to have when s 6¼ 0. This discussion of dispersion surfaces is included as
a separate chapter, so that you can omit it without affecting your understanding of the rest
of the text. We should give you a warning: this is a subject which has probably turned off
many potential microscopists. It can be very mathematical, pure theoretical physics, or it
can provide many useful insights into image formation. We are trying for the latter. If we
aren’t completely successful, take heart; nearly every established microscopist has survived
without completely mastering this concept!

15.1 INTRODUCTION

The analysis of Bloch waves as they apply to electrons in
solids is well documented in the condensed-matter phys-
ics literature. However, what we want from the theory
is different from what an electrical engineer might want:
we want to understand how it applies to the formation
of contrast in TEM images and DPs. With this aim
in mind, we will again follow the treatment given in
Metherell’s classic and well-hidden article, already refer-
enced in Chapters 13 and 14. In Chapter 14, we derived
equations relating k to Ug. (See Section 14.2 for the
definition of Ug.) Specifically, we found that there
are two Bloch waves if there are two Bragg beams, 0
and g. We can rewrite equation 14.35 incorporating
equation 14.32 as

C
ðjÞ
g

C
ðjÞ
0

¼
kðjÞ
� �2�K2

U�g
¼ Ug

kðjÞ þ g
� �2�K2

(15:1)

whereC0
(j) is the amplitude of the plane wave with wave

vector k( j), and Cg
( j) is the amplitude of the plane wave

with wave vector k( j)+g. The Bloch wave was given in
equation 14.12 as

bðjÞðrÞ ¼
X
g

CðjÞg e2pi kðjÞþgð Þ : r (15:2)

Equation 15.1 says that the values of Cg
(j) and C0

( j) are
directly related to k( j)2–K2 and thus to k( j)–K.

In the general many-beam case (actually, in any
situation where we have more than two beams), the
situation is more complicated. However, we can sepa-
rate the problem into two parts

& Determine all the allowed wave vectors k(j) in a crys-
tal, including all possible orientations of the crystal.

& Determine which set of the allowed k( j) wave vectors
is actually present when you fix the orientation of
your crystal.
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The first statement fixes the total energy of the electron
and selects the crystal. The second statement applies the
boundary conditions for the particular situation you are
considering, as we’ll illustrate in Sections 15.5 and 15.6.

The solution to the first part of the problem is found by
setting |A( j)|= 0. (We definedA( j) in Section 14.3 and gave
an expression for it in Section 14.5.) If you multiply the
determinant, you get a polynomial to the power 2n in k( j)

A2n kðjÞ
� �2n

þ A2n�1 kðjÞ
� �2n�1

þ K ¼ 0 (15:3)

The coefficient An depends on K2 (i.e., the energy) and g

(i.e., the crystal).
So, the polynomial in k(j) relates k(j) to the total energy.

This is a dispersion relation as we defined the term in
Section 14.4. The equation has 2n roots and some might
be complex. To quote Metherell, ‘‘at first sight therefore,
the situation appears to be a complicated one!’’ So in
following Metherell we make two simplifications

& We consider only the high-energy case.
& Weassume that we only excite reflections in the ZOLZ.

There are three reasons for reminding you of these
simplifications

& If you want to make a Bloch-wave calculation where
you include more than two Bragg beams, then you
will need a computer.

& The diagrams we’re considering in this chapter are a
pictorial representation. The diagrams help us think
about what is actually happening to the Blochwaves.
If we just did the calculation, we would lose the
physical ‘feel’ for the problem.

& None of the diagrams we will draw will consider
HOLZ reflections; if we make the beam energy high
enough, we don’t need to consider them. However, the
energy is not really that high andHOLZ reflections are
not only seen experimentally, but can also provide
valuable information, as we’ll see in Chapters 20 and
21. The saving factor is that modern computers have
no problems in handling these equations, especially
since they are so amenable to matrix manipulation.

15.2 THE DISPERSION DIAGRAM WHEN
Ug = 0

We start with equation 14.34, namely

kðjÞ
�� ��� K
� �

kðjÞ þ g
�� ��� K
� �

¼
Ug

�� ��2
4K2

(15:4)

Remember that this equation was derived for the two-
beam case. When the electrons are in the vacuum, i.e.,
outside the specimen, the Fourier coefficients Ug are 0.
When Ug = 0, the left side of this equation is zero and
the equation has two solutions.

K ¼ kðjÞ
�� �� or K ¼ kðjÞ þ g

�� �� (15:5)

where j is 1 or 2. If we plot out these two solutions we
find, as shown in Figure 15.1, that we have two inter-
penetrating spheres, since both kI and kD can lie in any
direction. Since these two k vectors have the same
length, the two spheres represent surfaces of constant
energy, called dispersion surfaces, one centered on O
and the other centered on G.

Of course, we already know that the energy of the
electron in a vacuum is related to its wave vector by

E ¼ p2

2m
¼ h2w2

2m
(15:6)

where p, the momentum, is related to the wave vector in
a vacuum, c, by p=hc. Here, c is the K when the
electron is in a vacuum.

Rearranging, we have

w ¼ 2m

h2
E

� �1
2

(15:7)

The dotted line drawn in Figure 15.1 represents a plane
that is defined by the circle created by the intersecting
spheres. You will probably be very familiar with the
BZB from condensed-matter physics.

FIGURE 15.1. Cross section through two spheres of radii kI and kD
centered on O and G, respectively. The spheres represent surfaces of

constant energy and the dotted line is the trace of the diffracting plane

(and is also equivalent to the BZB).

THE DISPERSION SURFACE
. . .is a pictorial representation of the relationship
between k and energy.
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While you work through the diagrams in this chap-
ter, you must remember that for high-energy electrons
the scattering angles, e.g., 2yB, are usually small and
the region of interest in reciprocal space is, therefore,
close to the BZB. We can redraw part of Figure 15.1 to
show an enlarged view of the region close to the
BZB in Figure 15.2. At high energies, we approximate
the surfaces as a pair of straight lines because l is very
small.

15.3 THE DISPERSION DIAGRAM WHEN
Ug 6¼ 0

When Ug 6¼ 0 we know from equation 15.4 that K can
never be equal to |kI| or |kD|. Since equation 15.4 is
quadratic we must have two values for |k|. So, the two
‘spheres’ can’t intersect if Ug 6¼ 0. You noticed that
equation 15.4 resembles that for a hyperbola, xy = a,
where the x and the y axes are shown in Figure 15.2. We
can draw these two hyperbolae with their asymptotes as

shown in Figure 15.3. These surfaces (remember we are
in three dimensions) are known as branches of the dis-
persion surface. The upper branch (identified here by
the ‘1’) corresponds to k(1) and the lower (identified by
the ‘2’) to k(2). We now have vectors k(1) and k(2) where
we used to just haveKI. There are some critical points to
remember in this discussion from Chapters 13 and 14

& The Bloch wave b(1)(k(1), r) is associated with k(1).
& The Bloch wave b(2)(k(2), r) is associated with k(2).
& The intensity of the Bragg beam is a function of
thickness |fg(t)|

2 / sin2(ptDk) (from equation
13.45).

The difference between Figures 15.1 and 15.3 is the
gap between the two branches in Figure 15.3. This gap is
present becauseUg is not zero;Ug is not zero because we
have a periodic array of atoms, i.e., a crystal. This gap is
directly analogous to the band gap in semiconductor
theory where there are forbidden electron energies
within the crystal.

15.4 RELATING DISPERSION SURFACES
AND DIFFRACTION PATTERNS

We can gain a lot of physical insight into Bloch waves
using the dispersion-surface construction rather than
solving the Bloch-wave equations on the computer. Our
approach is relatively simple.

x

y

2θΒ

θΒ

kΙ kD

G

BZB

θΒ

FIGURE 15.2. An enlarged view of the interception of the two dispersion

spheres at the BZB. The projections of the two dispersion surfaces

approximate to straight lines x and y which are normal to kD and kI,

respectively.

O G

(1)

(2)

k(1)

k(2)

O G

x

y

k(1) + g

k(2) + g

BZB

FIGURE 15.3. When the electron is inside the specimen (i.e., Ug 6¼ 0)

there are two values of k. The two dispersion spheres can’t intersect and

two branches of the dispersion surface (1) and (2) are created. The

enlarged view of the ‘non-intersection’ shows the vectors, k(1) and k
(2),

and k(1) + g and k(2) + g.
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& We start with the dispersion surface shown in
Figure 15.4A and draw an initial line to represent
the incoming beam traversing the thin foil. We
assume an idealized thin specimen with parallel sur-
faces that are perpendicular to the vertical, optic axis
of our TEM and we choose g to be parallel to the
surface. The incident beam is allowed to be inclined
to the surface of the specimen.

& We then draw a line normal to any surface that the
initial line encounters. This allows us to match the
components of wave vectors parallel to that surface.
This is the wave-matching construction.

& We then extend the pointsM1 andM2 back to the ‘k’
spheres in Figure 15.4B; these spheres are the c
spheres when we are in the crystal.

& The last part of the process is always to relate the
waves in the crystal to the beams in the vacuum since
our recording film, CCD camera, etc., is always out-
side the crystal.

That’s the plan—now we go through it step by step.
As shown on the enlarged view in Figure 15.5, each of
the k vectors has an associated wave amplitude Cg

( j)

associated with it.
In this discussion, we will limit ourselves to the two

beams, O andG. As we know from Section 13.8, the only
values of C (the coefficients of the Bloch waves) that will
then be non-zero are C0

(1), C0
(2), Cg

(1), and Cg
(2).

(A)

(1)

Μ2

Μ1

Μ

Sphere

(2)

χ

sg

GgO

Ewald
sphere

Sphere
centered on O

centered on G

Μ1
Β

Μ2
Β

k(2)

k(1)

kx

k z
(j)

k
(1)

+g

k
(2)

+ g

Β

FIGURE 15.4. (A) Combination of the dispersion surfaces (1) and (2), centered on O and G, with the Ewald sphere construction. The surface of the

specimen has been set to be parallel to g, so pointsM1
B andM2

B on the branches (1) and (2) are excited. The incident beam direction is then parallel given

by the vectorMO. If we tilt the beam so w (as shown) becomes more vertical, the excited points move toM1 andM2 giving the tie line M1M2. The vectors

k(1) and k(2) start atM1 andM2, respectively, and end onO. (B) Extension of the lines OM1 andOM2 in (A) back to the w spheres at T1 andT2, respectively,

relates the waves in the crystal to the beams outside. The points Of and Gf are what you record on the photographic film.

(B)

WAVE MATCHING
If we were doing this mathematically, this matching
would be the boundary condition.
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First, we need to know which points on the dispersion
surface will actually correspond to the diffraction condi-
tionwe have chosen.We also need to know the orientation
of the specimen relative to the beam and the orientation of
the Bragg planes (which is why we start by fixing this).

To begin. We consider the case where the surface of
the specimen is parallel to g; we will explain why we are so
specific on this point in a moment.

Nowwe have fixed the specimen and g relative to the
optic axis. Next we orient the incident beam. Note that
the beam is not parallel to the (hkl) planes; its k1 is
determined by c but isn’t shown in the figure. We
will excite points M1

B and M2
B on separate branches of

the dispersion surface because this is where the dotted
line cuts the two surfaces. The extinction distance will
then correspond to Dk�1 for s=0 as in Section 13.10. If
we now tilt the incident beam so that c moves closer to
the vertical (keeping the specimen fixed), then the
excited points become M1, and M2 and, as we see in
Figure 15.4, s becomes negative.

We define the lines M1
BM2

B and M1M2 to be tie lines
because they tie together points on the different
branches of the dispersion surface. Both tie lines are
parallel to the BZB because we chose the top surface
of the specimen to be parallel to g.

Each of these tie lines is normal to the surface that
produces it.

The diagrams of the dispersion surface in Figures 15.4
and 15.5 contain lots of reminders

& For this orientation, kx is the same for all k vectors
ending on O.

& You can recognize g(1) and g(2) from Section 13.7.
& The vacuum wave vector c is always shorter than K

or k.

We can understand these changes from the following
argument. The O beam is always excited so C0

(1) and

C0
(j) will always be relatively large. Which other values

of C are large will depend on where the Ewald sphere
cuts the systematic row of relrods.

Now we can consider what happens when the surface
of the specimen is not parallel to g. Here, the normal to the
surface, n, is not parallel to the BZB (since the BZB is
normal to g). However, the tie line is always parallel to n

so the tie line is no longer parallel to the BZB. Remember:
this construction is graphically matching the components
of the k vector which are parallel to the surface of the
specimen. We saw this clearly in Figure 15.4 where we
commented that kx is the same for all the vectors ending
on O because we chose g to be parallel to the surface and
the surface to be normal to the optic axis in that case.

We don’t need tie lines in solid-state physics if the
electrons are always moving in a perfect lattice where we
don’t consider surfaces.

We are now ready to consider the more common
TEM wedge specimen shown in Figure 15.6A and then
we’ll see how these excited Bloch waves relate to the DP.

In this figure we have drawn the wedge with the top
surface horizontal. Thus we have tie line n1 along the
optic axis. When the electrons exit the crystal at the
inclined bottom surface, we again match components
parallel to this surface so we have tie line n2. Notice that
we must draw n2 through both M1 and M2. These tie
lines don’t excite extra points on the dispersion surface
because we are leaving the crystal.

Once we’re outside the crystal, we know that the
wave vector must be c and that c defines a pair of spheres
centered on O and G. So we extend the n2 tie lines until
they reach thec spheres.Nowwehave excited four points,
as we see graphically in Figure 15.6A. The points on theO
circle are labeled O1 and O2; those on the G circle are D1

and D2. We have labeled the subscripts this way because
they correspond to the plane waves c0

(1), c0
(2), etc., as also

shown in Figure 15.6A.
To conclude. Now we have reached the final step.

We have to relate these beams to the DP. Yes, they are
real beams, not Bloch waves, because we are now
outside the specimen and in a vacuum. We show this
in Figure 15.6B. All of the c beams have been related
to point O1 because c0

(1) is the incident beam. Remem-
ber: c0

(1) is not vertical because we made g horizontal
and tilted the incident beam. The vectors c0

(1) and
c0

(2) are not quite parallel because although they are
both radii of the same sphere of radius w, they actually
originate at different points on the circle (see
Figure 15.6A).

The conclusion is that we will have two spots at O
and two spots at G. In other words, the fact that we have

(1)

γ (2)
γ (1)

Μ2

Μ1

(2)

Δkz, min =
1
ξg

Μ2
Β

Μ1
Β

k(1)

k(2) k(2)+ g

k(1)+ g

FIGURE 15.5. An enlarged region of Figure 15.4A showing how the

vectors k
(1) and k

(2) are related to the quantities g(1) and g(2) and the

distance Dkz.

TIE LINES
The tie line is a graphical method of satisfying the
boundary conditions imposed by the TEM specimen.
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a wedge specimen has split the spots at G. We will see
these split spots in Chapter 18 and we will return to this
topic in Chapter 23 when we discuss images.

It can be useful to extend the wedge case to the double
wedge. For example, imagine an inclined planar defect in
a parallel-sided slab with g parallel to the slab surface as
shown in Figure 15.7. Everything is as before at the
top surface. At the inclined interface then, tie lines do
create new excited points B1 and B2 on the 1 and 2
branches of the dispersion surface.

Now, n3 is the tie line due to the bottom surface and
n3 is parallel to n1. We extend the n3 tie lines to the c
spheres and find that now we have three c0 vectors and
three cD vectors. Translating these c vectors to O1 as the
common origin produces the beam diagram shown in
Figure 15.7B. Now we have three spots at O and three
spots at G. We will return to this topic in Chapter 24
when we discuss images of planar defects, but here let’s
summarize the new concepts they give us

& The dispersion surface is a graphical approach to
thinking about Bloch waves.

& We have tomatch the components of any wave enter-
ing and leaving any surface, internal or external.

& Weuse the exit-surface tie line to link to the c spheres.
& Having two inclined surfaces causes a splitting of the
Bragg beams.

& An internal interface, such as a stacking fault, increases
the number of points excited on the dispersion surfaces
and the number of spots at reflection G!

To understand the importance of these ideas, try to
imagine what will happen when a defect, which is not
abrupt, is present in the crystal (more on this in Section
15.8).

15.5 THE RELATION BETWEEN Ug, xg,
AND sg

We can best appreciate the importance of the disper-
sion-surface construction by looking at Figure 15.4. This
figure shows the original spheres as dashed lines: they
are nearly flat close to the BZB. The electron beam is

(A) (B)

FIGURE 15.6. (A) The same diagram as Figure 15.4B, but for a wedge specimen with the top surface parallel to g (normal n1) and the bottom surface

normal n2. Instead of exciting two points, O1 and O2, we excite twomore, D1 andD2, which correspond to the plane waves w0
(1), w0

(2), outside the crystal. In

(B) we relate all the beams to the point O1 andwe produce two beams at O and two at G. Thus we can predict that a wedge foil will give doublets at O andG.
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initially traveling with wave vector w outside the crystal.
When the beam enters the crystal the z component of
this wave vector changes (this is the refraction effect we
saw in Chapters 11 and 13), but the xy component is
unchanged. Therefore, the allowed k vectors in the
crystal are k(1) and k(2). One k vector begins on branch
1 and ends at O, while the other begins at branch 2 and
ends at O.

Clearly we can draw in kg
(2) and kg

(1) by adding g.Now,
how does k0

(1), say, relate to K? The point K is also deter-
mined by the tie line through c, and lies on the circle
centered on O. Most importantly, neither k1 nor k2 is
equal to K. If you look back at equation 13.41 you can
see that

kðiÞz � Kz ¼ gðiÞ (15:8)

So g(i) is simply the distance of the point Mj from the K
sphere centered on O. We can write this relationship
explicitly

kðiÞ ¼ kðiÞz þ kðiÞx (15:9)

¼ Kþ gðiÞ
� �

uz þ kxux (15:10)

(A) (B)

FIGURE 15.7. (A) An enlarged view of the dispersion surface in Figure 15.6 close to the BZB, but this time for a specimen in which both surfaces are

parallel to g but there is an inclined fault which produces a third wave c0
(3) and cg

(3). If we then move all the vectors to O1 again, we predict there will be

three spots at O and three at G.

BRANCHES AND BEAMS
There are only two k vectors because there are only
two branches of the dispersion surface. There are two
branches of the dispersion surface because we have a
crystal potential (hence Ug). There are only two
branches because we are considering only two beams.

15 .5 THE RELAT ION BETWEEN U g , xg , AND sg .................................................................................................................................... 251



Notice that the last term here is independent of i. Look
again at Figure 15.4. We can see that Dkz is a minimum
when M1 and M2 lie on the BZB. In that situation

Dkzmin
¼ gð1Þ � gð2Þ (15:11)

Simply by looking at the diagram, and as expected from
Chapter 13, you also know that

gð1Þ � gð2Þ ¼ Ug

k
¼ 1

xg
(15:12)

So

Dkz ¼
1

xg
(15:13)

The origin of the thickness oscillations that we will
see in the two-beam TEM image is the difference in
wavelength of the two Bloch waves. It’s the beating
between the two Bloch waves.

Thus we see that the gap Dkz at the BZB is given by
the reciprocal of the extinction distance. We’ll summar-
ize again to be quite sure that it is clear!

& We have a crystal, therefore Ug 6¼ 0.
& SinceUg 6¼ 0 we have two branches to the dispersion
surface and hence a band gap.

& The bandgap is Dkz.
& Hence we have a finite extinction distance (i.e., xg is
not infinite).

An aside: think how seff and s would be related if xg
were infinite. (Go back to equation 13.47.)

If the tie line M1M2 does not lie on the BZB then
when we draw the Ewald sphere centered just belowM1

(with radius of length 1/l or |K|) we see that sg is non-
zero. We can easily see from the equations in Section
13.10 that, in general, Dkz is given by

Dkz ¼ seff ¼
1

xeff
(15:14)

This equation is the key to understanding the origins of
the extinction distance and why the effective extinction
distance depends on the size of the excitation error, s. It
says that the band gap increases as we increase s. Look-
ing at it another way, as we move the tie line off the
BZB, the band gap Dk increases.

Some questions raised here are

& What is the physical reason that Dkz is related to s?
& What happens if g is not parallel to the foil surface
or, indeed, if the foil surfaces are not parallel to one
another?

You can also appreciate why we had a problem defining
s when we first encountered it!

15.6 THE AMPLITUDES OF BLOCH WAVES

In Section 13.9, we found that the total wave function
for the two-beam case can be expressed as the sum of
two Bloch waves

c rð Þ ¼ Að1Þbð1Þ þ Að2Þbð2Þ (15:15)

We showed that the relative contributions of the two
Bloch waves A(1) and A(2) are cos b/2 and sin b/2, respec-
tively; in addition, w = cotb = sxg.

We also showed in Section 13.8 that

bð1Þ kð1Þ; r
� �

¼ C
ð1Þ
0 e2pik

ð1Þ : r þ Cð1Þg e2pi kð1Þ þ gð Þ : r (15:16)

and

bð2Þ kð2Þ; r
� �

¼ C
ð2Þ
0 e2pik

ð2Þ : r þ Cð2Þg e2pi kð2Þ þ gð Þ : r (15:17)

The Bloch wave coefficients were given by equation set
13.31

C0
ð1Þ C0

ð2Þ Cg
ð1Þ Cg

ð2Þ

cosb/2 sinb/2 –sin b/2 cos b/2

Now we can consider some special cases and exam-
ine the actual values for C0

(1), A(1), etc. (Table 15.1).
For the Bragg case, sg=0, g is exactly excited and

A(1) and A(2) are both equal to 1/
p
2. In other words, the

two Bloch waves are equally excited.
For the case where sg<0, we now have cos (b/2)>sin

(b/2) so that A(1) is greater than A(2). If we reverse the
sign of s, cos (b/2)<sin (b/2) and A(1) is less than A(2).

Now, let’s relate this information to the dispersion
surface shown in Figure 15.4. When sg<0, as shown
here, the M1M2 tie line is to the left of the BZB, which

TABLE 15.1 Values of Bloch Wave Variables

s w b b/2 cos (b/2) sin (b/2)

0 0 p/2 p/4 1/
p

2 1/
p

2

+ 0.01 +D (p/2) – d (p/4) – (d/2) (1/
p

2) + � (1/
p

2) – �

– 0.01 –D (p/2) + d (p/4) – (d/4) (1/
p

2) – � (1/
p

2) + �

AMPLITUDE OF BLOCH WAVE
Whether Bloch wave 1 or Blochwave 2 has the largest
amplitude depends on the sign of s.
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is associated with reflectionG.When the tie line is closer
to O than G, Bloch wave 1 is more strongly excited; the
reverse is true when the tie line crosses the BZB. We
should remember that the analysis in Chapter 13 was for
a two-beam case, where we were close to the Bragg
condition. So this discussion of A(1) and A(2) only applies
to small values of s.

15.7 EXTENDING TO MORE BEAMS

If we allow more beams to contribute to the image,
we can imagine the dispersion surface for the case
where Ug = 0 by constructing more spheres, shown in
Figure 15.8. If we have n beams then we will have n
spheres. Note that each sphere is centered on its corre-
sponding reciprocal-lattice point and neighboring
spheres intersect periodically spaced BZBs. The gap
in Figure 15.3 always occurs at the BZB. The BZB itself
always corresponds to a plane which is the perpendi-
cular bisector of a g vector. Thus the diagram for >2
beams shown in Figure 15.8 will become more compli-
cated with many band gaps and many branches as
shown in Figure 15.9. The magnitude of the band gap
does decrease as the rank of the neighboring branches
increases.

In Chapter 27, we’ll discuss what happens in images
when 3g is excited. We will actually consider the two-
beam condition where 0 and 3g are the two beams.

We follow the convention used byMetherell and num-
ber the branches of the dispersion surface from top down.

Then i = 1 corresponds to the branch with the highest
kinetic energy. Remember that all the electrons have the
same total energy in this treatment. You must also be
aware that some earlier texts number the top branch two
and the second branch one, following Hirsch et al. This
was fine when only two branches were considered.

We can still associate the amplitudes C0, Cg, etc.,
with the sphere centered on 0, g, etc. The result is
shown by the labels C0, Cg, etc., in Figure 15.9. For

FIGURE 15.8. Three dispersion spheres due to three reflections, –G, O,

and G. If we had n spots we would have n spheres.

C0

C0

C0

C0

GO 2G–G–2G

C0

C0

C0

k(j)
z

–K z
102

2π

1

2
3

4

5

6

C0C4g

C3g

C3g

C2g

C3g C4g

C3g

C2g

Cg

Cg

Cg

Cg

FIGURE 15.9. Six branches of the dispersion surfaces. The two branches i=1 and i=2 have the highest energy and give the largest band gap; notice that

these branches give the terms inC0 andCg; smaller gaps occur between branches with lower energy. The diagram can be approximated to a set of spheres

centered on O, �G and �2G, etc.; C0 is ‘normal’ to the sphere centered on O, while Cg is ‘normal’ to the sphere centered on g, etc.
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example, imagine the original spheres centered on 0 and
g; they intersect on the BZBwhich passes through g/2 so
the C0, Cg are labeled as shown.

Similarly, the spheres centered on 0 and 3g intersect on
the BZB which passes through 3g/2 soC0,C3g are labeled.
As a general rule, Cng will be largest for the pair of
reflections which are excited, i.e., 0 and ng and will be
related by the ng/2 BZB.

We now extend these arguments to the situation where
many beams are excited. Values of C other than C0 and
Cng will be non-zero since it’s no longer a two-beam case.
So the tie line M1M2 will then intersect many branches of
the dispersion surface. The reason these contributions
are smaller when g is excited is that they do not intersect
the 0 circle. However, they can contribute to the image.
Figure 15.9 shows how this can be visualized. (Remember
the dispersion surface is a way of visualizing Bloch wave
coefficients.) If we satisfy reflection 2G, then C0

(1), C0
(2),

C2g
(1), and C2g

(2) are all large. The gap Dk4,5 between
branch 4 and branch 5 at G (on the BZB) is small; the
‘circles’ would have intersected in the vacuum. If we think
about the Ewald sphere we can show that the s values for
�g and 3g are identical. We’ll see later (Chapter 26) that
these reflections will actually couple strongly, although
both are weakly excited and the extinction distance is
large (because the gap Dk4–5 is small). The extinction
distance for the coupling of �g and 3g when 2g is strongly
excited is x4g (x3g–(–g)). We can see this is true by looking
at the branch 4/5 gap on the BZB for G.

15.8 DISPERSION SURFACES AND
DEFECTS

The original reason for introducing the concept of Bloch
waves was that only Bloch waves can exist in a periodic
potential, i.e., there are no beams in the crystal. So what
happens when a defect is present? We’ll discuss this
situation in some detail in Chapters 23–26 but will men-
tion the basic ideas here, emphasizing the Bloch waves
rather than the defects.

In Section 15.4, we discussed the effect that a planar
fault can have on the Bloch waves using the dispersion-
surface representation. What we were actually doing
was matching the components parallel to the planar
defect, so the effect of the planar fault was to create
new tie lines n2. The general result is that, when a defect
is present, energy is transferred from one Bloch wave to
the other along the tie line; this is known as interband
scattering. This concept is not only important for our
understanding of images of planar defects but also illus-
trates a general principle for defects.

The difficulty with non-planar defects is that the tie
lines are not so well defined. You can, however, imagine
the result: instead of having points on the dispersion sur-
face, we will have a distribution of points. We then relate
this distribution to the DP. We do this with the tie lines
normal to the exit surface and then translate to O1 in the
usual way. So, our distribution of points on the dispersion
surface will become a distribution of spots in the DP; this
distribution is what we will call a streak in Chapter 17.

CHAPTER SUMMARY
Dispersion surfaces allow us to draw diagrams to represent the equations given in Chapter
14. These surfaces are essentially plots of the k vector of the Bloch waves (which is directly
related to the energy) versus the K vector. They correspond directly to the band diagrams,
which are used extensively to represent energy levels in semiconductors; the difference is that
in semiconductors, we emphasize energy by plotting energy versus reciprocal-lattice vector
(our K vector). The k vectors themselves vary because, although the total energy of each
electron is a constant, the potential energy decreases when the electron is close to the
nucleus, causing the kinetic energy to increase.

Themost important equation for imaging theory is 15.14, which relatesDkz, seff, and xeff.
Notice that Dkz is defined for two Bloch waves but is only small when the Bragg equation is
nearly satisfied. This relationship links Bloch waves and Bragg beams. Dk is non-zero
because we have a crystal which produces a periodic potential. Dk gives rise to thickness
fringes and all thickness effects. Thus we see that thickness variations are due to the
interference, or beating, of pairs of Bloch waves. As we increase n, xg increases because
the gap between the two relevant branches of the dispersion surface becomes narrower.
Defects present in the crystal cause a mixing or coupling of the Bloch waves: they ‘tie’ the
branches of the dispersion surface and cause interband scattering.

We’ve emphasized throughout this chapter that the dispersion surface is a pictorial
representation of the k versusK relationship.We’ll close by quoting the result derived byKato.

In any wave field, the direction of energy flow is along the normal to the surface of the
dispersion surface. This result is equally valid for ‘electron wave packets’ and other waves.
The physicist might say that the Poynting vector is normal to the dispersion surface.
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Although there are many texts that discuss dispersion surfaces and band gaps in
semiconductors, beware of the 2p/l versus 1/l problem since many of the texts are written
by, and for, physicists. Defect analysis using Bloch waves has generally been the preserve of
the physicist. However, there are some excellent programs available which use a Bloch-wave
approach analysis.

We give the usual caveat: beware of black boxes.Metherell’s article goes to greater depth
than covered here. However, it has been an inspiration formuch of this chapter and is highly
recommended for advanced study. It is beautifully written and explained, but is certainly
more advanced than our text. If you want to delve deeper into this topic, this is the article.
Note that Metherell uses the eikr notation.
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CEC Brussels. The reference.

THE COMPANION TEXT
The companion text doesn’t extend this topic much, but there is hope to have a discussion of the use of

MathematicaTM notebooks in the future.

SELF-ASSESSMENT QUESTIONS
Q15.1 What does the word dispersion mean in the context of this chapter?
Q15.2 Write down an expression for b( j)(r) in terms of k( j) and Cg

( j).

Q15.3 We restrict our discussion to the case where only reflections in the ZOLZ are excited. What is the simple

physical reason for doing this?

Q15.4 Draw the dispersion surface diagram for the two-beam case where the crystal has zero inner potential;

then explain the term ‘dispersion surface.’

Q15.5 The vectors k(1) and k
(2) are not parallel to one another. What is the physical reason for this and does it

have any implications?

Q15.6 Why do k
(1) and k

(2) end (or begin) on branches (1) and (2) and not on the ‘curves’ x and y?
Q15.7 We used to have KD. Now we have k(1) + g and k(2) + g. Why don’t we have KD? Does KD still exist?
Q15.8 What is a BZB? Write out the name and explain what causes it.

Q15.9 Draw the dispersion surface for two beams where g is not satisfied. (DrawFigure 15.4 without looking at

it).

Q15.10 Consider Figure 15.4 when the incident beam, c1, is parallel to the diffracting planes. Why is this not a

good example of two-beam diffraction?

Q15.11 In Figure 15.4, M is ‘below’ the dispersion surface. Can it be above this surface? Justify your answer.
Q15.12 In Figure 15.4, k(2) + g is longer than k(2) + g. Does this mean that l has changed?
Q15.13 In Figure 15.4, why is the tie line M1M2 normal to g?

Q15.14 The wave vector c is always shorter than K or k. Explain why this is so.
Q15.15 The tie line is a graphical method of satisfying the boundary conditions imposed by the specimen.

Explain why this is so.
Q15.16 In Figure 15.6, are points O1, O2, D1, and D2 really relevant since they don’t lie on the dispersion surface

for the crystal?
Q15.17 Explain in words why there are three c0 vectors (c0

(1), c0
(2), and c0

(3)) in Figure 15.7.
Q15.18 In the two-beam case when G is on the Ewald sphere, what are the magnitudes of the Bloch wave

coefficients?
Q15.19 If sg<0, we can show that A(1) > A(2). What does this mean physically?
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TEXT-SPECIFIC QUESTIONS
The following questions contain the manufacturers’ warning label.

T15.1 Why are there two expressions for Cg
( j)/C0

( j) in equation 15.1?

T15.2 What is the physical reason that Dkz is related to s?
T15.3 If g is not parallel to the foil surface, how will the Bloch-wave construction change?
T15.4 If the two surfaces of the specimen are not parallel to one another, how will the Bloch-wave construction

change?
T15.5 When the specimen is oriented so that G is on the Ewald sphere, we again have a situation like that

shown in Figure 15.9; many beams are excited but one does have sg=0. You form a BF image. How does

the periodicity of the thickness fringes relate to this diagram? In particular, how is the extinction distance
related to the two-beam value?

T15.6 When the specimen is oriented with the beam parallel to the diffracting planes, we have a situation like
that shown in Figure 15.9; many beams are excited but none have sg=0. You form a BF image. How

does the periodicity of the thickness fringes relate to this diagram?
T15.7 We initially follow Metherell’s simplification of assuming that only reflections in the ZOLZ are excited.

Discuss what complications might arise if we did not make this assumption. Are we likely to encounter

this in practice, and if so, under what conditions?
T15.8 We also made the approximation that the accelerating voltage is high. Discuss when this approximation

might break down.

T15.9 In Figure 15.4, we drawOG so that it is not parallel to OfGf. Could this really happen? Discuss why T1Gf

is parallel to T2G and should this be so?
T15.10 In Figure 15.6B, why is c0

(2) not parallel to c0
(1) and why are there two such vectors when we are outside

the crystal? What is the relevance of D2 and T3 in this figure?

256 ................................................................................................................................................................................DI S PERS ION SURFACES



16
Diffraction from Crystals

CHAPTER PREVIEW

Since our emphasis is on crystalline materials, we will first discuss how the details of the
crystal symmetry affect the DPs we expect to see. What we’re doing here is taking the
concepts of the reciprocal lattice and applying it to particular examples. There are two basic
lessons.

& Youmust learn some of the rules that we will derive for particular crystal structures; one
example will be to determine which reflections are allowed for an fcc crystal.

& The other lesson is more general and is really concerned with why we have these rules.
Why are certain reflections absent or weak and how can you use this information to learn
more about your material?

We can deduce some selection rules for different crystal structures that tell you which
reflections are allowed. We suggest you learn the most common ones by heart. Throughout
this chapter, we’ll assume that the crystal is perfect and infinite, which it never is. In Chapter
17, we will examine what happens when we include defects or allow the diffracting crystal to
become relatively small. In Chapter 18, we’ll go through the process of indexing experi-
mental DPs.

16.1 REVIEW OF DIFFRACTION FROM A
PRIMITIVE LATTICE

In Chapters 11–15, we examined diffraction from a
regular array of lattice points. We will now define such
an array as a primitive lattice where there is only one
lattice point in the unit cell. Actually, we did begin to
consider the present topic when we discussed the mean-
ing of n in the Bragg equation 2d sin yB= nl in Sections
11.5 and 12.4. We showed that the diffraction from the
(200) planes would give rise to a 200 reflection even
when there were only atoms on the (100) planes.

By combining equations 13.3 and 13.4, we can see
that the amplitude of the diffracted beam is given by

fg ¼
a ilFg

Vc cos y

X
n

e�2piK � rne2piKD � r

where Fg is the structure factor for the material. Since
the same type of atom was at each lattice point, we only
needed to consider one atomic scattering factor f in
Chapter 13. Now we are going to include different
types of atoms as we build up real crystal unit cells.
From Section 3.7 we know that f varies with the

scattering angle. However, in this chapter we are going
to restrict ourselves to small values of y (excluding zero)
and will assume that we have fixed values of f; you can
easily extend this analysis to other scattering angles. For
convenience, we’ve summarized some useful values of f
in Table 16.1.

If you study the original paper of Ibers, from which
these data were taken, you will appreciate that these
numbers are not really well known. This is unfortunate
since much of our analysis depends on the values of f.
Furthermore, we have an additional reason for choos-
ing y not to be zero in Table 16.1 because these values
are even less reliable. Fortunately, what saves us is that
we are only interested in the details of the intensities in
some special cases and then the effects are really insen-
sitive to the precise value of f.

We are just going to take these numbers and move
on, but you may want to investigate a little further.
Some points you should consider are

& Why are these numbers not better known? We dis-
cussed this topic in Chapters 2 and 3. The atomic
scattering factor is related to the differential scatter-
ing cross section (Section 3.7)
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fðyÞj j2¼ dsðyÞ
dO

(16:2)

and the cross section is not well known at typical TEM
voltages.

& If the crystal is ionic, do we use f(y) for the atom or
for the ion?

& If the material is covalently bonded, how can we
incorporate the bonds into our scattering model?

How we calculate f(y) depends on the model we use
to describe the atom. You can find more details in the
references at the end of the chapter, but beware, this is
not an easy topic.

The simplest method is just to ignore any ionic char-
acter! If you look at Table 16.1, you’ll see that if the atomic
number is large enough, then the change in f caused by
removing an electron may not be great. In ionic materials,
we form ions by removing or adding outer electrons so the
interaction of the electron beam with the nucleus is not
significantly affected.However, you should remember that
this argument applies only to f. We’ll see in Part 4 that we
can detect differences between differently bonded atoms
using EELS. So, bonding does affect the electron beam.

The overall effect of the covalent, i.e., directional,
component of the bonding is usually ignored. However,
as you realize, all the bonds in Si, for example, are
aligned along one particular type of crystallographic
direction so you may indeed be able to detect some
special features in the DPs.

16.2 STRUCTURE FACTORS: THE IDEA

In this section, we are building on Chapter 12. To keep
things simple, we will illustrate the concept of the struc-
ture factor for cubic crystals. If we have a simple-cubic

crystal, then all possible values of g can give a reflection in
the DP. Each reciprocal-lattice point will then correspond
to a possible beam. The next step will be to add the basis
(i.e., the group of atoms associated with each lattice point)
to the primitive lattice. Since we still have the primitive
lattice, all of these points will still exist in the reciprocal
lattice but the reflections will be weighted. You will find
that there are three different ways to look at the situation,
which in fact are all equivalent

& Selection rules: This is perhaps closest to physics.
The structure of the crystal imposes certain selection
rules which determine which beams are allowed.

& Weights (or weighting factors): We can assign a
weight (which may be zero) to each of the points in
the reciprocal lattice. This is the terminology used by
Ewald. The nice feature about weighting factors is
that they are analogous to scattering factors.

& Structure factors (F): These are the unit-cell equiva-
lents of the atomic-scattering amplitude, f(y); they
can be thought of as unit-cell scattering amplitudes.
This is the terminology favored in materials science.

There are two ways to address this topic:

& We can examine the physical idea of interference
as we did in Chapters 2 and 3. This approach can
give some useful guidelines to you, the experimen-
talist. For example, we’ll see that the 200 reflec-
tion in Si should usually be absent; it should
always be present, though weak, in GaAs. Simi-
larly, in Ni3Al, the 100 reflection is weak, but in
Ni it is absent.

& Some materials have a special lattice in real space,
for example, fcc or bcc lattices. In these cases, we
can describe a corresponding special lattice in
reciprocal space. What this means is that certain
reflections are always forbidden for these particu-
lar structures; these are known as ‘kinematically
forbidden’ reflections. (We’ll see, however, that
they can be present due to dynamical scattering
events, and structure factors do not take any
account of dynamical scattering.) The reciprocal
lattice (of allowed reflections) of an fcc crystal is
bcc, and vice versa.

In equation 13.1 we described the scattering from the
unit cell by the expression

Acell ¼
e2pikr

r

X
i

fi yð Þe2piK � ri (16:3)

What this equation says is that the atoms within the unit
cell all scatter with a phase difference given by 2piK � ri
where ri is a vector which defines the location of each
atom within the unit cell

TABLE 16.1 Selected Values of f (q), the Atomic Scattering
Amplitude at q = qB

Element f (y) (Å) Element f (y) (Å)

H 0.31 Ca 3.40

Li 0.75 Cr 3.56

Be 1.16 Mn 3.55

B 1.37 Fe 3.54

C 1.43 Co 3.51

N 1.44 Ni 3.48

O 1.42

Cu 3.44

Na 1.59 Zn 3.39

Mg 1.95 Ga 3.64

Al 2.30 As 4.07

P 2.59 Ag 5.58

W 7.43

These are values were derived using a self-consistent field theory (sin y/l =

0.2 Å�1) and are based on the rest mass. The f(y) value must be multiplied by

(1 � (v/c)2)�1/2 for electrons with velocity v.
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ri ¼ xi aþ yi bþ zi c (16:4)

We’ll start by considering only the case where K = g

since this is an infinite, perfect crystal

K ¼ ha� þ kb� þ lc� (16:5)

So we can write

Fhkl ¼
X
i

fie
2pi hxiþkyiþlzið Þ (16:6)

This is our key equation; it is completely general.
This equation applies whether there is one atom or

one hundred atoms in the unit cell, nomatter where they
are located, and it applies to all crystal lattices. What we
do next is simply insert the atomic coordinates into
equation 16.6 and calculate Fhkl.

16.3 SOME IMPORTANT STRUCTURES:
BCC, FCC AND HCP

We will now calculate the structure factor for bcc and
fcc crystals, because they illustrate the points we just
made in Section 16.2 and because, as a materials scien-
tist, you must know these results. You can regard the
reciprocal lattice in two ways

& The reciprocal lattice for bcc and fcc are themselves
special lattices.

& All reciprocal lattices of cubic materials are simple
cubic, but some of the lattice points have a zero
structure factor.

Body-centered cubic: The bcc structure is particularly
easy. If we set the origin on one lattice point at (0, 0, 0),
the other lattice point is at (1/2, 1/2, 1/2) and we sub-
stitute these values of (x, y, z) into equation 16.6, then

F ¼ f 1þ epi hþkþlð Þ
n o

(16:7)

Now, since h, k, l are all integers, if we define the sum h
+ k+ l=N, then the exponential can take two values:
+1, for N even, and –1, for N odd.

Thus, we can say that

& F = 2f if h + k + l is even,
& F = 0 if h + k + l is odd.

There are no other possibilities. The resulting
indexed bcc reciprocal lattice is shown in Figure 16.1.
This lattice of allowed reflections is face-centered cubic.
The reason it may not look like the familiar fcc lattice in
real space is that the indices in reciprocal space must all
be integers.

Face-centered cubic: If we take the same approach
for the fcc structure, we now have to include four atoms
in the unit cell. We can view this cell as simple cubic with
a four-atom basis. The coordinates of the atoms are

ðx; y; zÞ ¼ ð0; 0; 0Þ; 1

2
;
1

2
; 0

� �
;

1

2
; 0;

1

2

� �
; 0;

1

2
;
1

2

� �
(16:8)

Substituting these values for ri into equation 16.6 gives

F ¼ f 1þ epi hþkð Þ þ epi hþlð Þ þ epi kþlð Þ
n o

(16:9)

Again, we consider the possible values of the integers h,
k, l. If all three are either odd or even, then all of the
exponential terms are e2npi. Therefore, all the phases of
the diffracted waves aremultiples of 2p and are in phase.
However, if one of h, k, or l is odd but the other two
even, or vice versa, then two of the three phase factors
will be odd multiples of p giving two terms of –1 in
equation 16.9. Therefore

& F = 4f if h, k, l are all even or all odd,
& F = 0 if h, k, l are mixed even and odd.

The resulting lattice is shown in Figure 16.2. This
time the reciprocal lattice of allowed reflections is bcc
with all the indices being integers.

Hexagonal close-packed: Generally DPs from hcp
crystals are more difficult to index for two reasons

& Except for (0001), the patterns can be different for
every material because the c/a ratio is different.

FIGURE 16.1. The reciprocal lattice for the bcc crystal structure. The

lattice points that correspond to systematic absences have been removed,

so the actual arrangement of points is an fcc lattice.
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& We use the three-index notation to derive the struc-
ture-factor rules.

& We use the four-index Miller-Bravais notation to
index the lattice planes and thus the DPs.

For the hcp structure, we only have to include two
atoms in the unit cell. We can view this cell as a simple
rhombohedral cell with a two-atom basis. The coordi-
nates of the atoms are

ðx; y; zÞ ¼ ð0; 0; 0Þ; 1

3
;
2

3
;
1

2

� �
(16:10)

Substituting these values for ri into equation 16.7
gives

F ¼ f 1þ e2pi
h
3þ 2 k

3 þ l
2

� �� �
(16:11)

We simplify the notation by setting h/3 + 2k/3 + l/2 =
X; the complication is simply that X may be a fraction.
The analysis is quite straightforward if we consider |F|2,
which is what we need in the expression for intensities.
Then we can rearrange as follows.

Fj j2¼ f 2 1þ e2piX
� �

1þ e�2piX
� �

¼ f 2 2þ e2piX þ e�2piX
� �

(16:12)

Fj j2¼ f 2 2þ 2 cos 2pXð Þ ¼ f 2 4 cos2 pX
� �

(16:13)

Now we can write down the rules for hcp which depend
mainly on whether or not h + 2k is a multiple of 3.

& |F|2 = 0 if h + 2k = 3m and l is odd,
& |F|2 = 4f 2 if h + 2k = 3m and l is even,
& |F|2 = 3f 2 if h + 2k = 3m � 1 and l is odd,
& |F|2 = f 2 if h + 2k = 3m � 1 and l is even.

Thus the 11�20 and 11�26 reflections will be strong but
the 11�23 reflection will be absent. Likewise 10�10 and 20�20
are weak but 30�30 is strong. Most importantly, 0001 is
absent. You can see that the four-index Miller-Bravais
notation takes some time to master. The third index is
only included to emphasize the symmetry; if the third
index were not included, you might not realize that, e.g.,
the (110) and ð1�20Þ are crystallographically equivalent.

You need to know a few other expressions for this
system. If you are working with hcp materials, youmust
have a copy of Frank’s (1965) paper on indexing this
system.

If the direction [uvtw] lies in the plane (hkil), then we
can show that

uhþ vkþ tiþ wl ¼ 0 (16:14)

The normal to the plane (h,k,i,l) is actually the Car-
tesian vector [h,k,i,l/l], and likewise the crystallographic
direction [u,v,t,w] is actually the vector [u,v,t,lw] in the
Cartesian system. So using the four-index Cartesian
vector notation, equation 16.14 can be written as

½u; v; t; lw�½h; k; i; l=l� ¼ 0 (16:15)

In cubic crystals, the direction [hkl] is always normal
to the plane (hkl), but this is not the case for hcp crystals.
You can show using some simple geometry that

l2 ¼ 2

3

� �
c

a

� 	2
(16:16)

Thus the Cartesian vector [HKIL], which is normal
to the plane (hkil), is the vector

h; k; i;
3

2

� �1
2 a

c

� 	
l

 !
(16:17)

½11�20� is normal to the ð11�20Þ plane because l is zero
but ½01�12� is not normal to the ð01�12Þ plane.

We can now write down an expression for the angle,
f, between two planes (hkil) and (defg).We use equation
16.17 to deduce the normals to the planes, then take the
dot product of these two four-index vectors to deduce
cos f in the form

cosf ¼
hdþ keþ 1

2 heþ kdð Þ þ 3
4 lg

a
c

� �2

h2 þ k2 þ hkþ 3
4 l

2 a
c

� �2n o1
2

d 2 þ e2 þ deþ 3
4 g

2 a
c

� �2n o1
2

(16:18)

FIGURE 16.2. The reciprocal lattice for the fcc crystal structure. The

lattice points that correspond to systematic absences have been removed,

so the actual arrangement of points is a bcc lattice.
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The hcp unit cell is shown in Figure 16.3. Remember
that there are three crystallographically equivalent axes
x, y and u, and that the indices of any plane can be
written as (uviw) where i = (u + v).

16.4 EXTENDING FCC AND HCP
TO INCLUDE A BASIS

What we did in the previous section was to calculate the
reciprocal lattice of a simple-cubic crystal with a basis of
four atoms in fcc and two atoms in bcc. We can take this
analysis one step further by starting with fcc and adding a
basis. This extension both illustrates the technique and
deduces structure-factor rules for three importantmaterials.

NaCl, GaAs, and Si: Each of these three crystal
structures is an fcc lattice with a basis. In other words,
we can separate out the atoms lying on the fcc lattice and
those which make up the basis.

NaCl: Let’s locate each of the Na atoms on an fcc
site; although NaCl is ionic, we’ll refer to the ions as
atoms since we generally do not take account of the
charge on the ion.

We usually say that for every Na atom, there is a Cl
atom related to it by the vector [1/2, 0, 0]. However, to
emphasize the cubic symmetry, we can choose the alter-
nate basis vector [1/2, 1/2, 1/2]. The phase factor for the

Cl atomwill be the same as for the Na atom, but with an
additional phase of pi(h+ k+ l). Of course, the atomic
scattering amplitudes, f, are also different for the two
atoms. We can write this expression for F as

F ¼ fNa þ fCle
pi hþkþlð Þ

n o
1þ epi hþkð Þ þ epi hþlð Þ þ epi kþlð Þ
n o

(16:19)

This again gives rise to some rules:

& F = 4(fNa + fC1) if h, k, l are all even,
& F = 4(fNa � fC1) if h, k, l are all odd,
& F = 0 if h, k, l are mixed.

Clearly, the third condition is the same as for any fcc
structure because the factor with four terms is then zero,
exactly as we deduced for fcc. You can check this if you
imagine that fCl is zero. Whether the sign in (fNa � fC1) is
positive or negative is the new feature. What this means in
practice is that reflections with h, k, l all even will appear
muchmore intense in the DP than those with h, k, l all odd.
Lookat the values given for f inTable 16.1. LiF,KCl,MgO,
NiO, FeO, andErAs all have theNaCl structure. Since they
have different pairs of atomic-scattering amplitudes, the
term corresponding to 4(fNa � fC1) will be different in each
case. Reflections with h, k, and l all odd are thus sensitive to
the chemistry of the compoundandwe call them ‘chemically
sensitive reflections.’ We will see further examples in Chap-
ter 29 of how this sensitivity can be used in imaging.

GaAs: You should repeat the above exercise with
the Ga located on the fcc lattice and the As related
to it by the basis vector [1/4, 1/4, 1/4]. (Crystallogra-
phers will immediately note that this puts the As atom
in the tetrahedron instead of the octahedron as
found in NaCl.) Now the expression for F becomes
(see equation 16.9 for Ffcc)

F ¼ fGa þ fAse
p
2i hþkþlð Þ

n o
Ffcc (16:20)

So the rules are slightly more complicated:

& F=0 if h, k, l aremixed as always for fcc,
& F = 4(fGa � i fAs) if h, k, l are all odd,
& F = 4(fGa � fAs) if h, k, l are all even and h+k+l

= 2N where N is odd (e.g., the
200 reflection),

& F = 4(fGa + fAs) if h, k, l are all even and h+k+l
= 2N where N is even (e.g., the
400 reflection).

You can appreciate the difference between the
200 reflection and the 400 reflection by drawing a pro-
jection onto the (001) plane and applying the physical
ideas we discussed in Chapter 11. The case where all
three indices are odd is interesting. However, for this
case remember that we only see intensities (i.e., |F|2 not
F) so |F|2 is 16(fGa

2 + fAs
2) and is independent of the

a

c

x

y

a

z

u

FIGURE 16.3. The hcp unit cell showing the four axes used in theMiller-

Bravais indexing system. The three axes in the basal plane, x, y, and u, are

all crystallographically equivalent and the z-axis is normal to the basal

plane.
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sign initially present. Of course, the structure factor is
still different from the others derived here.

Si: Now we can easily extend this analysis to Si, Ge,
or diamond. Just replace both fGa and fAs in our results
by fSi. The major change is that F is zero when h+k+l
= 2N and N is odd. The best known example of this is
again the 200 reflection. For Si andGe, it has F=0, but
F is finite for GaAs.

Now for ‘hcp.’
Wurtzite: The wurtzite structure is to hcpwhatGaAs

(or zinc blende) is to fcc! It is an important structure
because it includes BeO, ZnO, AlN, and GaN, all of
which have been widely studied. We can think of it as
adding a second hcp lattice displaced by [1/3, 1/3, 1/8] or
[0, 0, 3/8] relative to the first. The problem is that we
now have a four-atom basis because the second atom in
the hcp cell does not lie at a lattice site. This is a good
exercise for Section 16.8, if you look ahead.

16.5 APPLYING THE BCC AND FCC
ANALYSIS TO SIMPLE CUBIC

Extending bcc to NiAl (B2): For this material, we can
easily modify the original treatment of the bcc structure,
since now the centering atom is different, so NiAl is
simple cubic. If we choose to place the Ni atom at (0,
0, 0) and the Al atoms at [1/2, 1/2, 1/2], then

F ¼ fNi þ fAle
pi hþkþlð Þ

n o
(16:21)

This leads to two values for F, neither of which is zero.

& F = fNi + fAl if h + k + l is even,
& F = fNi � fAl if h + k + l is odd.

This would, of course, be the bcc result if fNi and fAl

were the same. The result of this difference is that all of
the reflections for NiAl will be present in aDP because F
is never zero. This result is, of course, exactly what we
would expect, because NiAl really is simple cubic. Other
materials with this structure include CsCl, CoGa, FeAl,
and CuZn. Reflections like (100) are chemically sensi-
tive for NiAl.

The Cu3Au (L12) structure: There are many impor-
tant ordered intermetallics with this structure such as
Al3Li and Fe3Al. The most important is Ni3A1 (because
of its role in Ni-base superalloys). We can treat Ni3Al in
a similar manner to NiAl. Here the Al atom sits on the
(0, 0, 0) site and the three Ni atoms center the faces. The
expression for F now becomes

F ¼ fAl þ fNi epi hþkð Þ þ epi hþlð Þ þ epi kþlð Þ
n o

(16:22)

The rules for Ni3Al are

& F = (fA1 + 3fNi) if h, k, l are all even or all odd.
& F = (fA1 � fNi) if h, k, l are mixed.

Again, all of the possible reciprocal-lattice points for
Ni3Al will give rise to Bragg reflections because the
structure is really simple cubic. The mixed hkl reflec-
tions are now the chemically sensitive reflections. This
material is particularly interesting since it can be heat-
treated so as to randomize the distribution of the two
elements; then each site will be occupied by 75% Ni,
25% Al, and F for mixed hkl will be zero. For this
reason, reflections with mixed hkl are referred to as
superlattice reflections (see Section 16.7).

16.6 EXTENDING HCP TO TiAl

The TiAl structure is not as well known as the previous
two cases, but illustrates a similar class of materials. We
noted in Section 16.4 that the two atoms in the hcp
structure are not equivalent. In TiAl, we actually make
them chemically distinct too. This means that the rules
for hcp will be modified again. Using equation 16.11, we
find that

F ¼ fTi þ fAle
2pi h

3þ2 k
3 þ l

2ð Þ (16:23)

The most important result is that the (0001) reflection is
now allowed since F= fTi� fAl. TiAl really does have a
primitive hexagonal unit cell.

16.7 SUPERLATTICE REFLECTIONS
AND IMAGING

The reciprocal lattices for Ni3Al and NiAl are shown in
Figure 16.4; the small circles indicate the chemically
sensitive reciprocal-lattice points. The terminology
which has developed calls the chemically sensitive reflec-
tions superlattice reflections; the idea is that the fcc
lattice is viewed as the lattice and the chemically sensi-
tive reflections then lie on a lattice with a finer scale in
reciprocal space. The chemically sensitive superlattic
reflections are all forbidden in the disordered fcc
structure.

Superlattice reflections are those present because the
material is ordered such that the actual real-space unit
cell is larger and thus the reciprocal-space cell is smaller.

For many years, these superlattice reflections were
regarded as a special feature in some unusual materials.
However, ordered materials, particularly the ordered
intermetallics which we mentioned in Section 16.4, are
finding increased uses.Wewill illustrate the wide variety
of superlattice effects by selecting some examples.

Figure 16.5 shows an image from Cu3Au, the arche-
typal A3B ordered fcc structure. The crystal has been
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irradiated with ions so that small regions known as
cascades have been damaged just enough that the Cu
and Au have been mixed up, i.e., the ordering has been
destroyed locally (Jenkins et al.). The DF image has
been formed using the 110 reflection, which we know
is a superlattice reflection. By destroying the ordering,

we ‘destroy’ the superlattice reflection for the disordered
region, so the disordered region appears black when the
ordered matrix appears bright. Thus, we can ‘see’ the
disordered region, measure its size, etc., even though it is
not diffracting electrons. The dark bands between the
domains are inclined anti-phase domain boundaries
(APBs), a specific kind of planar defect which we’ll
examine in more detail in Section 24.6.

Figure 16.6A and B shows a 002 DF image and the
corresponding DP from aGaAs/AlxGa1�xAs quantum-
well structure. The AlxGa1�xAs appears lighter than the
GaAs because the 002 reflection is a superlattice reflec-
tion; remember, it would be forbidden for GaAs if fGa

and fAs were equal. The reason the AlxGa1�xAs appears
lighter is that we have replaced a fraction x of the Ga
atoms with the lighter Al atoms, thus increasing the
difference fIII � fV. Clearly, this is a classic example of
chemically sensitive reflections. At this point we should

(B)

FIGURE 16.4. The reciprocal lattices for (A) the Ni3Al and (B) the NiAl

structures. In (A) Ni3Al is fcc, so the fcc-forbidden reflections (h, k, l

mixed even and odd) are allowed and become chemically sensitive (super-

lattice) reflections. In (B) NiAl is bcc, so the bcc-forbidden reflections (if

h + k+ l odd) are now allowed superlattice reflections.

(A)

FIGURE 16.5. DF image from a chemically sensitive 110 reflection

showing bright ordered domains in Cu3Au. The dark areas in the bright

domains are regions of local disorder induced by ion beam damage.

(A) (B)

FIGURE 16.6. (A) DF image from a 002 chemically sensitive reflection in

GaAs/AlxGa1-xAs. The AlxGa1-xAs is the lighter region because Al has

replacedGa in the GaAs (darker regions). (B) DP showing the less intense

002 and other superlattice reflections.
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remind you about intensities in images and DPs. The
discussion we have just gone through assumes that we
have a thin specimen, so that we are within the first
thickness zone (i.e., the specimen is thinner than one
extinction distance). In other words, be wary of trying to
be quantitative about these intensities since superlattice
beams are also dynamically diffracted.

Our third example is from a ceramic, vanadium
carbide. The structure of VC is the same as for NaCl
so we already have the rules. However, this carbide is
usually non-stoichiometric, having the composition
VxCy, where x > y. The two images and DPs shown in
Figure 16.7 were taken from well-ordered V6C5 and
V8C7 where 1/6 and 1/8 of the carbon sites are not
occupied by C: we say these sites are occupied by vacan-
cies and the vacancies have formed ordered arrays.
Clearly since we only have four atoms of each element
in the unit cell, the vacancies must be distributed over
more than one cell so the new lattice parameter must be
greater than the lattice parameter (a) of the VC fcc
lattice. So, we expect to see extra spots that are closer
to the origin than (001). This is the case in both patterns
shown here. The ordering actually destroys the cubic

symmetry, so we have several orientations of the
ordered carbides that are related to one another by the
way they break the symmetry. By forming DF images,
we can identify which region of the specimen corre-
sponds to which variant (Dodsworth et al.).

16.8 DIFFRACTION FROM LONG-PERIOD
SUPERLATTICES

In the previous section, the atoms or vacancies in the
different structures essentially arranged themselves to
increase the lattice parameter and therefore give rise to
superlattice reflections. In this section, we will discuss
several examples where either we (or nature) have
arranged the materials to give much larger superlattices.
We will begin by considering the image and DP shown
in Figure 16.8, which are from an artificial GaAs/Alx-
Ga1�xAs superlattice. The superlattice is created chemi-
cally by changing from four layers of GaAs to four of
(AlxGa1�x)As. So we see a series of three closely spaced
extra spots in the DP which correspond to the new long
lattice parameter in real space.

Another example is shown in Figure 16.9. This is a
very long period (�10 nm) artificial superlattice of alter-
nating layers of Si and Mo. The extra reflections
are very close and are not as useful as they were in
Figure 16.6, but they do allow us to check the periodic-
ity of the real-space structure very easily and quickly
and without needing to use HRTEM (Chapter 28). This
can be useful, particularly for artificially grown super-
lattices, since the superlattice periodicity is ‘internally
calibrated’ in the DP by the lattice spacing of the mate-
rial. (Remember that, for comparison, the magnifica-
tion of a TEM image is usually subject to a �10%
uncertainty.)

(A) (B)

(C) (D)

FIGURE 16.7. (A) DF image of ordered V6C5 and (B) accompanying

DP. (C) DF image of V8C7 and (D) DP. In both carbides the ordering is

due to vacancies on the C sublattice.

(A) (B)

FIGURE 16.8. (A) GaAs/AlxGa1-xAs structure in which order is created

by alternating four layers of GaAs and four of (AlxGa1–x)As. (B) DP

showing three superlattice spots between the fundamental reflections in

the 020 direction.
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16.9 FORBIDDEN REFLECTIONS

Wementioned in Section 16.2 that certain reflections are
always forbidden for some structures because they have
F=0. They are known as kinematically forbidden reflec-
tions, because such reflections can sometimes actually be
present due to dynamical scattering events. This process
is illustrated in Figure 16.10. The DP is the [011] pattern
in Si so that the 200 reflection should be absent according
to Section 16.4. The reason it is usually present is that,
since we are oriented at the zone axis, the 11�1 beam,
which has F 6¼ 0, acts like a new incident beam and is
rediffracted by the (1�11) plane. The result is that we
appear to excite the 200 reflection since

ð11�1Þ þ ð1�11Þ ¼ ð200Þ (16:24)

From this example, you can appreciate the use of the
phrase ‘kinematically forbidden.’

16.10 USING THE INTERNATIONAL
TABLES

As long as you work with fcc or bcc metals or the other
special structures listed here, you can use the simple
rules derived in this chapter. Once you venture further,

you should quickly become familiar with the Interna-
tional Tables for Crystallography (Hahn), in particular
with the introductory booklet. You must know the
crystal structure of your material; if not, you will in
principle be able to determine it after studying Chapter
21. If, for example, you were working with a-Al2O3, you

(A) (B)

FIGURE 16.9. (A) Artificial superlattice of Si and Mo layers �5 nm

thick. (B) Expanded DP around 000 showing many superlattice spots

(arrowed). The large spacing of the superlattice in real space results in

very small spacing of the superlattice reflections in the DP in reciprocal

space. Compare with Figure 16.8.

FIGURE 16.10. The [011] DP from Si. The 200 reflection is forbidden,

but it is present because the allowed 11�1 diffracted beam acts like a new

incident beam and is rediffracted by the (1�11) plane. The sum of the two

allowed reflections (11�1) + (1�11) results in a 200 reflection, which is so

weak you may not see it.

FIGURE 16.11. (continued).
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would know that the space group is R�3c or No. 167.
Looking this up in the International Tables, you would
find the information shown in Figure 16.11A. In this
case, you’d have to decide whether you want to use
rhombohedral axes or hexagonal axes; you’ll notice
that there are three times as many atoms in the hexago-
nal cell. The tables in Figure 16.11B tell you which

reflections are allowed, although you can work out or
look up the values of F if you want them. You know the
chemical formula of your material, but you still need to
know which sites are occupied. Look up the positions
from X-ray diffraction data. The paper by Lee and
Lagerlof summarizes the analysis for this particular
example.

FIGURE 16.11. (A) Symmetry information, as given in the International Tables for trigonal a-Al2O3, with space group R�3c (No. 167), showing the two

possible unit cells based on the rhombohedral and hexagonal cells. The symmetry elements at specific lattice points are also indicated. (B) The atomic

positions for the two choices of unit cells in (A).
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That was the traditional approach. Now, you
should have access to EMS or Crystal Kit. Alterna-
tively, use jEMS over the WWW (Section 1.6). In all

these software packages you can just type in your space
group or pull down a menu to find the structure-factor
information.

CHAPTER SUMMARY
When we introduced the primitive lattice at the beginning of this chapter, we only con-
sidered the lattice sites which actually define the unit cell. If there are other lattice points,
these would give us the Bravais lattices. We will conclude by summarizing some of the
selection rules for the different structures in Table 16.2.

In practice, it will become important that you simply know some of the DPs for your
material. You can, however, look up these patterns in some of the textbooks listed in
Chapter 1, but the best sources are the texts by Andrews et al. and Edington; we reproduce
some of them in Figures 18.17–18.19. Alternatively, software (e.g., jEMS) available on the
WWW (Section 1.5) will print out standard spot patterns of most important crystal
structures. When you’re sitting at the TEM, you don’t have time to index a pattern from
first principles and then decide whether or not you are at a pole that contains the reflection
you want to use. To do this you’ll have to be able to index the DPs and determine the beam
direction, which we’ll describe in detail in Chapter 18.

REFERENCES
Examples of indexed DPs are given in the texts by Edington and Andrews et al. As usual, we recommend

your checking the books by Kelly and Groves, Cullity.

DPs and Crystal Data
Andrews, KW, Dyson, DJ and Keown, SR (1971) Interpretation of Electron Diffraction Patterns 2nd Ed.

Plenum Press New York. Stereographic projections, angles, spacings, and much more.

Massalski, T, Okamoto, H, Subramanian, PR andKacprzak, L (Eds.) (1990)Binary Alloy Phase Diagrams

2nd Ed. ASM International Materials Park OH. Appendix A1 gives a complete list of the Pearson

Symbols (L12, etc.) with their space group and Strukturbericht designation.
Misell, DL and Brown, EB (1987) Electron Diffraction: An Introduction for Biologists, Volume 12 of the

seriesPractical Methods in ElectronMicroscopyEd. AMGlauert Elsevier NewYork.Materials science

students should not be put off by the title: this is an invaluable practical guide to indexing DPs and

more.

TABLE 16.2 Examples of Selection Rules for Several Crystal Structures. F is the Structure Factor

Crystal type Reflection present for F No. of lattice points

per cell

Primitive Any h, k, l f 1

Body centered (h + k + l) = 2n 2f 2

Face centered including GaAs

and NaCl

h, k and l all odd or all even 4f 4

Diamond As fcc but if all even and h + k + l 6¼ 4n then

absent, anyway

Base centered h, k and l all odd or all even 2f 2

Example reflection

Hexagonal close-packed h + 2k = 3n with l odd 0 0001

h + 2k = 3n with l even 2f 0002

h + 2k = 3n � 1 with l odd f�3 01�11

h + 2k = 3n � 1 with l even f 01�10
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THE COMPANION TEXT
You’ll find jEMS useful for simulating DPs.

SELF-ASSESSMENT QUESTIONS
Q16.1 What is the key assumption that is made in the amplitude calculation in this chapter?
Q16.2 Give one reason why DP selection rules are sometimes broken.

Q16.3 In a bcc Fe specimen, will any kinematically forbidden reflections occur in the DP?
Q16.4 In a bcc specimen, is the 110 reflection allowed?
Q16.5 In fcc, will you see the 111 and/or 100 reflections?

Q16.6 In NaCl, which hkl reflections are chemically sensitive?
Q16.7 In GaAs, which reflections are forbidden?
Q16.8 When determining if a reflection is forbidden or allowed, need we only consider the structure factor, F?

Q16.9 If a material is very well ordered, what does it mean to have formed a superlattice in the DP?
Q16.10 List some advantages in determining superlattice spacings from a DP rather than an image.
Q16.11 Why is the 200 reflection of Si seen in Figure 16.9?

Q16.12 Why are hcp DPs more difficult to index than cubic DPs?
Q16.13 Explain the concept of structure factor in words?
Q16.14 What two things should you keep in mind when looking up tabulated values of the atomic scattering factor?
Q16.15 In Figure 16.8, what is the true periodicity in the [020] direction?

Q16.16 What do we mean by the term ‘chemically sensitive reflection’? Give two examples.
Q16.17 When is it particularly important to use the International Tables?
Q16.18 Why does the uncertainty in f values not usually affect our analysis of DPs?

Q16.19 Why are f values not precisely known?
Q16.20 Give the general equation for the structure factor.
Q16.21 Write down the structure factor rules for a bcc crystal and describe the reciprocal lattice.

Q16.22 Write down the structure factor rules for an fcc crystal and describe the reciprocal lattice.
Q16.23 Write down the structure factor rules for an hcp crystal. Can you describe the reciprocal lattice?
Q16.24 What is the Cartesian vector which is normal to the plane (hkil)?
Q16.25 How many atoms are needed (minimum number) to calculate the structure factor for simple cubic, fcc,

bcc and hcp structures?
Q16.26 How do the structures of NaCl and NiAl differ?
Q16.27 In Figure 16.5, why can we see the ordered domains but not the disordered domains?

Q16.28 In Figure 16.6, why is the AlxGa1�xAs region brighter than the GaAs region?
Q16.29 In Figure 16.7, why is the symmetry of the two DPs changed?
Q16.30 In Figure 16.8, why are there rows of fainter spots between bright spots?

Q16.31 In Figure 16.9, why can we see superlattice reflections even though half the material is amorphous?
Q16.32 If the crystal is ionic, do we use f for the atom or for the ion?
Q16.33 What is a basis?

Q16.34 Describe three equivalent descriptions of systematic absences in crystals.
Q16.35 How can you easily distinguish GaAs from Si given two (001) DPs?
Q16.36 Why didn’t we see superlattice spots in the DP in Figure 16.6B?

TEXT-SPECIFIC QUESTIONS
T16.1 Starting with the fcc case, deduce the structure factor rules for NaCl.
T16.2 Deduce the structure factor rules for NiAl.
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T16.3 Consider Figure 16.6. Draw a schematic of the DP. Index all the remaining reflections. Look at the 002
row of reflections; indicate the location of the extra reflections which should be present due to the
superlattice. Justify your answer.

T16.4 Sketch the DP shown in Figure 16.10 with a box as large as that shown in this figure. Add all the other
reflections you would expect to see. Justify your answer.

T16.5 Look at Figure 16.9. Explain all the contrast features you see in this image (after you’ve read Part 3).

T16.6 Using Figure 16.11, explain which positions are occupied in both the rhombohedral and hexagonal cells
for Al2O3. Neglecting the possibility of dynamical scattering, explain why you will, or will not, see the
0001, 1�100 and/or 11�20 reflections. Will you see the 112, 111 and/or 100 reflections?

T16.7 A simple orthorhombic lattice has the following lattice constants: a=0.30 nm; b=0.40 nm; c=0.50 nm.

Draw the DP when a crystal is observed along the [100], [010] and [001] directions, respectively. The DPs
should be drawn in the same scale. NB: There are no ‘forbidden’ reflections in this structure. (Courtesy
Anders Thølen.)

T16.8 The alloy CuAu3 has an ordered structure. What does the DP look like when the crystal is viewed along
the [110] direction? (Courtesy Anders Thølen.)

T16.9 Electron diffraction from a powder material gives a ring pattern. When the incoming beam is tilted an

angle y relative to the optical axis the ring pattern moves. Calculate the angle y the incoming beam has
been tilted when the center of the DP is moved so it falls on the {222} ring of the original pattern. The
material is Pt (fcc) with a lattice constant 0.392 nm. The acceleration voltage is 100 kV. (Courtesy Anders

Thølen.)
T16.10 What reflections would you expect to observe in an electron DP(s) from a c-centered monoclinic cell?

(Courtesy Lucille Giannuzzi.)
T16.11 The unit cell of a crystal of Ti2Nb10O29 is orthorhombic (space groupAmma) with a=28.5 Å, b=3.8 Å,

c = 20.5 Å. The DP of 1a is from one of the principal axis patterns. Give the Miller indices for this
pattern. The pattern 1b is from a slightly tilted crystal. Find the tilt axis, tilt angle and the excitation error
from the spot circled. A further tilt of the crystal gave the pattern of 1c printed to the same scale. What is

the Miller index of the spot arrowed? (l = 0.037 Å) (See J. Appl. Phys. 42 5891.) (Courtesy John
Spence.)

T16.12 LaMnO3 has a perovskite structure shown below. Calculate the structure factors for {110}, {100}, {200}

and {220} in terms of the atomic-scattering factors (such as fLa, fMn, fO). (A) Use the size of the spot to
represent the intensity, sketch the [001] DP of this structure. (B) Index the first eight diffraction spots.
(Courtesy ZL Wang.)

T16.13 A ternary phase has the following atoms in a cubic unit cell: A at (0,0,0), B at (1/2, 1/2,0) and C at
(1/2,0,1/2), (0,1/2,1/2). Calculate the following structure factors in terms of fA, fB and fC: (a) (001) and
(010) and (b) (100) and (200). (Courtesy ZL Wang.)

T16.14 A ternary alloy (A2BC) has the fcc structure shown in (a) below at elevated temperatures. As the

temperature is lowered, all the C atoms go to the corners of the lattice while the A and B atoms randomly
occupy the face centers, as shown in (b). At still lower temperatures, the B atoms occupy the (1/2,1/2,0)
sites, indicated in (c). Sketch the [100] DPs for each of these structures, plotting the positions and relative

intensities of the different reflections. (Courtesy ZL Wang.)
T16.15 Consider a face-centered orthorhombic lattice. Bymeans of the definition of the reciprocal lattice, obtain

expressions for the three basic vectors of the reciprocal lattice of this real-space lattice, in terms of the

vectors a, b and c. (Courtesy ZL Wang.)
T16.16 A phase in the Fe-C-Al system as the following structure: Al at (0,0,0), Fe at (1/2,1/2,0), (1/2,0,1/2),

(0,1/2,1/2) and C at (1/2, 1/2,1/2). The atomic-scattering factors for the three elements are shown in the
plot below. (a) Derive the expression for the structure factor in terms of fAl, fFe and fC. (b) Calculate the

relative intensity ratios for the following reflection in the DP: (i) I(001)/I(002) and (ii) I(011)/I(002). (c) Sketch
and index the [100] DP of this phase. (Courtesy ZL Wang.)
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17
Diffraction from Small Volumes

CHAPTER PREVIEW

A very important concept in TEM is that we only ever diffract from small volumes. These
volumes are now called nanoparticles, nanograins, nanobelts, etc. By definition, no TEM
specimen is infinite in all directions and all defects are small. Of course, the beam is also
never infinitely wide! This chapter therefore discusses how the size of what we are examining
influences the appearance of the DP. Although we will discuss many different aspects of
diffraction, there are three important ideas that underlie all this discussion

& We are diffracting from small volumes.
& We are diffracting from crystals.
& We need to index the DPs we see and relate the patterns to the image.

The fact that it is possible to obtain diffraction from several planes in a zone at the same
time is due to the effect of the specimen shape on the diffracted-intensity distribution. The
diffraction spot is only a mathematical point if the specimen is perfect and infinite in all
directions. For example, a TEM specimen is effectively infinite (�3 mm) relative to the unit-
cell dimensions in the plane of the specimen, but very thin (< 0.5 mm) parallel to the electron
beam. This means that the diffracted intensity can be represented in the reciprocal lattice as
a relrod (see Chapter 12) stretched parallel to the electron beam in reciprocal space, rather
than as a point, and the relrod does have a width. Therefore, over a range of angles, the
Ewald sphere will still intercept the relrod and diffracted intensity will still be generated.
This is equivalent to saying that the Laue condition is relaxed in one dimension in the TEM
owing to the specimen shape. For this reason, accurate structural analysis of unknown
specimens is very difficult in conventional TEMdiffraction, andX-rays are usually themost
accurate method for structure determination if your specimen is large. However, we will
reconsider this statement in Chapter 21.

17.1 INTRODUCTION

In Chapter 12, we stated that each point in the recipro-
cal lattice can actually be associated with a rod. This
construction allowed us to discuss the geometry of DPs,
taking account of the experimental fact that we see spots
in the DP even when s is not exactly zero. In fact, with-
out this construction, there is no reason to discuss s.
Now we are going to show quantitatively why we have
rods. As we suggested earlier, the reason is that we have
a thin specimen: a small thickness in real space gives a
large length in reciprocal space. This concept is valid in
all directions, not just parallel to the electron beam.
Hence, we call this the ‘shape effect.’ The intensity in
the diffracted beam is strongest for a given thickness

when K ¼ g, but we still have intensity when K is not
exactly equal to g, or when

K ¼ gþ s (17:1)

Then we can write, from equation 13.48

fg

�� ��2¼ pt
xg

 !2

� sin
2 ptseffð Þ
ptseffð Þ2

(17:2)

We model the specimen as a thin rectangular slab as
shown in Figure 17.1. To keep the math simple, we will
assume that we have a rectangular unit cell with sides a,
b, c and that there are Nx cells in the x direction, Ny in
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the y direction andNz in the z direction. All that we have
to do to determine the total diffracted amplitude is to
add the amplitudes from each cell, allowing for the
phase factor that is present, because the cells are dis-
placed from one another. Each cell has the same struc-
ture factor F.

We can do the addition of amplitudes in two ways.
The first way is to do the summation. In the second, we
will show how the same result follows if you start with
the integral expression for fg. These expressions lead to
the important idea of a relrod and subsidiarymaxima; in
DPs we can see the effects of the relrods, but you may
never see the subsidiary maxima.

What we are going to do is derive equations for the
shape of the relrods which were introduced in Section
12.5 and which we used in Chapter 13 to explain why we
‘see’ spots in the DP even when s 6¼ 0. This whole
approach gives us a pictorial aid to understanding dif-
fraction from small volumes. After developing the the-
ory for the simple case, we will go on to discuss the
complications introduced because we look at real mate-
rials, and specimens of real materials are usually not flat
platelets.

17.1.A The Summation Approach

This approach starts with expressing the total ampli-
tude, A, of the diffracted beam as the sum of contribu-
tions from all the individual cells in a parallel-sided
specimen. (Note: this is a kinematical approach and
ignores dynamical scattering.)

A ¼ F
X
nx

ei 2pnxK�a
X
ny

ei 2pnyK�b
X
nz

ei 2pnzK�c (17:3)

Here nx, ny and nz have their usual meanings and all are
integers; we haveNx�Ny�Nz cells in the specimen. As
shown in Figure 17.1, we will let nx vary from 0 to Nx–1
and similarly with ny and nz. The location of each unit
cell is then defined by the vector rn

rn ¼ nxaþ nybþ nzc (17:4)

To simplify the first summationwe setX equal to ei2pK �a.
Then each separate summation term is a geometric se-
ries, so we can sum the nx series as

S ¼
Pnx¼Nx�1

nx¼0
X n ¼ X 0 þ X 1 þ :::XNx�1

SX ¼ X 1 þ X 2 þ :::XNx ¼ XNx � X 0 þ S

S ¼ 1� XNx

1� X

(17:5)

Now replace X by ei2pK�a to find the sum.

Xnx¼Nx�1

nx¼0
ei 2pnxK�a ¼ 1� ei 2pNxK�a

1� ei 2pK�a
(17:6)

Since we are interested in the intensities, wemultiply this
sum by its complex conjugate. To do this we use some
simple trigonometric relationships

1�e�ia
� �

1�eia
� �

¼ 1�cosaþisinað Þ 1�cosa�isinað Þ

¼ 1�2cosaþcos2a
� �

þsin2a¼2 1�cosað Þ¼4sin2a
2

(17:7a)

or
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(17:7b)

The intensity is then related to

Xnx¼Nx�1

nx¼0
ei2pnxK�a

�����

�����
2

¼
1� e�i2pNxK�a
� �
1� e�i2pK�a

1� e�i2pNxK�a
� �
1� e�i2pK�a

(17:8a)

or

Xnx¼N�1

nx¼0
ei2pNxK�a

�����

�����
2

¼ 4 sin2 pNxK�að Þ
4 sin2 pK�að Þ

(17:8b)

Then we can write

I ¼ Aj j2¼ Fj j2 sin2 pNxK�að Þ
sin2 pK�að Þ

 !

sin2 pNyK�b
� �

sin2 pK�bð Þ

 !
sin2 pNzK�cð Þ
sin2 pK�cð Þ

 !
(17:9)

If the dot product K �a is an integer, then the first of
these terms is unity. This is, of course, the Bragg condi-
tion and the intensity is then a maximum. There are also
subsidiary maxima or minima when

pNxK�a ¼
p
2
C (17:10)

whereC=an integer. Reordering this equation, we have

K�a ¼
C

2Nx
(17:11)

Nza

z

x

y

Nzb

Nzc

FIGURE 17.1. An idealized thin-foil specimen modeled as a rectangular

slab made up of rectangular unit cells of sides a, b, c. There areNx cells in

the x direction, Ny in the y direction and Nz in the z direction.

272 .................................................................................................................................................... D IFFRACT ION FROM SMALL VOLUMES



Equation 17.9 is the basis of the shape effect and leads
to the idea of the relrod, which you recall is the
name we give to a reciprocal-lattice rod (look back at
Section 12.5).

17.1.B The Integration Approach

If we take equation 13.2, which is the amplitude dif-
fracted by a single unit cell, and sum this over all the
cells in the specimen, the amplitude of the diffracted
beam can be written as

fg ¼
e2pik�r

r

X
n

Fne
�2piK�rnð Þ (17:12)

Since we have defined K to be g+ s, we can rewrite this
equation as

fg ¼
e2pik�r

r

X
n

Fge
�2pi gþsgð Þ�rnð Þ (17:13)

Now we know that g�rn is an integer by the definition of
g and rn and we will refer to sg as s. Hence we can write
equation 17.13 as

fg ¼
e2pik � r

r

X
n

Fge
�2pis � rnð Þ (17:14)

where s is the deviation parameter for reflection g. If
we make the approximation that the crystal contains
many unit cells, we can replace this sum by an inte-
gral to give

fg ¼
e2pik � r

rVc
Fg

ð

crystal

e �2pis � rnð Þdv (17:15)

This is where the present treatment differs from the first.
If we now express s and rn as the vectors

s ¼ ua� þ vb� þ wc� (17:16)

and

rn ¼ haþ kbþ lc (17:17)

then we can write

fg ¼
e2pik�r

rVc
Fg

ðC

0

ðB

0

ðA

0

e�2pi uxþvyþwzð Þdxdydz (17:18)

where A = Nxa, etc. This integral is straightforward.

ðA

0

e�2piux ¼ e�2piuA � 1

�2piu ¼ e�piuA

pu

� �
epiuA � e�piuA

2i

� �

¼ e�piuA

pu
sin puAð Þ ð17:19Þ

fg ¼
e2pik�r

rVc
Fg

sin pAuð Þ
puð Þ

sinpBvð Þ
pvð Þ

sin pCwð Þ
pwð Þ eiD (17:20)

(D is an unimportant phase factor.) The intensity is then
as given by equation 17.9, but we have explicitly kept the
r�2 and Vc

�2 dependence for the intensities.
You should recognize the form of equations 17.9 and

17.20. These equations have the same form as that given
back in equation 2.12 for diffraction from a diffraction
grating. The corresponding diffraction grating has Nx

lines which are spaced a distance a apart. The physical
similarity is that the grating, just like our crystal, has a
finite size.

17.2 THE THIN-FOIL EFFECT

Equation 17.9 is very important for TEM. It tells us
why the relrods we introduced in Chapter 12 have a
finite length if we measure them to the first minimum.
It also tells us that the diffracted intensity does depend on
the value of s; it is not a constant for any position along the
rod.

We can better appreciate this variation along the rod if
we plot the intensity and draw theEwald sphere, as shown
in Figure 17.2. We only draw the intensity plot for one
direction at a time. This diagram shows the Ewald sphere
cutting the relrod on one side while showing the intensity
along the relrod on the right-hand plot.

Figure 17.2 is an extension of Ewald’s ‘pictorial
representation’ of diffraction. We can now draw the
reciprocal lattice as shown for a simple-cubic crystal in
Figure 17.3, such that every point is replaced by a relrod
and every relrod is described by equation 17.9. If the
surface of the crystal is exactly parallel to the (112)
plane, but we orient the specimen slightly off the [001]
pole, then the Ewald sphere cuts the relrod as different
positions relative to the square array of spots, which is
the projection of the spots at zero tilt (Figure 17.3B).
The DP will appear as shown in Figure 17.3C. In Figure
17.3C, C is the projected position of the center of the

RELRODS AND INTENSITY
Just remember that when we said ‘‘the intensity’’ we
meant ‘‘the intensity which the diffracted beam will
have if s takes a particular value; i.e., if the Ewald
sphere cuts the relrod at that point.’’
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Ewald sphere. As an exercise, consider whether the
pattern would differ if the surface were cut slightly off
(001) but oriented at the [001] pole. Then repeat the first
exercise but instead of tilting the specimen, tilt the elec-
tron beam through the same small angle.

Remember that we deduced equation 17.9 by simply
adding the amplitudes from all the unit cells, taking the
position of the cells into account.

We calculated a ‘structure factor’ for the whole
volume which contributes to fg: we call this calculated
factor the shape factor.

We should then use this shape factor rather than the
structure factor (since F is included in equation 17.9) in
our dynamical calculations of fg. The problem is, of
course, that the shape factor can be different for every
specimen we examine.

We have just deduced a method for picturing how the
shape of a perfect parallelepiped (of sides Nx a, Ny b and
Nz c) affects theDP.Now for the next step, wewill use this
conceptof the shape factor to examinehow theDPswill be
affected bymore complex shapes, such as thewedge shape
ofmany real TEMspecimens or the perfect parallelepiped
of the stacking fault. Then we will consider defects which
themselvesdonothavesharpboundaries; thedislocation is
a perfect example of such an imperfection.

17.3 DIFFRACTION FROM WEDGE-
SHAPED SPECIMENS

MostTEMspecimens donot have parallel surfaces but are
wedge-shaped. In drawing the relrods for such a wedge-
shaped specimen, we extend the results of Section 17.2

by saying that the relrod will always be normal to the
surface. So, for a wedge-shaped specimen (Figure 17.4A)
wemust have two relrods as shown in Figure 17.4B.What
we see in the DP is determined by how the Ewald sphere
cuts these two relrods. As shown in Figure 17.4C and D,
we will see two spots which lie along a line which is normal
to the edge of the wedge. Notice that all the pairs of spots
are aligned in the same direction as we expected and that
their separation is larger for larger values of s. This simple
relrod model predicts that we would see only one spot if
s¼ 0. In fact, we should see two or more spots because the
relrod model fails when we are in a strongly dynamical
diffraction condition. We will return to this point in the
next section and again in Chapter 24.
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FIGURE 17.3. (A) For a thin specimen, every point is replaced by a

relrod. (B) The Ewald sphere cutting the relrods in (A) when the crystal

is tilted slightly off the (001) axis. (C) The effect of the tilt in (B) on theDP.

Notice that all of the spots in the DP are displaced relative to their

positions on the square grid (the projection of the spots at zero tilt), but

that the magnitude of the displacement varies depending on the sign and

size of s. Of course, spots on the Ewald sphere must be the ‘correct’

distance from 000.

FIGURE 17.2. The relrod at ghkl when the beam is Dy away from the

exact Bragg condition. The Ewald sphere intercepts the relrod at a nega-

tive value of s which defines the vector K = g + s. The intensity of the

diffracted beam as a function of where the Ewald sphere cuts the relrod is

shown on the right of the diagram. In this case the intensity has fallen to

almost zero.
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17.4 DIFFRACTION FROM PLANAR
DEFECTS

The shape factor concept can be readily applied to
understand diffraction from a flat platelet or planar
fault. The geometry is shown in Figure 17.5. The idea
is that the platelet is itself a thin parallelepiped which is
inclined to the specimen parallelepiped (Figure 17.5A).
The result is that we have two relrods, one normal to the
specimen surface and a much longer one normal to the
thin platelet (Figure 17.5B and C). When we cut these
relrods with the Ewald sphere we produce two spots in
theDP and, as for the wedge specimen, the separation of
the spots increases with increasing s. The line MN lies
normal to the trace of the platelet. There are, however,
some differences in this case. Although the m and n
relrods are very different in length and actual intensity,

the diffracting volume is much greater for the specimen
than for the platelet. Thus, we can usually distinguish
reflections M and N.

Providing we know the orientation of the specimen
relative to the DP, we can tell whether the inclination
angle is less than or greater than 908; i.e., we can deter-
mine the inclination of the planar defect withoutmoving
the specimen or using any theory of image contrast (see
Chapter 24). As in Section17.3, we would actually see
two spots when s ¼ 0 if we could make the spots small
enough. We’ll return to this topic in Section 17.7.

A stacking fault in an fcc crystal can be thought of as
a very thin platelet of hcp material as shown in Figure
17.6; so it really is a platelet with perfect lattice matching
parallel to its surface.

We can understand diffraction effects from other
planar interfaces by considering two cases

& If the grains on either side of the interface contain a
common reflection, then the diffraction effects can
be modeled by the thin platelet.

& In the case where a reflection is not common to the
two grains, then for that reflection the diffracting
crystal behaves like a wedge specimen with one sur-
face parallel to the planar defect. We can ignore the
crystal that is not diffracting.

The two DPs in Figure 17.7 show that you really do
see pairs of spots for these two types of boundary. As

(A)

(B)

(C)

(D)

FIGURE 17.4. (A) Diffraction from a wedge-shaped crystal. (B) Notice

that when s< 0, relrod 1 is on the left of relrod 2 but the order reverses

when s becomes> 0. The effect of this pair of relrods is to create a doublet

shown in (C) and (D). The middle spot is the matrix relrod for a parallel-

sided thin foil and is absent for the wedge in A.

(A)

(B)

(C)

FIGURE 17.5. The effect of a thin inclined plate in a thin specimen. (A)

Two plates are shown to illustrate the effect of changing the inclination of

the plate relative to the foil surface.When s 6¼ 0 we see two spots in the DP

because there are two relrods for the two different planar-defect inclina-

tions in (B) and (C).

17.4 DIFFRACT ION FROM PLANAR DEFECTS ......................................................................................................................................... 275



before, the two spots lie normal to the boundary traces,
i.e., the intersection of the boundary with the surface of
the specimen.

There are two reasons for emphasizing the extra
spots which are present because of the interface

& You should always check that any extra spots you
see cannot be explained in this way.

& You must be careful when determining spot spacing
(as when estimating lattice parameters). You must
set s to zero for this purpose and that can usually
only be done for a few reflections at any time (one
reflection always being O, not D, of course).

Twin boundaries are often found to consist of flat
segments in particular orientations. The first-order twin
boundary in fcc crystals tends to facet parallel to the
common {111} plane as shown schematically in Figure
17.8A. This means that if we orient the specimen so that
this common plane is nearly parallel to the beam, we will
excite the common {111} reflection. Now our platelet is
parallel to the beam so that its relrod is normal to the
beam. If the specimen is also thin, we can arrange that
the Ewald sphere cuts along the length of the relrod.
Now, as we can see in Figure 17.8B, we see a ‘streak’ in
the DP rather than a spot. The streak actually extends
from in the [111] direction because, as you can appreci-
ate from Figure 17.8A, the twin is a very thin platelet.

FIGURE 17.7. Pairs of spots in a DP from a grain boundary.

(A)

(B)

FIGURE 17.8. (A) Schematic of twin and (B) DP with a streak (arrowed)

normal to the twin plane. Note that s¼ 0 for the two bright diffracted

spots.

A

B

A

C

C

B

A

C

hcp
block

FIGURE17.6. Schematic of the stacking sequence of close-packed planes

A, B, C, in an fcc crystal showing that the SF is similar to a thin layer of

hcp material, stacking ACAC.

FROM NANOPARTICLES
Since we’ll only detect any effect when the particle is
�100 nm, these particles could be called nanoparti-
cles. Anyone working with such particles must
understand this effect which is closely related to
Debye-Scherrer analysis in XRD.
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If we regard the surface as a planar defect, we can
also observe extra spots in the DP due to a reconstruc-
tion of the surface. One factor to be cautious about is
that the apparent reconstruction might be influenced by
contamination since the TEM is not generally a UHV
system.

17.5 DIFFRACTION FROM PARTICLES

Particles come in all shapes and sizes, so we will not try
to be exhaustive. Actually, the principle involved in
determining the shape factor in reciprocal space is sim-
ply ‘small becomes large’ and vice versa. The shape
factors are shown schematically for several particles in
Figure 17.9. You should be aware that you will prob-
ably never see the subsidiary minima shown in these
diagrams.

One example which is common is the platelet shown
in Figure 17.10; these can occur as GP zones or other

thin disk-shaped precipitates. When the platelets are
oriented parallel to the beam, we see streaks in the DP
just as we saw them in Figure 17.8B. The difference in
this figure is that the platelets can lie on all the crystal-
lographically equivalent planes in the crystal. For these
GP zones they lie on {001} planes so the streaks run in
<001¼ directions for the cubic crystal connecting, for
example, 000 and 200. You should notice that these
spots would still be connected if the crystal were not
cubic. You’ll also see that there is a sharp point at the
100 position even though 100 is not an allowed reflec-
tion for bcc crystals. The reason we see this spot is that
we are cutting the relrod which runs parallel to the
electron beam in the [001] direction.

The smallest ‘particle’ can be thought of as a
vacancy, a substitutional atom or an interstitial atom.
Wewill not expect to see any clear effect of a single point
defect but, as we saw in Section 16.7, these point defects
can order to give a clear superlattice, and therefore extra
spots.

As you might expect then, if we have many point
defects but not enough to give long-range order, we
might expect short-range ordering. Perhaps the clearest
example of this phenomenon again occurs in the metal
carbides. The effect is shown in Figure 17.11. The short-
range ordering gives rise to diffuse scattering in the DP
which at first appears quite random, sometimes as cir-
cles around the spots and appearing at other times as
circles between spots or not circles at all! By combining
many different patterns, Sauvage and Parthé proposed
that the diffuse scattering could be mapped out as
shown in Figure 17.11D. This figure strongly resembles
a Fermi surface diagram which you may have encoun-
tered in condensed-matter physics. We will discuss some
aspects of imaging using diffusely scattered electrons in
Section 29.4, but the important points to recognize are

& Point defects really can cause diffraction effects,
especially if they interact with one another.

& Diffuse scattering can still be interpreted by the
Ewald-sphere construction.
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rings

FIGURE 17.9. Examples of how spots in reciprocal space have different

shapes depending on the shape of the particles which are diffracting.

(A) (B)

FIGURE 17.10. Very thin plate-like precipitates (A) cause long streaks in

the DP (B). In this example, the precipitates are GP zones in an Fe-

2.9 at.% Mo alloy.
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If you are intrigued by this topic, you will find the
literature on discommensurate structures in intercalated
material a complementary challenge. A library/web
search on ‘discommensurate’ and ‘intercalated’ will
quickly net more recent papers.

17.6 DIFFRACTION FROM DISLOCATIONS,
INDIVIDUALLY AND COLLECTIVELY

In Chapter 25 we will discuss images of dislocations. A
dislocation is a line defect that is characterized by its line
direction and its Burgers vector. The crystal around the
defect is distorted or strained.

For a single dislocation, this strain is not expected to
cause new spots in the DP, but we do expect diffuse
scattering since the dislocation is a line defect. If a region
from 0.2 to 1 nm around the core is greatly distorted
(we’ll see the effect of this strain in Chapter 25), then the
diffuse scattering will extend from 1 nm�1 to perhaps
5 nm�1 from the reciprocal-lattice points, giving a dif-
fuse disk (the reciprocal shape of a long needle). Some
planes are essentially unaffected by the dislocations, so
we might expect the diffuse scattering to vary in magni-
tude for the different reciprocal-lattice points. (We’ll
examine this g�b = 0 effect in Chapter 24.)

With this simple discussion and without ever seeing
this diffuse scattering, we can draw an important con-
clusion: if we want to learn about the structure of a
dislocation core, we must include the diffuse scattering
in the image-formation process. We must include that
intensity in the objective aperture and the correspond-
ing image calculations.

Because the distorted volume associated with a sin-
gle dislocation is so small, we do not expect to see this
intensity in the DP unless we have many dislocations in
an ordered array (just like the point defects in Section
17.5). We can demonstrate that this intensity is present
by diffracting from an ordered array of dislocations as
shown in Figure 17.12. The specimen used to form this
image was rather special. Dislocations are present in
region A, but not in region B. The array actually
forms a structured grain boundary in A, but a layer of
glass is present in B. The insets show the same part of the
SADPs from the two regions. In B, you can see three
spots. The top two are from one grain, the bottom one is
from the other grain. The reason for the pair is that s is

(A) (B)

(C) (D)

x

y

z

FIGURE 17.11. Short-range ordering can cause diffuse scattering in the

DP (A�C). The DPs in this example were obtained from a vanadium

carbide. In this case, the 3D map of diffuse intensity has a shape which

strongly resembles a Fermi surface shown in (D).

DIFFUSE SCATTERING
The diffuse intensity from a dislocation is not located
at the reciprocal-lattice point.

FIGURE 17.12. Diffraction from an ordered array of dislocations. Dis-

locations are present in region A, but not in region B. The insets show a

small part of theDP from the two regions. The extra spots present in A are

caused by the visible array of dislocations; these spots are a doublet

because there is also a second, nearly orthogonal, set of dislocations

present which acts as a separate grating. The other pair is due to the

wedge shape and so is common to both DPs.
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large for that grain, but almost zero for the other. This is
an example of the application of Section 17.3.

In A you see the same three spots (because the two
grains are still present) but now there are two extra
spots. The reason we see two extra spots is that we
have two arrays of dislocations. You are seeing the
scattering from the dislocations because they have
formed an array with long-range ordering, just like the
vacancies in V8C7 in Chapter 16.

If you look at the DP when the array of dislocations
lies parallel to the beam, you may be able to see a set of
streaks as shown in Figure 17.13. The separation of the
streaks is the inverse of the actual separation of the
dislocations. You see streaks because you have relrods
in reciprocal space and we are cutting along these rods
with the Ewald sphere. The length of the relrods gives
you a measure of how far the strain field of the disloca-
tions extends out into the two grains. In other words, we
are seeing a thickness of the strain-field regions. The
object of this discussion is not to examine grain bound-
aries, but to show that the strain field from an array of
dislocations causes scattering in theDP and thus to infer
that one dislocation will also cause scattering, but it will
just be much more diffuse (and very weak).

Before moving on, consider the diffraction spots in
Figure 17.12 again. Why are the pairs of dislocation
spots (arrowed) located where they are? Put another
way: which of the two spots in region B corresponds to
the N relrod and which corresponds to the M relrod?
(See Figure 17.5 for the definition of M and N.)

We then ask a simple question: howmany objects are
required in order to produce a detectable effect in the
DP? The answer is two! This point is illustrated in
Figure 17.14, which shows a DP and an image of two
twin boundaries which are �15 nm apart. The spacing
of the new spots between the twin spots in the DP
(expanded in the inserts) is 0.067 nm�1, as expected.
Now, why can this occur? The analogy is the Young’s
slits experiment in visible-light optics. The illustration
also reminds us of a special feature of the TEM, namely,
that even without a FEG, the electron beam is remark-
ably coherent.

17.7 DIFFRACTION AND THE DISPERSION
SURFACE

Several times in this chapter, we have said ‘‘actually, we
will see two spots when s ¼ 0,’’ even though the relrod
model says that you will only see one. The origin of two
spots from a wedge specimen (there may be more for
more complicated defects) is due to the dynamical na-
ture of the scattering process. The theory has been
derived by Amelinckx and his co-workers in a series of
papers. Unfortunately, this group used a different nota-
tion, but they did summarize their results graphically.
We will also return to this topic when we discuss images in
Chapter 24. As an example, the relrod diagram given for
the stacking fault in Figure 17.5 should be drawn so
that the relrods are the asymptotic to two straight lines,
as shown in Figure 17.15. When the Ewald sphere cuts
these curves at s ¼ 0, we see that there are two spots
which move apart as we increase s (either positive or, as
shown here, negative) until they are at the points
defined by the straight lines. So, will there not be a
vector that exactly corresponds to g? The answer, of
course, is yes, because of the adjacent perfect crystal so
we must have three spots, but these are very difficult to
see because smust be very close to zero. Without going
into any theory, we can guess the origin of these curves:
they look remarkably like the curves of the dispersion

THE PERIODICITY RULE
If there is a structural periodicity in real space, then
there will be an array of points or relrods in reciprocal
space and an array of spots or streaks in the DP.

(A)

(B)

FIGURE 17.13. (A) The set of streaks from an array of dislocations in

Al2O3 lying parallel to the electron beam. The distance between the

streaks is inversely related to the spacing of the dislocations shown in

the image (B).
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surface which also had asymptotes (see Figure 15.3).
These curves are indeed directly related.

When you increase s, you move out of the dynam-
ical regime and into the kinematical one, where the
simple relrod model applies (see Chapter 26). At
s¼ 0, the distance between the curves is inversely
proportional to xg, the extinction distance for reflec-
tion g.

You can understand why this is so in the following
pictorial way. What you see in the image will be deter-
mined by the DP.What you see in the DP is determined
by which relrods, or surfaces, the Ewald sphere inter-
sects. All the information about extinction distances
and coupling of diffracted beams is fundamentally
contained in the dispersion surface (xg is just Dk

�1 at
s¼ 0). Both the dispersion surface and the reciprocal-
lattice/Ewald-sphere models are just pictorial repre-
sentations of the same diffraction process. So, all the
information in the dispersion-surface model should
also be present in the reciprocal-lattice/Ewald-sphere
model.

The relrods are the asymptotes to these two hyper-
bolas. Alternatively, we could say that the relrods and
the asymptotes are a result of the kinematical diffraction

(A) (B)

FIGURE 17.14. Extra spots can be formed in the DP (A) when only two defects are scattering in phase. The separation of the extra spots is related to the

inverse of the separation of the two twin boundaries seen in the image (B).

FIGURE 17.15. The relrods from two planes inclined at angle a are

actually the asymptotes to two straight lines, so that they don’t cross at

G; when s¼ 0, the distance between these two curves is xg
�1.
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approximation. There is a one-to-one correlation
between what happens at the dispersion surface in the
vicinity of the BZB to what happens when the Ewald
sphere cuts the relrods in the vicinity of the reciprocal-
lattice point, G. Imagine rotating the dispersion-surface
diagram through 908. These ideas have been extensively
studied by van Landuyt, de Ridder, Gevers, Amelinckx

et al., as summarized in the general references at the end
of this chapter. What Amelinckx’s group has done is to
give us the rules on how to transfer this information
from the dispersion surface to the reciprocal lattice and
hence to theDP. In Section 24.9, we’ll relate this concept
to images. If you thought dispersion surfaces were diffi-
cult, make s large and stick to relrods!

CHAPTER SUMMARY
In this chapter, we have begun to examine the unique features of diffraction in the TEM.
These features arise because we are always diffracting from small volumes. The sizes of both
our specimen and the special features present in our specimen are always small, so that we
must take into account the shape effect. This is particularly important for nanoparticles and
nanograins—you must keep this in mind when imaging. Of course, the same considerations
will also apply to other forms of diffraction; it’s just that only TEM can examine the
diffraction information from the vicinity of crystal defects. In other words, the shape effect
is not a limitation due to the fact that we are using high-energy electrons. By understanding
the concept of the shape effect you can actually learn more about defects in crystals;
conversely, you can make some major errors if you do not understand the shape effect.
Two points to remember are

& When a platelet is parallel to the beam its relrod is normal to the beam. If the specimen is
also thin, we can arrange that the Ewald sphere cuts along the length of the relrod. Now
you see a ‘streak’ in the DP rather than a spot.

& Beam splitting at s¼ 0 and the dispersion surface both arise because of dynamical scattering.

DIFFRACTION FROM INTERFACES
The relation between diffraction and images from planar defects has been the subject of a long series of

papers from the group led by Prof. Severin Amelinckx. The examples below from Phys. stat. sol. will

give you a start to your study.
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THE COMPANION TEXT
Although there is great interest in nanomaterials and XRD is often used to characterize them, diffraction
from suchmaterials in the TEM is used much less because imaging is then almost routine. Hence there have

not been recent advances in electron diffraction except as CBED, which is treated in the companion text.

SELF-ASSESSMENT QUESTIONS
Q17.1 When the Bragg condition is not satisfied exactly, why do spots appear in the DP?
Q17.2 Reproduce the summation and integral calculations of amplitudes to explain the existence of relrods.
Q17.3 When the specimen is tilted slightly off a particular zone, why might spots in the DP move away from

their ideal positions in the DP?
Q17.4 Is a relrod a ‘real’ object?
Q17.5 In a specimen containing thin platelets, how is it possible to distinguish the DP spots associated with the

thinness of the specimen from those due to the platelets?
Q17.6 If a single dislocation is observed in the specimen, should the DP change?
Q17.7 When is it possible to view along the entire length of a relrod?
Q17.8 The spots in the right inset of Figure 17.14 are very clear. Why did we show this region rather than the

region between 000 and the common 111?
Q17.9 What is the definition of a twin boundary?
Q17.10 For what conditions might you see diffuse circles surround the DP spots?

Q17.11 How does the thickness of the TEM foil affect how (when) the Laue conditions are satisfied?
Q17.12 How can the thickness of the specimen affect the accuracy of lattice-parameter determination?
Q17.13 How can the wedge shape of a specimen influence the appearance of the diffraction spots?

Q17.14 When s ¼ 0, the (curved) relrod models predicts two spots will be seen in the DP. Why?
Q17.15 In Figure 17.8, we can see a streak between two spots in the DP. What does this tell us?
Q17.16 It is only possible to see a streak in the DP when the specimen is thin. Explain.
Q17.17 Does short-range ordering give rise to effects in the DP?

Q17.18 In Figure 17.5, what determines the distance between spots M and N?
Q17.19 When viewing a twist boundary nearly flat on, we look at theDP and see that there are three spots at�2g

and two spots at +g? Why is there an extra spot at �2g?
Q17.20 Why is the 2g reflection inside the square but 4g reflection outside for the DP in Figure 17.3C?
Q17.21 For a wedge specimen, we say we have two sets of relrods because there are two surfaces. How does this

fit with our idea of relrods arising from thin plates?

Q17.22 Can you see an effect in the DP if a twin boundary is viewed flat on?
Q17.23 Why do we see the (100) reflection in Figure 17.10?
Q17.24 How many objects are required in order to produce a detectable periodicity in the DP?

TEXT-SPECIFIC QUESTIONS
T17.1 Consider Figure 17.13 and the relationship of streak length to defect (interface) width. What is the width

of the grain boundary according to the DP?
T17.2 Examine the extra spots in inset A of Figure 17.12. Compare the spacing of dislocations giving rise to

these spots with the periodicity of the spots.
T17.3 Explain why there are spots in inset B of Figure 17.12.

T17.4 Consider Figure 17.15. How would this figure change if the top half of the figure (above the planar
defect) were removed?

T17.5 Consider Figure 17.14B. Construct the DP you expect to see, assuming it’s Si.

T17.6 Consider Figure 17.7. If this DP is from an 001 twist boundary, what is the angle of misorientation?
T17.7 Consider Figure 17.7. How can the lower reflection be the brighter in both insets?
T17.8 Consider Figure 17.3. Redraw the figure with the Ewald sphere cutting through (�2, �2) and (0, �2).
T17.9 Fully index the DP in Figure 17.10. Explain why this material must be BCC and not FCC.
T17.10 Why is the streak seen where it is in Figure 17.8?
T17.11 Figure 17.8A shows two grains. Which spots in Figure 17.8B correspond to which grains?

T17.12 Look at Figure 17.14. Is the spacing of the fine spots in the inset consistent with the image? Justify your
answer.

T17.13 Consider Figure 17.14. Why are there several spots in a row rather than just one extra spot?
T17.14 Why do the streaks in Figure 17.13 shift parallel to their length as we look from one spot to the other in

the insert?
T17.15 A thin Al metal foil contains needle-shaped precipitates which are 2 nm in diameter and 20 nm long. The

needle lies in the (001) plane and its axis is parallel to the [110] direction. Sketch the [001] DP of the foil.

(Courtesy ZL Wang.)
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18
Obtaining and Indexing Parallel-Beam

Diffraction Patterns

CHAPTER PREVIEW

The core strength of TEM is that you can obtain both aDP and an image from the same part
of your specimen (not to mention various spectra). To obtain the crystallographic data, a
method for interpreting and indexing the DP is essential and this aspect is the theme for the
next four chapters. We’ll start in this chapter by considering classic selected-area diffraction
(SAD) patterns (SADPs) and how to index them, but also introduce other related, if less
widely used, parallel-beam diffraction methods.

You can proceed to index your pattern in several ways, depending on howmuch informa-
tion you already know about your specimen. We will begin the chapter by considering the
experimental approachwith the aimof being able to identify shortcutswhenever possible. The
experienced microscopist will readily identify many patterns just by looking at them, but will
still need to index new patterns or to identify unfamiliar ones. The fastest and most efficient
experimental approach may take advantage of several concepts covered in the preceding two
chapters and the following three. Today, sophisticated computer software is available which
takes much of the tedium out of the indexing process.

Most DPs in a TEM are single-crystal (spot) patterns because the area from which we can
routinely obtain SADPs (< 1 mm) is smaller than typical grain sizes of most engineering
materials. However, with increased emphasis on nanocrystalline materials (grain size
< 0.1 mm), it is more usual for the DPs to contain contributions from many crystals and
so ring/textured SADPs are increasingly common. (We’ll cover convergent-beam (CBED) and
other forms of micro/nanodiffraction patterns, which can come from regions < 10 nm, in
Chapters 20 and 21.) Using the DP, we can identify the crystal (which we often already know)
and its orientation (which we probably don’t) with respect to both the beam and to any
adjacent crystals. The positions of the allowed hkl reflections are characteristic of the crystal
system. Indexing associates each spot or ring in theDPwith a plane (hkl), or set of planes {hkl},
in the crystal. From the indexing of the spots, you can deduce the orientation of the crystal in
terms of the zone axis [UVW] in which the indexed planes lie.

If you want to know the orientation relationship between two crystals, you need to know
more than one [UVW] for each crystal and, as we’ll show, it is the determination of
orientation relationships between different phases or differently oriented crystals that is
the most useful information to come out of DP indexing. Orientation determination in the
TEM is so important that we devote a complete chapter to the topic in the companion text.
Now, computer control of both DP formation and DP indexing is very much the norm, but
if you don’t understand the principles, you shouldn’t believe the computer output (GIGO).
So we deliberately confine our discussion of computer-assisted indexing to the end of this
chapter.

BEAM DIRECTION
It is convention to define [UVW] as the beam direc-
tion. This direction is normal to the plane of the DP
and anti-parallel to the electron beam.
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18.1 CHOOSING YOUR TECHNIQUE

The technique you choose to study your specimen will
depend on what you want to learn and what you can
learn. For example, if you want to learn about the crystal
structure of a particular region, diffraction is generally
the way to go although you may find moiré fringes
(Chapter 23) orHRTEM(Chapter 28)more appropriate.
Basically there are three diffraction approaches:

& You can spread the beam to give nearly parallel
illumination and then use an aperture to select an
area in the first image formed by the objective lens
(giving the SADPs of Chapters 9 and 11). We
emphasize SAD indexing in this chapter.

& SADPs often contain Kikuchi lines which give
more accurate orientation determination (see
Chapter 19).

& You can focus the beam on a small area of your
specimen to form a CBED pattern (we won’t use
CBDP) (see Chapters 20 and 21).

We can also summarize the possibilities as a function
of the grain size of the material. Let’s consider this
particular specimen characteristic

& The grain size may be very small, <<10 nm, typical
of many nanocrystalline thin films. This is a problem
because it’s rare that a single grain will extend
through the thickness of your specimen, in which
case you can’t easily index an individual crystal pat-
tern. (This is the rhino problem (Figure 1.7) for
DPs!) However, in this case you probably won’t
want to know the orientation of a particular grain
but will instead be interested in knowing the texture
of the material.

& The grain size is between 10 and�100nm.HereCBED
may be useful because it gives you a small probe.
However, much of the benefit of CBED comes from
having specimens which are >100nm thick; the best
thickness depends on the structure factor (atomic num-
ber) of your specimen. If you’re careful and are using a
recent-model TEM in which Cs and l are small, you
might be able to use SAD in this range of grain size, as
we saw in Table 11.1.

& The grain size is in the range 100nm to�2mm. In this
situation, SAD can be used quite routinely in a mod-
ern TEM. You must be aware of the limitations and

be prepared to unravel a complex DP. Because of
errors due to Cs and Df, the problem will be distin-
guishing which spots arise from the area you selected
and which spots arise from neighboring areas.

& The specimen is uniformly thin with grain size
> 2mm. This type of specimen is just a simpler ver-
sion of the last case. You should have no problem in
applying SAD techniques even at lower voltages and
in older microscopes. Now CBEDwill be very useful
in examining local changes within a grain.

& The grains of interest are large (> 2 mm, even better if
they are> 5 mm) with both thin areas (< 100–300 nm
thick, depending on the material) and areas which
are sufficiently thick for Kikuchi lines to be visible
(see next chapter). Now you can use any of these
techniques, except texture analysis, which becomes
more difficult! For the latter, you should now con-
sider the electron-backscatter diffraction (EBSD)
technique using a bulk specimen in an SEM to give
better statistics (Schwartz et al.).

In this chapter, we’ll concentrate on the hands-on
approach to SAD analysis and leave CBED to Chapters
20 and 21. We’ll also introduce hollow-cone and preces-
sion diffraction which make your SADPsmore useful at
times. We can’t give you a foolproof guide since the best
technique(s) will depend on your specimen.

18.2 EXPERIMENTAL SAD TECHNIQUES

By now you should know how the experimental camera
length (L) compares to the value you read from the
microscope. You also know how the SADP is rotated
with respect to the image as the magnification changes
(unless your particular TEM automatically compen-
sates for this rotation). You’ve checked that you haven’t
missed a 1808 inversion; leading researchers have missed
this in the past. Go back to Sections 9.3–9.6 and 11.9 if
you need to refresh the details of the practical steps
involved in obtaining SADPs.

You can vary L but your pattern may rotate as you
do so. We generally use a value of �500mm for SAD,
but that will depend on your TEM, whether you want
to see detail in the HOLZ and on the interplanar
spacings in your specimen. It’s good practice to choose
a particular value of L and always use that value for
your SADPs with a particular instrument/specimen
combination. You may want to increase L for special
high-resolution diffraction, but you’ll give up a large
number of other reflections and enlarging the photo-
graphic film will almost always provide the magnifica-
tion you need. This is where a wide-angle CCD camera
(Chapter 7) that captures a much larger area of recip-
rocal space than standard TEM film can be really
useful.

SAD ACRONYMS
SADP versus SAD pattern, SAED versus SAD and
CBEDP versus CBDP versus CBED pattern. We try
to useDP throughout the book but some conventions
are very well established!
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Tilting and rotating your specimen. One of the biggest
assets of the TEM is that you canmonitor the DP as you
tilt or rotate your specimen. Rotating the pattern
requires a rotation holder (Chapter 8), which is ideal
if you want to align a particular reflection parallel to
the tilt axis, especially for a side-entry holder. This
alignment is particularly helpful in stereomicroscopy
(see Chapter 29). Tilting the specimen is far more com-
mon than rotating, since all side-entry holders auto-
matically have one tilt axis parallel to the specimen
rod. We discussed the importance of eucentricity in
Chapter 9.

It is good practice to note the tilt settings whenever
you are recording images. If you want to use these
settings to give a rough estimate of how far you’re tilting
the specimen, you should remember that there may be
some backlash due to mechanical hysteresis. So you will
always need to approach a particular setting from the
same tilt direction if you need to be exact. In the next
chapter, we’ll describe how we use Kikuchi maps to
guide us as we tilt the specimen. If you don’t have
Kikuchi lines because your specimen is too thin, or too
bent, you can still use the idea. Select a particular
strongly diffracted beam and then tilt the specimen so
that that particular beam remains excited.What you are
doing is tilting the specimen so that the same plane
remains nearly parallel to the electron beam (think
about what this means and the crystallographic infor-
mation that it can give you).

Tilting the beam. If you are really interested in exam-
ining the detail present in the DP and the image is less
important, you can change the diffraction conditions in a
very controlled and reversible way by tilting the beam
using the DF deflection coils. You can be much more
precise than mechanical tilting with the goniometer since
there is no problem with backlash. To increase your
accuracy, you may want to increase L. This technique is
particularly helpful when you want to examine the effect
of small changes in s on the appearance of diffraction
spots.

For example, if you want to excite the third-order
reflection 3g in BF, you could use the approach shown
in Figure 18.1. (You wouldn’t, but this exercise is
useful!)

& Use the beam tilt (dark-field deflection coils) to put �g
on the optic axis (where 0 was) (Figure 18.1A). Now
tilt the sample so that g is excited. Then tilt the beam
to put 0 back on the optic axis. 3g is now excited.

Next, repeat the exercise but with the aim of exciting 5g.

& Use the beam tilt (dark-field deflection coils) to put
2�g on the optic axis (where 0 was) (Figure 18.1B).
Now tilt the sample so that g is excited (as before).
Then tilt the beam to put 0 back on the optic axis. 5g
is now excited.

Repeat the exercise againbutwith theaimof exciting7g.

& Use the beam tilt (dark-field deflection coils) to put
3�g on the optic axis (where 0 was) (Figure 18.1C).
Now tilt the sample so that g is excited (as before).
Then tilt the beam to put 0 back on the optic axis. 7g
is now excited.

Now you can see that if you want to excite 11g, but
you won’t be able to see 11g on the DP, start by moving
5�g to the optic axis. You should now appreciate the
possibilities.

We’ll develop other variations of this technique in
Chapter 19, and we’ll see in Chapter 27 that the situation
in Figure 18.1 does arise in weak-beam microscopy at
higher voltages. Computerized control of the beam tilt is
essential to hollow-cone and precession diffraction meth-
ods which we’ll discuss toward the end of the chapter.

(A)

(B)

(C)

FIGURE 18.1. Exercises in exciting high-order reflections. (A) To excite

3G in BF, tilt the beam so –G is on axis withG strongly excited, then tilt O

back onto the optic axis. (B) To excite 5G in BF, tilt the beam so –2G is on

axis with G strongly excited, then tilt O back onto the optic axis. (C) To

excite 7G in BF, tilt the beam so �3G is on axis with G strongly excited,

then tilt O back onto the optic axis.

TILTING
Tilting the specimen changes the diffraction conditions
and may change the focus.

18 .2 EXPER IMENTAL SAD TECHN IQUES .............................................................................................................................................. 285



18.3 THE STEREOGRAPHIC PROJECTION

DPs not only tell us the direction of the electron beam
but also the complete orientation of that region of the
specimen illuminated by the beam. If we have a grain
boundary or interphase interface (or indeed any planar
defect) present in the specimen, we can determine the
orientation of both grains and the plane of the interface.
As we show in great detail in the companion text, what
we often want to know is how the two crystals are
related to one another. But first, we need a method for
visualizing this relationship; this is where the stereo-
graphic projection or stereogram is an invaluable aid.
Unfortunately the classic materials texts by Johari and
Thomas and by Smaill are out of print, so to get an in-
depth appreciation of this technique, you’ll have to
resort to crystallography texts, such as those listed in
the general reference section or a dedicated stereo-
graphic-projection text in another field (e.g., Lisle and
Leyshon). Like other tools, you’ll have to understand it
and use it before you fully appreciate its value. We
strongly recommend that you take time out to do this
if you’re not already familiar with the construction. Any
introductory crystallography text is a good place to start
and several are listed in the references.

The construction. Imagine a crystal located inside a
sphere as shown in Figure 18.2. Draw a line normal to
each crystal plane from the center of the sphere (the

sphere of projection) to intersect the sphere at point P
in the northern hemisphere; the cross section view may
be easier to visualize. Now draw a second line from the
south pole to point P.

This second line cuts the equatorial plane at the
point P 0. The disk of the equatorial plane is the stereo-
graphic projection and the point P 0 uniquely represents
the plane whose radial normal cuts through P. If P is in
the southern hemisphere, we draw the line from the
north pole instead and identify this P 0 on the projection
with a circle instead of a dot.

Look again at the crystal; it’s cubic to keep it simple
but the construction is completely general. The normals
to the planes (100), (111), (011) and ð�111Þ all lie on the
circumference of a circle around the sphere of projec-
tion. In this special case, all of the points on this cir-
cumference project onto the same great circle on
the stereographic projection whose circumference
we call the ‘primitive’ great circle. The Wulff net in
Figure 18.3 shows 90 such great circles all passing
from the north pole to the south pole and another
around the equator: a great circle always passes through
opposite ends of a diameter in the projection. These are
the familiar lines of longitude on the globe. Circles on
the sphere which do not contain the center of the sphere
are smaller; they also project as circles called the small

FIGURE 18.2. The stereographic projection. The crystal is at the center

of the sphere. Normals to the crystal planes are projected until they

intercept the sphere at P, then projected back to the south pole ð00�1Þ of
the sphere. Where this projected line crosses the equatorial plane at P’ is

the point that uniquely represents the original plane in the crystal. Note

that planes in the same zone on the crystal project as a great circle in the

stereographic projection. An example of such a great circle is its diameter

(or line of longitude); another is the circumference in the equatorial plane.

FIGURE 18.3. AWulff net which contains 90 great circles like the one in

Figure 18.2; each great circle is 28 apart so the net covers 1808. The only
great circle that actually appears as a circle in the net is the circumference

of the projection, called the primitive great circle. Points on the primitive

represent planes whose normals are 908 from the north pole (which

projects in the center of the Wulff net). Thus all distances on the net are

proportional to angles in real space but only correspond exactly to angles

around the primitive.
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circles which, if concentric with the primitive, are famil-
iar as lines of latitude. (Note, however, that most small
circles are not concentric with the primitive.) We can
then rotate the Wulff net, as we wish, to realign our
great circles.

& We can represent plane normals (also called poles)
and directions on the same projection even if they are
not parallel to one another. Better still, we can read
off the angles between them. Remember that, in
general, the normal to the plane (hkl) is parallel to
the direction [hkl] only for cubic materials.

& The zone axis is always 908 away from any plane
normal that is in its zone. All the plane normals in a
particular zone, [UVW], will lie on a single great
circle.

& The angle between any two planes is the angle
between their plane normals, measured along a
great circle using the Wulff net.

& We can use the same construction to summarize all the
symmetry elements of any particular crystal system.

These poles at the UVW zone axis represent the
possible diffracting planes for that zone; [UVW] is the
beam direction. So if [UVW] is in the center of the projec-
tion, the hkl reflections will be around the circumference
of the projection (the primitive great circle). Now you
should appreciate why stereograms can be so useful in
interpreting DPs.

Several examples of stereographic projections are
shown in Figure 18.4. Look at the Wulff net and check
some simple facts. For example, for the cubic system,
check which poles are 908 away from the [001] direction.
How large is the angle between ð0�11Þ and (011)? How
would this angle change if the material were forced to be
tetragonal with c/a> 1?What happens in this case to the
ð1�11Þ pole or the ð1�10Þ pole? Now consider the more
extensive plot shown in Figure 18.5. If the specimen is
cubic with the [001] foil normal, what pole would you tilt

to if you wanted to form an image with the 0�22 reflec-
tion? (One answer is the [011] zone axis, but why?). For
the same specimen, if you want to excite the �111 reflec-
tion, you could tilt toward the ½0�11� zone axis keeping
the 200 reflection excited, not toward the [011] zone axis.

& You could work this out using equations, but the
stereographic projection tells you what to do while
you are sitting at the microscope.

& If you are working with a non-cubic material, buy a
large Wulff net and construct your own stereo-
graphic projection; you can buy standard projec-
tions for cubic materials so, as usual, it’s easier to be
a metallurgist than a ceramist or mineralogist.

& Use a program like EMS to help you plot the points,
or download appropriate software from the Web
(e.g., URL #1).

& Wulff nets and plotting software are also available
on-line (e.g., URL #2).

18.4 INDEXING SINGLE-CRYSTAL DPs

Remember the fundamental relationship in a DP
(Section 9.6.B).

Rd ¼ lL (18:1)

Any distance between the direct beam and a specific dif-
fraction spot or the radius of a diffraction ring, R, which
we measure on the DP, is related to a specific spacing
between planes in the crystal, d. Since lL is a constant,
we can measure several values of R and know that

R1d1 ¼ R2d2 ¼ R3d3 ¼ R4d4 ¼ . . . (18:2)

If you know the lattice parameter of your crystal,
then you know the allowed reflections and only certain
d-spacings will be associated with diffraction spots.

(C)(A) (B)

FIGURE 18.4. Some standard cubic stereographic projections. The pole in the center defines each projection, so these are 001, 011 and 111.

18 .4 INDEX ING S INGLE -CRYSTAL DPS ................................................................................................................................................ 287



Table 18.1 lists allowed and forbidden reflections for
some cubic systems. Rules for more crystal systems are
given in Table 16.2.

Once you have tentatively identified possible values
for g1 and g2, you need to cross-check your answers
using the angles between the g vectors (i.e., the angles
between the plane normals). The fully indexed patterns
at the end of this chapter (Figures 18.19–18.21) show the
principal interplanar angles and the principal ratios of
g1/g2. Hence, in practice, youwill rarely have tomeasure
more than two or three spacings in order to index a

FIGURE 18.5. The stereographic projection for a cubic foil with a [001] normal, assuming the beam is down [001] also. If you want to form an image with

the 0�22 reflection, you need to tilt the specimen so the 0�11 pole rotates until it is on the primitive, i.e., it is 908 from the beamdirection. To do this, you need

to tilt about a pole that is 908 from the 0�22 reflection, such as the [100], [111] or [311] zone axes.

R AND d-SPACINGS
The ratio of any two R values gives the inverse ratio
of the d-spacings.
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particular zone-axis DP. However, if your specimen is
not oriented close to a zone axis, you’ll need to look
ahead to Section 18.10.

TheWeiss zone law only holds for diffraction into the
zeroth layer of the reciprocal lattice and the diffraction
spots that we see here are called the zero-order Laue zone
(ZOLZ). There are circumstanceswhenwe can see diffrac-
tion from higher-order Laue zones (HOLZ) and we’ll talk
a lot more about this phenomenon in Chapters 20 and 21.
All SADPs, particularly those that we talk about and
index in this and the next chapter, are ZOLZ patterns.

The angle between normals to the planes (h1k1l1) and
(h2k2l2) is f; the angle between directions [U1V1W1] and
[U2V2W2] is r. You can work these out and cross-check
them with your DPs. These are standard equations in
many texts (e.g., those by Edington and Andrews et al.).
You’ll probably find that the equations for the cubic
system are the most useful.

cosf ¼ h1h2 þ k1k2 þ l1l2

h21 þ k21 þ l 21
� �1=2

h22 þ k22 þ l 22
� �1=2 (18:3)

cosr ¼ U1U2 þ V1V2 þW1W2

U 2
1 þ V 2

1 þW 2
1

� �1=2
U 2

2 þ V 2
2 þW 2

2

� �1=2 ð18:4Þ

Remember that you can always work out these expres-
sions for any crystal system using the equation for the
dot product of the two appropriate vectors.

In principle, if we don’t know the crystal structure,
we can still work out the d-spacings of the diffracting
planes using equation 18.1. However, you should
remember that SAD is not the most accurate method
fordetermining the spacingof latticeplanes,dhkl, or theangles
between them, f. SAD is generally very good at distinguish-
ing patterns, but it completely fails when the difference
between the two patterns is a 1808 rotation, as occurs in
some patterns of polar material, like GaAs or GaN.

To summarize

& Tilt your specimen to a low-index pole.
& Set s=0 for the innermost reflections.
& Record the SADP.
& Repeat the exercise using higher-order reflections
after tilting the specimen to set s¼ 0. These measure-
ments will be more accurate, but only if you make
sure that s¼ 0.

The discussion on relrods in Chapter 16 told you
that both d and f could be seriously in error if reflec-
tions are not set to have s¼ 0, especially since you’ve
probably tilted the specimen.

So far, you have only indexed one DP. You’ll prob-
ably need more than one to determine orientation rela-
tionships. While you’re at the microscope, tilt to pole #2
keeping g1 (see Figure 18.6) strongly excited. Repeat the

TABLE 18.1. The Selection Rules for Cubic Crystal Structures

bcc fcc Diamond cubic

h 2 + k 2 + l 2 hkl h 2 + k 2 + l 2 hkl h 2 + k 2 + l 2 hkl

2 110

3 111 3 111

4 200 4 200 4 200

6 211

8 220 8 220 8 220

10 310

11 331 11 331

12 222 12 222

14 321

16 400 16 400 16 400

18 411

330

19 331 19 331

20 420 20 420

22 332

24 422 24 422 24 422

26 431

27 511 27 511

27 333 27 333

30 521

32 440 32 440 32 440

O

pole #2

G1

O

G1

pole #1G3

G2

pole #3

G2

O

FIGURE 18.6. How to confirm your indexing of reflections and poles by

tilting to other poles. Start with g1 and g2 strongly excited at pole #1. Tilt

to pole #2 keeping g1 strong, then go back to pole #1 and tilt to pole #3,

keeping g2 strong. Index all the strong reflections each time, measure the

tilt angles between each reflection and estimate the tilt between poles.

WEISS ZONE LAW
Check the consistency of your indexing using the
Weiss zone law. Each hkl reflection must lie in the
[UVW] zone, i.e., hU+kV+lW= 0.
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indexing procedure. Go back to pole #1 and tilt to pole
#3 keeping g2 strongly excited. You can repeat this
indexing as many times as you wish. The important
idea is that you now have angular measurements allow-
ing you to cross-check your determination of both g1
and g2 and the zone axes. Of course the task is simple for
an fcc crystal, as you can see in Figure 18.7, which is an
experimental illustration of this procedure. The chal-
lenge comes when the crystal has less symmetry. If you
already know the crystal structure, then you should plot
out the most important poles, relating their orientations
to one another (more on this in Section 18.11 and
Chapter 19) and pay particular attention to the infor-
mation from systematic absences which occur when the
structure factor is zero (go back and check Section 3.9
and Chapter 13).

18.5 RING PATTERNS FROM
POLYCRYSTALLINE MATERIALS

Diffraction from polycrystalline specimens (especially
when the grain sizes are at the nanoscale) can be viewed
in much the same way as X-ray diffraction from pow-
ders. For a completely random polycrystal, we rotate
the reciprocal lattice about all axes and produce a set of

nested spheres. When we intersect these spheres with the
Ewald sphere (which, in the TEM, approximates to a
plane) we will see the rings which are recorded in powder
patterns.

If a polycrystal is textured, then there is usually one
special plane which is common to nearly all the grains.
Since the grains are small, all the reciprocal-lattice
points will be broadened by the shape effect; so will
the sphere or circles for the polycrystals. This situation
will be exacerbated for nanocrystals.

If we then rotate the reciprocal lattice about the
lattice vector normal to the texture plane, we pro-
duce a set of circles in reciprocal space, as shown in
Figure 18.8. If we are examining cubic materials, the
reciprocal-lattice vector ghkl will be parallel to the direc-
tion [hkl] in real space. Otherwise this will not generally
be the case.

The DP in either of these examples appears as shown
in Figure 18.9A and B which differs because the grain

FIGURE 18.7. A practical illustration of the procedure described in

Figure 18.6 for an fcc material, in this case MgO.

Origin
of reciprocal

lattice

–1

0

1

2

[UVW ]
N = hU + kV + lW

FIGURE 18.8. The generation of a set of circles in reciprocal space by a

textured polycrystal. When the reciprocal lattice is rotated about a partic-

ular direction [UVW] (in this case the normal to the texture plane) each

Laue zone (N ¼ 1, 2, etc.) produces a set of concentric circles for each

allowed reflection in each zone.

THE GOLDEN RULE
Make the task as easy as possible. Record ALL the
DPs you might need and how they relate to one
another (draw road maps) while you’re at the
microscope.

NANO AND DPs
Smaller grains give broader spots in the DP. Nano-
crystals should give the largest spots, or. . .
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size is different. A larger grain size gives a more speckled
pattern.

You candistinguish the pattern producedby a textured
specimen from one produced by a random polycrystal by
tilting. If your specimen is textured, the rings become arcs
as shown in the pattern in Figure 18.10A together with the
Ewald-sphere construction in Figure 18.10B. You can
locate the grains which give rise to the arcs by forming a

CDF image with the arc of diffracted intensity. In Figure
18.10C, these oriented grains are uniformly distributed,
but you might encounter a situation where this is not the
case. Think how the pattern might differ in this case.

Figure 18.10D and E emphasizes that these ring
patterns can be quite varied. In this case the specimen
is a-Ag2Se, which is textured about an axis inclined to
the beam.When the Ewald sphere cuts the circles now, it
produces elongated spots which lie on an ellipse.
Vainshtein et al. point out that all the ‘spots’ on one
ellipse can be indexed with the same hk indices but a
different l, and call such a pattern an oblique-textured
electron DP. You should also be careful in indexing
these textured patterns since not all possible dhkl values
need be present, depending on the texture plane.

There is more information in ring patterns than spot
patterns. Like a powder pattern, you could estimate the
grain size from thewidth of the rings, but it’s more direct
(and more reliable) to just look at the DF image. You
can see kinematically forbidden rings because you don’t
necessarily have single scattering from each grain but
there are ways around this problem.

Nanocrystalline materials, which fall into our small-
est range of �10-nm grain size, are very challenging
because there’s probably always more than one grain
through the foil thickness. Careful DF imaging com-
bined withHRTEMorCBEDwith the smallest possible
probe (often called nanodiffraction, see Section 21.8.B),
is probably optimal, but you need to look for clustering
of similarly oriented grains.

18.6 RING PATTERNS FROM
HOLLOW-CONE DIFFRACTION

We can combine the advantages of ring patterns from
small-grained materials with individual spot patterns
from larger-grained materials, As we noted back in
Section 9.3.D, if you have a nano/microcrystalline speci-
men, it is rather inefficient to get a DP from one grain at
a time by carefully tilting your specimen and then get-
ting individual DF images of single areas, or of phases
within a single grain, by carefully tilting the incident
beam. So we can use a computer to continuously change
the beam orientation so it samples many angles of inci-
dence and gather DPs from all the crystals superim-
posed on one another (i.e., get a ring pattern, even
from a relatively large-grain material). This is the prin-
ciple behind hollow-cone (sometimes called ‘conical’)
diffraction (go back and look at Figure 9.15). In the
same section we also introduced the idea of hollow-
cone DF imaging. In earlier TEMs, before computer
control of the beam, hollow-cone illumination was
achieved by using an annular C2 aperture rather than
a circular hole. Thus the beam that came through the
annulus irradiated the specimen from a fixed angle

(A)

(B)

FIGURE18.9. (A) and (B) RingDPs frompolycrystalline foils. In (A) the

grain size is larger than in (B) so the rings are made up of discrete spots. A

finer grain size, as in (B) produces a more continuous ring pattern, but the

width of the rings of diffracted intensity in fact becomes broader and can

be used as an inverse measure of the grain size.
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(A)

(B)

(C)

(E)

(D)

φ

0

hk0
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a*

hkl

Planar
Ewald

 sphere

c*

c*

Intersection with
Ewald sphere

Rotation axis

Point
on

reciprocal
lattice

Plane of Ewald sphere

FIGURE 18.10. (A) A textured ring pattern where the rings are more intense over a certain angular range. (B) The corresponding interception of

the Ewald sphere (plane) with the reciprocal lattice. (C) A DF image of the textured grains, taken from a brighter potion of one of the hkl rings, showing

an equiaxed structure. In (D) the specimen is textured about a direction at an angle to the beam, so the Ewald sphere creates elongated spots or arcs in the

DP (E).
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around the optic axis, as shown schematically back in
Figure 9.15A. It’s much easier and more flexible to use
the computer to control the pre-specimen scan coils
and bring the beam onto the specimen at a fixed (or a
range of) conical scan angle and a typical conical-scan
DP is shown in Figure 9.15B. (If you look ahead, you
can see another example of a hollow-cone DF image
from an amorphous DP in Figure 18.14C.) Of course,
we index the rings in exactly the same way as we
described in Section 18.5 for ring patterns obtained
from a polycrystalline specimen where the grain size
is much smaller than the beam size.

With hollow-cone illumination, we can create a DF
image of all the crystals in a film that are diffracting
from their {hkl} planes, rather than imaging only that
small fraction diffracting into the part of the diffraction
ring that happens to be selected by the aperture. The
difference in information content between these two
approaches is shown back in Figure 9.15B and C. The
hollow-cone technique is widely used in CBED (see
Chapter 21) and has more recently been used as the
basis for precession diffraction (see Section 18.8.)

18.7 RING PATTERNS FROM
AMORPHOUS MATERIALS

Amorphous materials used to represent somewhat of a
fringe field in materials science but the rapid growth in
glass technology over the last decade, fueled by the
optical-communications bubble, the development of
bulk metallic glasses and the increased awareness of
the role of glassy films at interfaces (particularly the
gate oxide in semiconductors) have all conspired to
crystallize the following question: is the material really
amorphous or is it (sub) nanocrystalline? Actually this
question is still debated when discussing both amor-
phous materials and, more intensely, oxide and metallic
glasses because there’s still no broadly accepted defini-
tion of when grains become small enough that a deter-
minable crystal structure no longer exists. At best we
should think of a continuum of states from nanocrystal-
line to amorphous.

Rudee and Howie showed that electron scattering
from regions of �1.5 nm diameter could be coherent.
Graczyk and Chaudhari proposed modeling these
materials as random networks. If we are careful, we
can learn quite a lot about the structure of amorphous

materials, but we should first say what we mean by
‘amorphous.’

An amorphous material is one where the locations
of the neighboring atoms are defined by a prob-
ability function such that the probabilities are
never unity.

This idea is best illustrated by a plot of the probability
which we call the radial distribution function (RDF). The
RDF, r(r), is the probability, per unit element of volume,
that an atom will be found at a distance r from another
atom. The first example in Figure 18.11A compares the
curves for liquid sodium and crystalline sodium; the
numbers on the crystalline curve remind us that in the
crystal each sodium has eight nearest neighbors, etc. The
second plot, Figure 18.11B, shows the RDF for vitreous
silica. This time the peaks are associated with distances

(A)
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FIGURE 18.11. (A) Radial distribution functions for liquid Na and the

average density curve superimposed on the distribution of the nearest

neighbors in crystalline Na (vertical lines). (B) The RDF for vitreous SiO2

is peaked at a distance that represents spacings between Si and O atoms.

DPs AND AMORPHOUS MATERIALS
The DP from an amorphous material looks similar to
that from polycrystalline material but the rings are
broader and there is no speckle.
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between different pairs of Si andO atoms. The features to
notice are

& The two curves both show definite peaks.
& The two curves are different.

Some diffraction theory. Since these materials are so
different, we’ll give a brief introduction to the theory of
scattering from amorphous materials. We make the
assumption that the electron beam is only scattered
once; this is kinematical, but it’s more realistic than for
crystals at the Bragg condition. Following Howie, we
express the kinematical intensity, I(k), by the expression

IðkÞ ¼ fðkÞj j2
X
i;j

ei2pk� ri�rjð Þ (18:5)

Here we assume that there are N identical atoms con-
tributing to the scattered intensity and they are located
at the different positions (ri or rj).

The f(k) terms are the atomic scattering amplitudes,
with k reminding us that there is an angular dependence
to f. If the material is isotropic, we can simplify equation
18.5 as follows

IðkÞ ¼ N fðkÞj j2 1þ FðkÞ
k

� �
(18:6)

where

FðkÞ ¼
X
i 6¼j

ei2pk� ri�rjð Þ (18:7)

FðkÞ ¼ k

ð
r rð Þei2pk�rdV (18:8)

FðkÞ ¼ 4p
ð1
0

r rð Þ sin 2pkrð Þr dr (18:9)

The term r(r) is the RDF. Equation 18.9 can be inverted
to give an expression for r

r rð Þ � r0 ¼
1

r

ð1
0

F kð Þ sin 2pkr dk (18:10)

This equation means that, in principle, the RDF can be
obtained directly from DPs. This process is enhanced if
the patterns are energy-filtered to remove inelastic con-
tributions (see Chapter 37 and the work of Cockayne
et al.) as shown graphically in Figures 18.12 and 18.13.
Compare these figures with Figure 2.13A. Other ways to
determine the RDF include extended X-ray absorption
fine structure (EXAFS) studies in a synchrotron X-ray
and, less expensively but more noisily, via EXELFS (see
Chapter 40). Alternatively, we can rearrange equation
18.6 again to give a ‘reduced-intensity function’ as illu-
strated by the work of Graczyk and Chaudhari who

showed clearly that the structure correlation can extend
to 1.5nm or more. Life gets more interesting as we
explore the structure out beyond the nanometer
level and Treacy et al. review a new imaging technique
called fluctuation microscopy which is a hybrid imaging/
diffraction technique sensitive to the presence of me-
dium-range order in amorphous materials. We’ll discuss
this techniquemore inChapter 29. If you get the idea that

FIGURE 18.12. An intensity profile across an energy-filtered DP from

amorphous Si obtained by scanning the pattern across the entrance slit to

a serial EELS spectrometer and recording only the elastic (on-axis)

electrons.

FIGURE 18.13. A computer plot of the diffracted intensity distribution

from an amorphous structure, showing diffuse rings of intensity. The

direct-beam intensity is off-scale.

294 ....................................................................................... OBTA IN ING AND INDEX ING PARALLEL -BEAM DIFFRACT ION PATTERNS



the study of amorphous materials is at the frontiers of
TEM materials-structure determination, you are right!

To summarize this discussion, the scattering theory
is well known but the capability for routinely removing
the inelastic contribution is only now becoming avail-
able and is still not commonplace. Probably the best
way to answer whether a material is nanocrystalline or
amorphous will come from a combination of SAD and
EELS. A BF image of amorphous material is generally
uninformative (Figure 18.14A), but if you try to form a
DF image you will see a speckle of white spots against a
dark background, as shown in Figure 18.14B. The size
of the speckle increases as the defocus increases, so be
wary of interpreting the image in terms of the size of
regions in the amorphous structure. Hollow-cone DF
imaging, as shown in Figure 18.14C, gives even more
and finer ‘structure’ in the image. The fact that you can
produce this type of speckled contrast is important
because you may well want to study small particles
(e.g., catalysts) supported by an amorphous film. In
such a case, you need to know what the image of the
support film looks like before you add a new
component.

Glass at interfaces and grain boundaries. Another
area where it is important to know whether or not an
amorphous material is present, occurs in the analysis of
grain boundaries in ceramic materials or gate oxides in
semiconductor devices. Answering this problem
severely taxes the limits of HRTEM when the film
thicknesses are < 1 nm, which is the case for the gate
oxide in the latest semiconductor devices. For somewhat
thicker films we can use conventional HRTEM and
another technique, known as diffuse-dark-field (DDF)
imaging, which essentially forms an image from the
region in the SADP where the amorphous ring would
be, if glass were present.We’ll return toDDF imaging in
Chapter 29.

18.8 PRECESSION DIFFRACTION

Precession is a relatively new approach to performing
electron diffraction; it is similar to the X-ray method
which goes by the same ‘name’ (although in XRD the
crystal, rather than the beam, is precessed) and it is
closely related to hollow-cone diffraction that we just
talked about. The main advantage that precession brings
is to remove strong dynamical effects from the patterns
leaving high-quality kinematical data, eliminating, e.g.,
extra spots due to dynamical effects. Precession diffrac-
tion can also be used for crystal structure and full sym-
metry determination. While the method was first tried in
a TEM by Vincent andMidgley, recent advances in both
CCD cameras and (you’ve guessed it) aberration correc-
tion make both the operational aspects and the interpre-
tation of precession DPs much easier.

In precession diffraction we double-deflect the inci-
dent beam (either parallel or convergent) using the usual
DF scan coils in a circular hollow cone (radius G and
angle C) about a centered zone-axis direction (Figure
18.15) and de-scan the beam onto the plane of the DP.
So it is really a double conical beam-rocking system.

(A) (B) (C)

FIGURE 18.14. (A) BF image of amorphous carbon. (B) DF image from

the diffuse diffracted intensity taken with a defocused beam and (C)

hollow-cone image showing more structure.
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FIGURE 18.15. Schematic ray diagram for precession diffraction.
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Unlike standard TEM hollow-cone where we are seek-
ing to get multiple (i.e., ring) patterns sampling many
grains, in precession mode we are usually trying to
average out the diffraction conditions within a single
grain and obtain a single-crystal pattern inwhich dynam-
ical effects are reduced. If the hollow-cone angle is
large enough, all the diffraction data correspond to a
two-beam condition and show reduced dynamical dif-
fraction because not many reflections are simulta-
neously excited off the zone-axis condition. When we
precess the beam, we integrate the diffracted intensities
through the Bragg condition, so small specimen-tilt
changes are averaged out and we can more reliably
interpret crystal-symmetry information in the DP. Con-
tinuous changing of the precession angle over several
degrees can help with point and space-group determina-
tion (see Chapter 21, the companion text and Morniroli
et al.’s paper). Figure 18.16A and B shows, respectively,
the differences between small and large precession-angle
DPs from a Si single crystal. The larger angle removes
the kinematically forbidden reflections that are present
in the smaller-angle DP because the multiple-diffraction
paths to them are unlikely to occur during the preces-
sion movement. Most of the time, only the direct beam
and one diffracted beam are strongly excited as the
beam precesses. This does not mean that the dynamical
interactions disappear, they just occur between the
direct beam and one diffracted beam (as in the two-
beam case).

Precession is an area of electron diffraction that is
seeing a rapid growth in applications across many fields.
Commercial retrofits are available for any TEM (e.g.,
URL #3) but, if you want to do it on your own, then
Own et al. give good detailed instructions.

18.9 DOUBLE DIFFRACTION

Double diffraction occurs when a diffracted beam trav-
eling through a crystal is rediffracted either within the
same crystal or when it passes into a second crystal. If
the initial diffraction vector of the beam is g1 and it is
rediffracted by reflection �g2 , then the resultant diffrac-
tion vector of the double-diffracted beam is (g1–g2). If g2
is not an allowed reflection in the first crystal, the dou-
ble-diffracted beam is characteristic of neither the first
nor the second crystal.

Reflections attributable to double diffraction are a
common feature of DPs recorded from two-phase mate-
rials exhibiting epitaxy or topotaxy including, e.g., oxi-
dized metallic specimens. Quite complicated patterns
may be formed, requiring careful analysis to distinguish
the ‘real’ reflections from the double-diffraction reflec-
tions. Double diffraction is directly responsible for the
moiré effect in the electron images that we will discuss in
Chapter 23. As an example of this effect, we’ll consider
small a-Fe2O3 (hematite) islands grown on a single-
crystal a-Al2O3 (alumina or sapphire) substrate as

(A) (B)

FIGURE 18.16. Si <130> DP taken (A) with a small precession angle (18) and (B) with a large precession angle (38). The kinematically forbidden

reflections 002, 006, 0010 disappear at the larger precession angle.Note also the appearance of strong differences in the intensity of individual hklmaxima.
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shown in Figure 18.17A. The position of the double-
diffraction spots relative to the hematite and alumina
reflections actually changes depending on whether the
islands were on the top or bottom surface of the speci-
men. This particular top–bottom effect can be derived
from simple geometry; however, dynamical diffraction
effects must also be considered when the materials are
thicker.

Figure 18.17B shows the [0001] SADP recorded
from one of these a-Fe2O3 particles. The closest reflec-
tions to the direct beam are the six f11�20g reflections.
The next closest reflections are the six f3�300g reflec-
tions, only four of which are visible in the figure.
Double-diffraction spots are visible around each of
these primary reflections. They also surround the direct
beam, although they are hidden by the flare from that
beam in Figure 18.17B.

Figure 18.17C and D shows enlargements of regions
near the f11�20g reflections in the [0001] SADPs
recorded when the hematite island was on the top sur-
face in (C) and on the bottom surface of the sapphire in
(D). Both g and �g reflections are shown for the two
cases. In (C) the ring of six double-diffraction spots
surrounds the Al2O3 reflection while in (D) the double-
diffraction spots surround the Fe2O3 reflection.

The same observation can be made for the {�3300}
regions of theSADPsas shown inFigure 18.17EandF. In
this case, an inner ring of double-diffraction spots (small
filled circles) with the same spacing and orientation as the
double-diffraction reflections in Figure 18.17C andD are
still visible, as are the outer rings of spots (large filled
circles). In general, the outer ring of double-diffraction
spots is more intense than the inner ring.

This top-bottom effect in particular, and double
diffraction in general, can be explained by the simple
geometric analysis we show in Figure 18.18; the bottom
crystal is Al2O3, which has the smaller lattice param-
eter and therefore has the larger reciprocal-lattice vec-
tors. Double-diffraction spots can be formed around
the primary hematite reflection, gH, by two different
routes

& 2gH þ �gA (A: alumina, H: hematite) giving the
double-diffraction spot just inside gH.

& �gH þ 2gA gives a double-diffraction spot just outside
gH.

These two routes at first appear to be equivalent.
However, if we take into account the curvature of the
Ewald sphere, then the deviation parameters of the two
routes are very different. In the case of diffraction through
the upper crystal, the deviation parameter of the 2g beam
is slightly more than twice that of the �g beam. This differ-
ence will not significantly affect the intensities from a very

(A)

(B)

(E)

(F)

(C)

(D)

FIGURE 18.17 (A) BF on-axis image of a particle of a-Fe2O3 on a-
Al2O3. (B) [0001} SADP from a-Fe2O3 showing double-diffraction spots

around the f11�20g and f3�300g reflections. (C) Enlargements of regions

near the f11�20g reflections when the hematite island is on the top surface.

(D) Enlargements of regions near the f11�20g reflections when the hema-

tite island is on the bottom. (E) Enlargements of regions near the f3�300g
reflections when the hematite island is on the top surface. (F) Enlarge-

ments of regions near the f3�300g reflections when the hematite island is on

the bottom.
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thin epilayer due to streaking of the reciprocal-lattice spots
parallel to the beam direction (the shape-factor effect).

Now we can analyze the effects of diffraction
through the lower crystal

& Draw the reciprocal lattice with the origin of the
Ewald sphere at 2gH for the first case and on �gH in
the second.

& Keep the radius of the Ewald sphere unchanged
since only elastic interactions are considered.

& The incident beam for the lower crystal is in the 2g or
�g directions for the two cases.

& The height of the ZOLZ is slightly different in the
two cases since the deviation parameter at the origin
must be zero.

You can see from Figure 18.18A that the deviation
parameter for 2gA is approximately zero, whereas for �gA
it is of the same order as gH. The total deviation param-
eter is thus much smaller for the second route than the
first. A similar analysis for the inverted structure is shown
in Figure 18.18B. In both cases, the deviation parameter
for the route �g (upper) plus 2g (lower) produces a much
smaller deviation parameter than the route 2g (upper)

plus �g (lower). So the double-diffraction spot, which
occurs on the same side of the diffraction spot from the
upper crystal as the diffraction spot from the lower crys-
tal, will bemore intensely excited than the double-diffrac-
tion spot which occurs on the opposite side. In two
dimensions, for thin films, the strongest double-diffrac-
tion spots will always be those arranged symmetrically
around the diffraction spot from the lower crystal.

For thicker layers, the relative intensity of the �g and
2g beams will vary as dynamical diffraction effects
occur. We can simulate the DPs from these structures
using the MacTempas program (see Chapter 30 and
Section 1.6.B) The top-bottom effect is evident in the
case of 2.7 nm of hematite on 13 nm of alumina, but only
just discernible for the case of 2.6 nm of alumina on
13.5 nm of hematite. In the latter case, the dynamical
diffraction effects are stronger.

We will meet this topic in Chapter 23 when we dis-
cuss moiré fringes. We have made this analysis a little
more complicated than usual since we have considered
the details of where the spots will actually be found. You
can make this process simpler

& Trace the patterns from each crystal (if you know
what tracing paper is).

& Then construct a new pattern using each diffracted
beam from the upper crystal as an incident beam for
the lower crystal.

The extent of the moiré pattern gives you an idea of
just how strong dynamical scattering is, even for thin films!

18.10 ORIENTATION OF THE SPECIMEN

Once you have identified three g vectors g1, g2 and g3 in
a single-crystal DP, you can calculate the direction of
the beamB. You can actually estimateB to within about
108 from the vector cross product as follows

B ¼ g1 � g2 ¼
i1 i2 i3

h1 k1 l1

h2 k2 l2

2
64

3
75 (18:11)

¼ k1l2 � k2l1; l1h2 � l2h1; h1k2 � h2k1ð Þ (18:12)

For the three-beam case, you can determine B with an
accuracy of �38. You first need to make sure that the
three vectors are taken in the correct order. Draw a
circle through these three reflections: if O is inside the
circle, then the g vectors should be numbered counter-
clockwise; if O is outside, number them clockwise.
Check your labeling; the determinant of the matrix in
equation 18.13 should be positive

g1� g2 � g3ð Þ ¼ 1

V

h1 k1 l1

h2 k2 l2

h3 k3 l3

2
64

3
75 (18:13)

(A)

(B)

FIGURE 18.18. Top-bottom effect in double diffraction. The pattern

depends on which of the two crystals is on top. In this case a-Fe2O3

particles are on top of the Al2O3 and the two (non-equivalent) paths (A)

and (B) for double diffraction are shown.NOTE: gA is for alumina and gH
for hematite.
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Now we can write a weighted-average expression for B

B ¼ g2 � g3

g1j j
2
þ g3 � g1

g2j j
2
þ g1 � g3

g3j j
2

(18:14)

A B

C D

FIGURES 18.19. Four standard, indexed, DPs for bcc crystals in the [001], [011], ½�111� and ½�112� beam directions. Ratios of the principal spot spacings

are shown as well as the angles between the principal plane normals. Forbidden reflections are indicated by x.

OUR CONVENTION
The vector B points up the column. It is normal to the
emulsion side of a photographic negative. The electron
beam travels along the direction –B.
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A B

C D

FIGURES 18.20. Four standard, indexed, DPs for fcc crystals in the [001], [011], ½�111� and ½�112� beam directions. Ratios of the principal spot spacings are

shown as well as the angles between the principal plane normals. Forbidden reflections are indicated by x.
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FIGURES18.21. Six standard, indexed,DPs for hcp crystals in the ½2�1�10�; ½01�10�; ½0001�; ½01�12�; ½01�11� and ½1�21�3� beamdirections. Ratios of the principal

spot spacings are shown as well as the angles between the principal plane normals. Forbidden reflections are indicated by x.
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In Figures 18.19–18.21, we illustrate some of the
most useful DPs for bcc, fcc and hcp crystals. You can
extend these patterns as far as you wish using vector
addition; remember the reflections correspond to recip-
rocal-lattice vectors. For example, in Figure 18.19C

12�1
� �

¼ 110ð Þ þ 01�1
� �

(18:15)

You can extend the patterns in this way and then
apply the selection rules to find the corresponding
patterns for Si, etc., using the specific examples as a
guide.

& bcc real space —> fcc reciprocal space.
& fcc real space —> bcc reciprocal space.

Take the example used by Edington, as shown in
Figure 18.22 for an fcc crystal. Measure the distances
to the reflections x, y and z. Since the material is fcc, we
can ratio d 2 values to find suitable indices or use a
calibrated camera length. Thus we find that plane
A¼ (4�20), B¼ (111) and C¼ (�331); check that the
angles are correct using

cos fABð Þ ¼ gA�gB
gAj j gBj j

(18:16)

and so on for fBC and fCA. You should immediately
recognize that this is the�½12�3� pole, but continue. Now
you can plug pairs of these indices into equation 18.11
or all of them 18.14 to show that B ¼ ½�1�23�.

Finally, use the [001] stereographic projection.
Draw a great circle that passes through the (111),
ð2�10Þ and ð�331Þ points using your Wulff net: they all
lie on one great circle because they are in the same zone.
Now identify the zone axis directly by measuring 908
from all the poles. The result is, of course, the same in
each case.

& Notice that if you used the stereographic technique
with a non-cubic material, you would locate a direc-
tion, not a plane normal.

& You can make the determination of Bmore accurate
by making s¼ 0 for each reflection you use and then
estimating your deviation from this idealized orien-
tation. If the specimen is thicker, use Kikuchi lines
(Chapter 19).

18.11 ORIENTATION RELATIONSHIPS

Once you’ve learned how to index a DP and determine
B, you can determine orientation relationships (ORs),
which are one of the most useful aspects of diffraction in
the TEM for the materials scientist and nanotechnolo-
gist because the orientation between different grains,
phases or crystals controls many properties of engineer-
ing materials. For example, the OR will determine how
well the atomic planes in two different phases or grains
fit together and this controls the nature of the interphase
interface (e.g., coherent or incoherent) or grain bound-
ary (special or random) which, in turn, governs the ways
dislocations interact with the planar defect, thus con-
trolling the mechanical behavior of the material. There
are many other such effects of ORs; for example, we
often want to know how a fiber is oriented to the sur-
rounding matrix, a nanoparticle or a thin film to its
supporting substrate. So the OR between two different
crystals is important in many materials and can be
described in one of two ways

& Two directions or plane normals (or two sets of
parallel planes) can be parallel in the two crystals
(the parallel-plane/direction relationship). We use
this description for precipitate-matrix (b – a) orien-
tation relationships where the crystal systemsmay be
different.

& The two crystals have a common direction (axis) so
that one crystal can be rotated through some angle

(A) (C)(B)

FIGURE 18.22. (A) An fcc pattern, indexed in (B) with the major indexed poles plotted on a stereographic projection in (C), identifying the pole of the

great circle as �1�23 which is therefore the beam direction for the pattern in (A).
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into exact alignment with the other (an axis-angle
pair). We use this for GBs where the samematerial is
present, either side of the boundary.

Record a set of three DPs, one from each crystal and
one including the interface. If you’re lucky you’ll be able
to index both single-crystal patterns directly. If one of
them shows too few spots, you should try to record a
complementary Kikuchi pattern (next chapter) or
CBED pattern (subsequent two chapters) to provide
more information. With CBED patterns from very
small regions, you’ll have to take a pattern in one crys-
tal, translate the specimen or traverse the beam and take
another pattern from the other grain.

We’ll go through the experimental steps for analyz-
ing the parallel-plane/direction relationship for two
phases a and b

& Tilt to the zone-axis pattern (ZAP) 1 in phase a, the
matrix phase. Record and index it to determine
B1(a).

& Translate the precipitate, b, onto the axis without
touching the beam-tilt controls and record another
DP. This pattern may not be exactly on a zone axis,
so it may be more difficult to index; then Kikuchi
lines may help considerably. Nevertheless, you need
to determine a parallel-beam direction,B1(b), for the
precipitate.

& Translate back to the matrix. Tilt the specimen in a
known direction until you find a different ZAP
(again, Kikuchi maps will help you do this). Record
and index ZAP 2 to give B2(a).

& Translate back to the precipitate, record the DP and
index it, giving you B2(b).

& Plot the position of B1 and B2 for both a and b on a
stereogram and construct the poles of the important
planes that are normal to each B. These will be the
low-index planes that you indexed in each pattern.

So now you know that B1(a) is parallel to B1(b) and
B2(a) is parallel to B2(b). You can also see which plane
normals are parallel (if any) from the stereogram. So
you can quote the OR in terms of these two pairs of
parallel directions, or a pair of directions and a pair of
plane normals in the zone of each B. It may well be the
case that you can’t find two low-index planes or direc-
tions that are parallel, in which case the orientation
relationship is not a strong one. However, there are
some well-known ORs between phases that you should
know

& Best known is the cube/cubeOR. If an fcc precipitate
forms inside an fcc matrix (e.g., Al3Li (d0) in an Al-Li
(a) solid solution), then we find:

[100]d0 is parallel to [100]a,
(010)d0 is parallel to (010)a.

Obviously, in these circumstances, any two
<UVW> directions or {hkl} planes in the cubic
system would be parallel. It’s just convention to
choose the lowest-index planes or directions to
define the OR. When the lowest-index planes and
directions align, the surface energy between the
phases tends to be lowest, so this configuration is
thermodynamically favored.

& The Kurdjumov-Sachs OR is often found relating
fcc and bcc crystalline grains. The close-packed
planes (or closest packed in bcc) and close-packed
directions are parallel, but these are not now
identical

(111)fcc is parallel to (011)bcc (the closest-packed
planes),

½10�1�fcc is parallel to ½11�1�bcc (the close-packed
directions),

ð�12�1Þfcc is parallel to ð�21�1Þbcc.
& The Nishiyama–Wassermann OR is related to the
Kurdjumov–Sachs OR

½0�11�fcc is parallel to [001]bcc,
ð�111Þfcc is parallel to ð�110Þbcc (the closest-packed

planes),
(211)fcc is parallel to (110)bcc.

If you plot this out on a stereogram, you’ll see it’s only a
few degrees away from the Kurdjumov–Sachs
relationship.
& The fcc and hcp systems also share an OR in which
the close-packed planes and directions are parallel:

(111)fcc is parallel to (0001)hcp (the close-packed
planes),

½1�10�fcc is parallel to ½1�210�hcp (the close-packed
directions).

If you want to determine an axis-angle pair you
proceed in a similar way. Obtain two indexed beam
directions, B1 and B2, in each crystal, and plot them on
a stereogram. Then you need to determine from the
stereogram which angle brings the directions and
planes from one crystal into coincidence with the
other crystal.

There’s a full discussion of these methods in Eding-
ton’s text; Randle and Ralph summarize the various
methods available to determine boundary crystallogra-
phy and many more examples of ORs are described in
the companion text.

18.12 COMPUTER ANALYSIS

Although you must be able to analyze and index DPs
‘by hand,’ it’s likely that you’ll use one of the many
available software packages, especially if your specimen
is not cubic (see, e.g., Section 1.6 and URLs #1, 4–7).
The main challenge comes when you have to index the
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DP of a new material. Your laboratory should have the
standard reference sources listed at the end of the chap-
ter. The approach simply requires that you collect all the
data you can and then search through the ICDD pow-
der diffraction files, or better still the NIST/Sandia/
ICPD electron-diffraction database (see URL #5),
until you find a match. Yes, it is a lot of work and you
have to remember some rules

& Measurements made on calibrated SADPs will be
accurate to 1–2%. If you think you’remore accurate,
you may eliminate the material you’re seeking from
your database search!

& Check for multiple domains and double diffraction
first. A schematic of such a DP is shown in Figure
18.23. As you can appreciate from the schematic, you
must be careful not to confuse such patterns with
those showing systematic absences.

A strategy for search-and-match procedures has been
given by Lyman and Carr. The goal of the exercise is to
identify all the possible compounds that could produce
yourDP. Then you can use other data (e.g., the chemistry
deduced by XEDS or EELS) to make the final identifica-
tion. Computers not only give us the speed to make such

FIGURE 18.23. Care is needed to recognize diffraction from two similar

domains which appears identical to diffraction from a real structure with a

different symmetry. All the spots lie on a square array which may lead to

erroneous indexingas a100pattern.TheDPactually consistsof separatepatterns

from two overlapping crystals plus double-diffraction spots as indicated.

(A)

(B)

(C)

1

2

5

4 3

FIGURE 18.24. (A) STEM BF image of four grains in Cu. (B) A set of

DPs produced from the grains as the beam scans across them. (C) A grain-

orientation map in which different colors relate to different crystal

orientations with respect to beam direction.
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searches possible, but are also more objective. The proce-
dure has four simple steps

& Obtain reliable data (and do not be too optimistic or
overconfident in your accuracy).

& Search the database for possible matches. With the
right database, chemical information will help.

& Test the matches you find. Are any of them possible
given what you know about your specimen?

& Confirm the identification. Now you can go back to
the microscope and use CBED to explore symmetry
elements, improve your lattice-parameter measure-
ments, etc. (Chapters 20 and 21).

& You should also simulate the DPs to confirm that
the popular software packages do reproduce what
you see. It’s not a bad idea to carry out this exercise
up front using known areas of your specimen or
standard specimens before you attack the identifica-
tion of unknowns.

18.13 AUTOMATED ORIENTATION
DETERMINATION AND ORIENTATION
MAPPING

In a parallel way to EBSD patterns in the SEM, a
sequence of computer-indexed DPs can be transformed
into an orientation map, which is an image in which the
contrast or color links areas of similar orientation. One
way to do this is via Automated Crystallography for
TEM (ACT) developed by Dingley and available

commercially via EDAX. ACT gives you on-line orien-
tation determination using hollow-coneDF imaging. As
shown back in Figure 9.15A, the beam is tilted and
rotated by the scan coils and strong diffracted beams
travel sequentially down the optic axis as individual
Bragg reflections occur. Digital DF images are collected
at each beam position by an on-axis CCD camera as
each grain diffracts at different orientations and a par-
allel-beam SADP is built up.

When the incident beam satisfies the Bragg con-
dition for a given grain, the corresponding area in
the DF image appears bright. After scanning, the
recorded DF images are examined. In the DF
images, recorded at different incident-beam posi-
tions, a specific pixel always corresponds to the
same area in the specimen. The intensity of each
pixel can be drawn as a function of beam tilt and
rotation angle (i.e., a DP). Adjacent pixels having
the same DP are from the same grain, and thus a
grain map can be built. Figure 18.24A shows four
grains with five grain boundaries in a specimen of
Cu. Figure 18.24B shows a set of reconstructed DPs
from four grains (I–IV). Once the DPs for all the
grains are reconstructed, the orientation relation-
ships across the boundaries (1–5) between the neigh-
boring grains can be extracted and Figure 18.24C
shows the orientation map for the four grains. As in
the SEM it is easy to contemplate combining the
diffraction data with elemental data gathered by
XEDS and/or EELS and carrying out on-line phase
identification.

CHAPTER SUMMARY
This chapter has been concerned almost entirely with experimental technique.

& The stereographic projection is a very helpful aid. It’s similar to projections we use to
map the earth. Diffraction space (like global space) is three-dimensional. The stereo-
graphic projection gives us a two-dimensional map to guide us from pole to pole!

& How do you obtain the best DP from your specimen? Use the right exposure, always
focus the DP and use the best technique (CBED or SAD�Kikuchis) for the size of the
area of interest.

& Take the trouble and time always to get good DPs. You never know when you’ll really
need that information and an extra 9 or 29 seconds exposure time is not long, con-
sidering how long you’ll spend analyzing the results!

& Which type of DP should you use? This depends on the characteristics of your speci-
men and what you want to know.

& Remember that reflections with moderately large values of g should give you the best
value for both d and f, but be absolutely sure that s¼ 0 for your chosen g.

& DPs from polycrystalline, nanocrystalline and amorphous materials contain a wealth
of information. The added value that the various TEM techniques bring over X-ray
diffraction is the spatial resolution and the accompanying images. TEM may not give
the best statistics; XRD only gives statistics.
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& Computer indexing of DPs should be the norm and should be automatic if you know
your material. If you understand the principles discussed here, you will avoid a few
pitfalls.

& Computer control of the beam and computer indexing can also be combined to
form orientation maps of the distribution of different grain orientations or
textures.

Finally, we’ll repeat our word of caution: there is a very famous paper on interstitial
defects in a ceramic and a follow-up paper on vacancy defects. The first paper missed the
1808 ambiguity in the DP! Don’t fall into such good company.
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The database contains chemical, physical and crystallographic information on over 81,534 minerals,
metals, intermetallics and general inorganic compounds. Available in CD-ROM format.

THE COMPANION TEXT
Your skill in indexing diffraction patterns always benefits from practice. Energy filtering can improve the
clarity of your DP but the geometry will be the same.

SELF-ASSESSMENT QUESTIONS
Q18.1 At what grain size does SAD begin to become useful?

Q18.2 How would you excite a higher-order reflection?
Q18.3 Why is it useful to use stereographic projections when analyzing DPs?
Q18.4 In a stereographic projection, are the small or great circles similar to (a) latitude, (b) longitude?

Q18.5 On the stereographic projection, if the zone axis is at the center of the circle, where are the poles of the
planes in the zone?

Q18.6 What kind of ring is seen in the DP from a large-grained polycrystal?
Q18.7 How can we distinguish polycrystalline rings in the DP from those that would be caused by amorphous

materials?
Q18.8 Why does double diffraction complicate understanding a DP?
Q18.9 When would you prefer SAD over CBED and vice versa?

Q18.10 Why might grains smaller than 10 nm pose a problem for diffraction analysis in the TEM?
Q18.11 How can you determine if a specimen is nanocrystalline (�1 nm grain size) or amorphous?
Q18.12 Define the radial distribution function.

Q18.13 How can you determine if a polycrystalline specimen is textured?
Q18.14 When is it a good idea to tilt the beam rather than tilt the specimen?
Q18.15 What is an orientation relationship (OR)?

Q18.16 What is the big advantages of the TEM for studying DPs?
Q18.17 How many DPs do you need to determine an OR?
Q18.18 How can you distinguish between the pattern produced by a textured specimen from one produced by a

random polycrystal?

Q18.19 What is the best way to image an amorphous material?
Q18.20 Will the DP always rotate as we change the camera length?
Q18.21 Why will SAD not distinguish two patterns with 1808 rotation?
Q18.22 When will double diffraction not occur?
Q18.23 What is the easiest way to examine the detail present in a DP?
Q18.24 Why do we tilt from one direction to set a selected specimen orientation?

Q18.25 Distinguish hollow cone and conical diffraction.
Q18.26 Distinguish hollow cone and precession diffraction.

TEXT-SPECIFIC QUESTIONS
T18.1 Describe how you would excite 13g when O is on the optic axis if you can’t see 13g on the screen.

T18.2 Index the DPs in Figure 18.7 to be consistent with the (invisible) Kikuchi lines and with each other (after

you’ve read Chapter 19).

T18.3 We note in Section 18.6 that, unlike those from polycrystalline materials, DPs from amorphous

materials do not show speckle. However, speckle from amorphous materials is the basis for the

technique of fluctuation microscopy. How can these two statements be consistent? (Use the literature
and Figure 18.14 to illustrate your answer.)

T18.4 We note that indexing an OTEDPmight be confusing if certain rings are missing due to the texturing. If

you tilt the sample 308 these rings should reappear. Explain their absence in terms of a three-dimensional
diagram like that shown in Figure 18.10D.

T18.5 Discuss which of the techniques illustrated in Figure 18.14 is better for imaging amorphous carbon.

Suggest regions for the large white area in B. Why are the images in B and C different?

T18.6 Using the diagrams shown in Figure 18.17, explain the difference between Figure 18.17E and F. The

argument is given in the text so try to put it into your own words or use a diagram to summarize the

argument in the text.
T18.7 Is the correct B given in each of Figures 18.19A–D?
T18.8 Sketch Figures 18.21A and C on a sheet of paper so that you can describe how you would tilt from one

pole to the other.
T18.9 Notice that in Figure 18.21D–F you are only told B, not the foil plane. Assuming that B is normal to the

foil plane, determine the foil plane.
T18.10 Can the DP shown in Figure 18.23 actually happen? If so, give an example.
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T18.11 Draw the SADP that you would obtain from a 458 [100] twist grain boundary in Cuwhen viewed normal
to the GB plane.

T18.12 Generate the following DPs (to scale). Show all work and label reflections to a distance of 2g in all

directions about 000. For the following, assume only 1 atom per lattice site and each lattice site contains
the same atom. (A) [123] beam direction; face-centered cubic, a¼ 3.68 Å, lL¼ 50 mm Å. (B) [011] beam
direction; c-centered orthorhombic; a¼ 4.12 Å, b ¼ 3.15 Å, c¼ 5.42 Å, lL¼ 50 mm Å. (C) [113] beam

direction; body-centered tetragonal; a¼ 3.41 Å, c¼ 3.0 Å, lL ¼ 50mmÅ. Generate the following DPs
(to scale). Show all your work and label reflections to a distance of 2g in all directions about 000. For the
following, assume only 1 atom per lattice site and each lattice site contains the same atom. (Courtesy
Lucille Giannuzzi.)

T18.13 Draw the same cubic stereograms as in Figure 18.4 but rotated 908 along the horizontal axis in each case.
T18.14 Identify on Figure 18.5 the following poles: 22�1, 01�1, 21�2. What is different about these three poles

compared with all the others shown in Figure 18.5?

T18.15 Why are the rings of diffracted intensity in the patterns in Figure 18.9 of varying intensity? Under what
conditions could you infer something about the different thicknesses of foils that gave rise to each
pattern?
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19
Kikuchi Diffraction

CHAPTER PREVIEW

In this chapter and the following two, we will discuss two special cases of electron diffrac-
tion. We’ll see that incoherently scattered, divergent beams of electrons give rise to paired
arrays of lines in SADPs, known as Kikuchi patterns. In the next two chapters, we will form
DPs with a convergent rather than a divergent (or, as in the previous chapter, parallel)
beam. These two techniques have a lot in common. In the first, the electrons are initially
being scattered by the atoms in the crystal so that they ‘lose all memory of direction’ and
may also lose energy. We can then think of these electrons as traveling in diverging
‘incident’ directions into the specimen. When the direction is appropriate, these electrons
can be scattered again, this time by Bragg diffraction. In the second technique, we intention-
ally form a convergent beam in the illumination system tomake the electrons incident on the
crystal over a range of different angles and create convergent-beam electron diffraction
(CBED) patterns. In this case, we have another advantage in that we can focus the beam on
a much smaller area of the specimen than in SAD. In both cases the information gained is
enhanced if the specimen is thicker; in the case of Kikuchi patterns it has to be thick enough
for inelastic scattering to occur and in CBED it has to be thick enough for dynamical
scattering. So these next three chapters are particularly useful if you can’t make your
specimen thin enough for almost all other TEM techniques, which generally produce better
quality information if the specimen is thinner.

In this chapter, we will show that these Kikuchi patterns can be used to give us
much more accurate information on the beam direction than SADPs and can also give
a direct link in reciprocal space to the stereographic projection. The topics we’ll cover
are basically experimental (although the phenomenon is well understood theoretically)
and software for computer simulation of Kikuchi patterns is readily available and very
useful. The ideas we develop in this chapter will carry over to the next two chapters
when we discuss higher-order Laue-zone (HOLZ) lines in CBED patterns (where
Kikuchi lines can also appear).

19.1 THE ORIGIN OF KIKUCHI LINES

The reason Kikuchi patterns form is that, if the speci-
men is thick enough, it will generate a large number of
scattered electrons which travel in all (but mainly for-
ward) directions; i.e., they have been incoherently scat-
tered but not necessarily inelastically scattered
(although obviously some of themwill have lost energy).
They are sometimes referred to as diffusely scattered
electrons. These electrons can then be Bragg diffracted
by the crystal planes. The rest of the story is merely
geometry.

We’ll discuss a little of the theory in Section 19.5, but
for now we’ll note the following experimental facts

& Since typical energy losses are small (15–25 eV) com-
pared to E0 (100–400 keV) the diffusely scattered
electrons can be assumed to have the same l as the
incident electrons. This assumption holds as long as
the specimen is not too thick.

& When first formed, most of the diffusely scattered
electrons travel close to the direction of the incident
beam. You learned back in Chapter 3 that inelastic
scattering is ‘peaked in the forward direction.’
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& The ideal specimen thickness will be such that we can
see both the spot pattern and the Kikuchi lines as
illustrated in Figure 19.1. As noted, this is one of the
few situations when thinner is not necessarily better.

& Although this phenomenon is related exclusively to
electron scattering, Kikuchi described it in 1928,
before the development of the TEM; it can occur in
any crystalline specimen.

Diffuse scattering will again be important when we
discuss forming images from these electrons in Section
31.5. We can select a region of reciprocal space contain-
ing diffusely scattered electrons to form the image
and these electrons can be separated from the inelasti-
cally scattered electrons with an energy filter (see Sections
38.2 and 40.5). Your specimen needs to be thick enough
but, if it is too thick, then there will be no Kikuchi lines
because inelastic scattering then dominates and there is
no detectable Bragg diffraction of these electrons. There
will also be no Bragg spots and no useful DP!

19.2 KIKUCHI LINES AND BRAGG
SCATTERING

The geometry of Kikuchi patterns can be understood
from Figure 19.2 which relates what happens in the
specimen to what we see in the DP. Let’s imagine
(Figure 19.2A) that electrons have been generated at
the point shown and are scattered in all directions (but

FIGURE 19.1. An ideal DP containing both well-defined spots and

clearly visible pairs of bright (excess) and dark (deficient) Kikuchi lines.

(A)

(B)

(C) Incident
beam

In the
specimen

Reflecting
plane

In the
DPProjection

 of (hkl) 

90-θB

(hkl)

(hkl)
Kikuchi line

2θB(hkl)
Kossel
cone

(hkl)

(hkl)
Kossel
cone

(hkl) Kossel
cone intersects
Ewald sphere

(hkl) Kossel
cone intersects
Ewald sphere

Kikuchi line

P

FIGURE 19.2. (A) Schematic representation of all electron scattering

localized at a single point in the specimen. In (B) some of the scattered

electrons are diffracted because they travel at the Bragg angle yB to certain
hkl planes. The diffracted electrons formKossel cones centered at P on the

diffracting planes. The lines closest to the incident beam direction are dark

(deficient) and the lines farthest away are bright (excess). In (C) the cones

intercept the Ewald sphere, creating parabolas which approximate to

straight lines in the DPs because yB is small.
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mainly forward). So we draw them as diverging from a
point even though, in fact, they’ll be scattered at differ-
ent points throughout the specimen thickness. Some of
these electrons will travel at an angle yB to the hkl planes
as shown in Figure 19.2B and then be Bragg diffracted
by these specific planes. Since the scattered electrons are
traveling in all directions, the diffracted beam will lie on
one of two cones (Figure 19.2C). In other words, we see
cones of diffracted electrons rather than well-defined
beams because there is a range of incident k-vectors
rather than a single k-vector. We construct the cones
by considering all the vectors oriented at angle yB to the
hkl plane; these are called Kossel cones and the cone
angle (90–yB) is very small (remember, angle really
means semi-angle). There is a pair of Kossel cones for
�g, another pair for �2g and so on.

Since the screen/detector is flat and nearly normal to
the incident beam, the Kossel cones appear as parabo-
las. If we consider regions close to the optic axis, these
parabolas appear as two parallel lines. (Remember how
close to 908 the cone angle is.) We’ll sometimes refer to
this pair of Kikuchi lines as a ‘Kikuchi band’ to include
the lines and the region between them; the contrast
associated with the region between the lines is actually
quite complex (Section 19.6).

We can make another important observation on the
intensity of these lines by considering Figure 19.2 again.
In Figure 19.2B you can see that the scattered beam
which was initially closest to the optic axis, and therefore
themore intense, is farther away from the axis after being
Bragg diffracted. This beam then gives the excess (bright)
line and the other the deficient (dark) line. You can see
that this simple idea really does work in Figure 19.1.

The value of this result comes when we want to index
a pair of Kikuchi lines: if you find a bright line, its
partner must not only be parallel to it but must also be
closer to O, and dark. The pair is separated by 2yB.

The cones shown in Figure 19.2C act as if they are
rigidly fixed to the plane hkl; they are thus ‘fixed’ to the
crystal. We can draw a line half way between the two
Kikuchi lines to represent the trace of the plane (hkl).
Remember our angles are all small. This simple

observation explains why we have a whole chapter on
Kikuchi lines.

The location of the Kikuchi line will also tell us
whether s is positive or negative. We can’t usually
deduce that from the spot pattern.

The distance in reciprocal space between the �g and g

Kikuchi lines is g (not 2g) because the angle between the
two Kossel cones is 2yB. This relationship is very valu-
able for the following reasons

& When the g Kikuchi line passes through the reflec-
tion G, sg = 0 (i.e., the Bragg condition is exactly
satisfied) and the �g Kikuchi line passes through O.
So we can use the Kikuchi lines to set up specific
diffraction conditions exciting specific reflections as
we tilt the specimen (see Figure 19.3). We’ll see later
that we can also use Kikuchi lines to determine the
exact value of sgwhenwe are close to, but not exactly
at, an exact Bragg condition.

& A corollary: if the direct beam is exactly parallel to the
plane hkl, the g and �gKikuchi lines are symmetrically
displaced about O with the g Kikuchi line ‘passing
through’ g/2 and the �g line ‘passing through’ �g=2.

In this latter case, our simple explanation of Kikuchi-
line formation breaks down, because Figure 19.2 predicts
equal intensity in both excess and deficient Kikuchi lines
and they would both, therefore, be indistinguishable
from the diffuse-scattered background. So no Kikuchi
lines should be visible if the beam is exactly down a zone
axis, and this is patently not true. So the full Kikuchi-line
explanation is more complex and (unfortunately)
requires Bloch-wave theory. But we do understand the
process in great detail.

19.3 CONSTRUCTING KIKUCHI MAPS

If instead of just taking pictures of Kikuchi-line pairs, we
assemble amontage of all Kikuchi lines and spot patterns

FOR ANY PAIR OF KIKUCHI LINES
One line corresponds to yB and the other to �yB; one
is the gKikuchi line and the other the �gKikuchi line.
Neither of them is the 0Kikuchi line.

TILTING AND KIKUCHI LINES
If we tilt the crystal through a very small angle, the
Kikuchi lines will move but the intensities of the diffrac-
tion spots will hardly change and the positions of the
spots will not change. So Kikuchi lines are much more
sensitive to beam/specimen tilts than spots in SADPs.

SEEING KOSSEL CONES
What we see in the DP is the intersection of these two
cones with the screen or detector.

KIKUCHI MAP
Making a Kikuchi map is a highly recommended
exercise if you are going to be doing detailed diffrac-
tion-contrast images/SAD experiments because
familiarity with the Kikuchi map will help you to
immediately identify the orientation of your speci-
men on your TEM screen.
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over a wide array of reciprocal space, then we create a
Kikuchi map.

The method for constructing Kikuchi maps is illu-
strated in Figure 19.4A. First, we draw the lines for
the case where the [001] pole is exactly on the optic
axis. The lines are then the perpendicular bisectors of
every g-vector you can find in the ZOLZ. The distance
between each pair of lines is then automatically |g|. We
can then give each line a unique label g.

Next, we can construct the map for the [101] pole.
We start as shown in Figure 19.4B, keeping the
common 020 g-vector pointing in the same direction.
So, the 020 and 0�20 Kikuchi lines are common to
the two patterns. Although the angle between the
[001] and [101] poles is 458, we draw the 020 lines
as parallel and straight because we are always look-
ing at a small segment of the Kikuchi pattern.
Notice that we can define all the distances in terms
of their equivalent angles, as in any DP.

Now we add the [112] pattern. This pattern shares
the 2�20 and �220 reflections with the [001] pole and shares
the �1�11 and 11�1 reflections with the [101] pole. The
corresponding pairs of Kikuchi lines will then also be
common, so we produce the triangle shown in

Figure 19.5A.We can addother poles andpairs ofKikuchi
lines as shown in Figure 19.5B to get the full pattern.

A Kikuchi map for an fcc material is illustrated in
Figure 19.6. The maps are available in the literature for
fcc, bcc, diamond cubic and some hcp materials. Such
maps are mainly from Thomas and co-workers (Levine
et al. 1966,Okamoto et al. 1967, Johari andThomas 1969),
who developed the technique. Edington (1976) presents
several Kikuchi maps in the appendices. Maps can also
be downloaded from the Web using EMS (URL #1).

You can appreciate the value of Kikuchi maps in non-
cubic materials from the map shown in Figure 19.7. The
map has been drawn for Ag2Al, which has the same c/a
ratio as Ti. TheKikuchi bands are labeled (remember that
they correspond to planes). The zone axes are also labeled:
they correspond to directions. Thinking back to our brief
discussion of Frank’s paper on four-index notation in
Chapter 16, you should see an obvious application here.

& For cubic materials you need only the [001], [101],
[111] triangle shown in Figure 19.5B.

& For hcp materials, the angles will generally depend
on the c/a ratio of your material and you’ll need a
larger area of the map.

(A) (B) (C)

hkl

3h3k3l

000 000 000

2h2k2l

FIGURE 19.3. Three two-beamDPs from pure Al, obtained under different tilting conditions. As shown schematically below each figure, in (A) the hkl

spot is at the exact Bragg condition (the excess Kikuchi line goes through hkl). In (B) the 2h2k2l and in (C) the 3h3k3l spots, respectively, are strongly

excited. Note that although we refer to these as ‘two-beam’ DPs, many other diffraction spots are visible.
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& For most non-cubic materials and particularly if
you are working withmonoclinic or triclinic crystals,
it’s not practical to construct the complete map
experimentally. It’s probably easier to become a
metallurgist!

We can use the following procedure to generate a
valuable experimental aid for any material.

& Construct segments of the map to scale as we’ve
illustrated in Figure 19.5B. You can use one of the
software packages to help you in this task.Make two
copies of each map.

& While you’re at the TEM, record the Kikuchi pat-
tern for several special low-index poles along with
the spot pattern.

& Index the DPs consistently.
& Print both DPs for each zone axis at the scale you
used in your line drawing of the Kikuchi map.

& Now add the experimental patterns to the line dia-
grams and you have two very useful experimental
aids. An illustration is given in Figure 19.8.

When discussing Kikuchi maps, we like to use the
road-map analogy. (Repeatedly!) What we just recom-
mended is that you record the maps of the towns with
pictures so that you’ll recognize them. When you’re on
the highway traveling from town to town, you don’t
much care what the road looks like although you do
want to know how far you’ve traveled and how much
farther you have to go.

By now youwill appreciate evenmore the value of the
stereographic projection we introduced in Chapter 18.

(A)

(B)

FIGURE 19.4. (A) To construct a Kikuchi pattern, draw pairs of lines

each bisecting the �g-vectors. For example, when the [001] fcc pole is on

axis, the vector g020 is bisected by the vertical line at H (020); the other

Kikuchi line in the pair is at�H ð020Þ. All other Kikuchi-line pairs can be

constructed for any g-vector. (B) FromoneKikuchi patternwe can extend

the lines to create a second pattern. For example, knowing the [001]

pattern we can construct the [101] pattern since a pair of lines is common

to both. So we draw the 0�20 and 020 lines from the [001] pole 458 to the

[101] pole.

(A)

(B)

FIGURE 19.5. (A) Construction of the [112] pattern from the [001] and

[101] patterns by extending the Kikuchi lines common to each pair of

patterns. The ½111� pair is common to the [001] and [112] patterns and the
�220 pair is common to [001] and [112] patterns. (B) Other poles can be

added such as [011] and [111]. Note that the Kikuchi-line pairs are not

straight lines connecting poles. They are curved because over large angles

their parabolic shape is evident. Nevertheless we draw them as straight

lines where possible.
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(B)(A)

FIGURE 19.6. (A) Experimental Kikuchi map for fcc crystals and (B) indexed Kikuchi lines in the schematic map.

FIGURE 19.7 Part of the Kikuchi map for hexagonal Ag2Al with the principal poles and pairs of lines indexed.
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Use the stereographic projection and the Kikuchi map
together. The stereographic projection concisely sum-
marizes all the relative locations of all the plane normals
and the zone axes. Use the stereographic projection to
relate Storrs and Huntsville, but use the Kikuchi map to
locate the Benton Museum of Art and the Von Braun
Center.

19.4 CRYSTAL ORIENTATION AND
KIKUCHI MAPS

In the previous chapter we showed how you could use
SADPs to estimate the orientation of the beam relative
to the crystal with an accuracy of �38. Using Kikuchi
patterns you can increase this accuracy to �18.

A routine method for orientation determination was
developed by Thomas and co-workers (e.g., Okamoto
et al.); they pioneered the use of Kikuchi maps in TEM
analysis. The beam direction [UVW] lies along the optic
axis O in Figure 19.9. A, B and C are major poles (i.e.,
zone axes) which we can determine by observation and
measurement. Let the indices of A = [p1 q1 r1], B = [p2
q2 r2] and C= [p3 q3 r3]. Having indexed these poles, we
can check our result by measuring the angles a, b and g
between the traces of the planes in Figure 19.9A (which
equals the angle, f, between the plane normals in all
systems); we must calculate each angle using equation
18.3 if the specimen is cubic.

If we measure the distances OA, OB and OC in
Figure 19.9A, we can convert them into angles r1, r2
and r3 (which are defined in Figure 19.9B) by using our
calibrated camera length. If [UVW] is the direction of
the beam, then we can use the same vector-dot-product
approach (equation 18.4 for the cubic case) to give
equations for r1, r2 and r3. Notice we are distinguishing
between r andf (see Section 18.4). The angles a, b and g
in Figure 19.9A are slightly distorted values of (90 –f).

We can solve these three equations for the three
unknowns U, V and W and hence we have B. Finally,
you should always check the sign of B, as we described
in Section 18.10.

(A)

(B)

FIGURE 19.9. In (A) pairs of Kikuchi lines from the reflecting planes

also intercept at points A, B, C. The distances fromO to the points A, B, C

correspond to the angles between the beam direction and the three zone

axes while the angles a, b, g correspond to the angles between pairs of

plane normals. The angle a is between the (h1k1l1) and (h2k2l2) plane

normals, etc. (B) Three reflecting planes in the specimen with traces AB

(h1k1l1), AC (h2k2l2) and BC (h3k3l3), around the direct beam, O; the traces

of pairs of planes intercept at A (AB, AC), B (AB, BC) and C (AC, BC).

SPECIMEN ALIGNMENT
Kikuchi lines transform SADPs from an approxi-
mate to a very precise alignment technique.

FIGURE 19.8. Experimental Kikuchi patterns around three principal

poles in MgO with the common Kikuchi lines between each pole drawn

in. You should compare this figure with the DPs in Figure 18.7.
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It is possible that the DP you have to work with is
not obviously near a zone axis. All is not lost if you can
just find pairs of Kikuchi lines as shown in Figure 19.10.
If you see an excess line you will find the deficient line
quite easily, closer to 000. Now trace these lines in both
directions and you have found the poles. Use your
knowledge of the d-spacings to index the pairs of Kiku-
chi lines. Remember that the zone axis lies parallel to
each plane so it’s defined by where the two plane traces
meet. Now, if you can index three poles, you can obtain
B as in Figure 19.9.

19.5 SETTING THE VALUE OF Sg

Since the Kikuchi lines are ‘rigidly attached’ to the
crystal, they give us a very accurate measure of the
excitation error sg. The diffraction geometry is shown
in Figure 19.11 following Okamoto et al. When sg is
negative, the gKikuchi line is on the same side of g as O;

when sg is positive, the line lies on the opposite side of g.
If you look at Figure 19.10 you’ll see that the bright
diffraction spot at the top LH corner of the DP is under
sg positive conditions (excess Kikuchi line outside the
spot), the bright spot at the middle/upper RH side is
under sg zero conditions (the excess Kikuchi line
through the spot) and the bright spot toward the bottom
of the DP is under sg negative conditions (the excess
Kikuchi line inside the spot).

For high-energy electrons, and knowing the camera
length L, we can write an expression for the angle Z in
Figure 19.11

FIGURE 19.10. To index a DP well away from a low-index zone axis,

extend the Kikuchi lines. The dark lines 1–4 represent the traces of the

diffracting planes which intercept at a pole (P). For Kikuchi lines 1 and 2,

the higher-order extensions are also drawn. From the d-spacings, index

the Kikuchi-line pairs. The angles between the beam direction and the

poles, P, can then be measured directly.

Beam

Specimen

2θB

η

kD

kD
kI

P1

g
ε s

P

Lg

xO

O

L1

K

s > 0
s
g

ε = 0
s = 0

R

excess
at s = 0

deficient
at s > 0

deficient
at sg = 0

at s> 0
excess

Ewald
sphere

Plan view
DP

G

ε =

FIGURE 19.11. The distance between the diffraction spot and its Kiku-

chi line gives a direct measure of s. The angle e is s/g and is zero at the exact
Bragg condition. In the box: measure x, the spacing between O and the

deficient line (or G and the excess line) to determine s.

DO REAL-TIME CRYSTALLOGRAPHY
Normally, while you are at the TEM, tilt along the
different Kikuchi bands until you find the appropri-
ate poles to ease your task later.
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Z ¼ x

L
¼ xl

Rd
(19:1)

where d is |g|�1. The distances x and R are measured on
the photographic negative.

The angle e is given by

e ¼ s

g
(19:2)

Now we can set e = Z to give

s ¼ eg ¼ x

L
g ¼ x

Ld
(19:3)

Again, with our small-angle approximation, the dis-
tance between the excess and deficient Kikuchi lines,
R (the distance g measured on the DP), is equivalent to
2yBL. So, using Bragg’s law, we have

R

L
¼ 2yB ¼

l
d

(19:4)

Hence the expression for s is

s ¼ x

Ld
¼ x

d
� l
Rd

(19:5)

s ¼ x

R

l
d 2
¼ x

R
lg2 (19:6)

We’ll reconsider this equation when we discuss weak-
beam microscopy in Chapter 27.

Ryder and Pitsch have given a method for determin-
ing B using the approach we described in Section 19.4
with the accuracy given by equation 19.6. Their expres-
sion for B is

B ¼ a1 g1j j2 g2 � g3ð Þ þ a2 g2j j2 g3 � g1ð Þþ
a3 g3j j2 g1 � g2ð Þ (19:7)

where ai is given by

ai ¼
Ri þ 2xi

Ri
(19:8)

where R and x are defined in Figure 19.11.

19.6 INTENSITIES

We’ll conclude with a few remarks for further thought

& Tan et al. have shown experimentally that the dis-
tance between a pair of Kikuchi lines may change at
larger specimen thicknesses due to dynamical
scattering.

& Kikuchi lines can also be produced by the backscat-
tered electrons. In the SEM these patterns are termed
electron-backscatter DPs (sometimes EBSPs) and the
technique as EBSD. They were regarded as a curios-
ity until it was shown (see Dingley’s paper) that you
can map out the texture of polycrystalline materials
using these patterns, without thinning the sample.
Not much happened for a decade or more until new
detection systems, using CCD cameras and fast com-
puter algorithms led to the development of orienta-
tion imaging microscopy (OIM) (see Dingley’s
review). As we saw in Section 18.13, similar techni-
ques are available for automatic indexing of TEM
DPs and Kikuchi maps. They aren’t as automated,
nor can they index as many patterns as EBSD soft-
ware because there are usually far fewer thin grains in
our specimens than crystals in an SEM specimen. But
TEM can, in principle, give the interface plane much
more accurately, so the two techniques will become
more complementary with time.

& In the next chapter, we’ll discuss HOLZ lines; HOLZ
lines are very closely related to Kikuchi lines but are
a little more complicated, since the Bragg planes are
always inclined to the direct beam.

& In Chapter 24, we’ll discuss ZAPs, or zone-axis pat-
terns, in images; these ZAPs are, inmany respects, the
real-space version of Kikuchi lines. However, you’ll
see that their physical origin is completely different;
the most important features of ZAPs are not asso-
ciated with incoherent, inelastic or diffuse scattering.

& Bloch waves with vector k1, for example, are more
strongly scattered than those corresponding to
branch 2 of the dispersion surface. Therefore, we
can expect anomalous absorption (see Chapter 24)
to influence the intensity of Kikuchi patterns. Such
effects do in fact lead to excess and deficient Kikuchi
bands. Since we haven’t yet found any use for the
information in these bands we’ll leave them as an
exercise for further reading!

& We mentioned earlier that the contrast between the
Kikuchi lines, i.e., theKikuchi band, is complex. The
contrast is strongly influenced by anomalous
absorption of the Bloch waves which are formed by
coherent scattering of the incoherently scattered
electron, so all is clear.

& There are strong similarities between the Kikuchi
process and the operation of a monochromator in
optics: both select and diffract a particular wave-
length or frequency.

& You can appreciate that the scattering is quite com-
plex by considering what happens when the diffract-
ing plane is exactly parallel to the incident beam: as
we’ve mentioned, the two Kikuchi lines will both be
visible although you might have guessed otherwise.

Back in Chapter 6 we noted that electron ray paths
rotate through the objective-lens field, but in all our
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discussion on diffraction (including Kikuchi lines and
the CBEDpatterns in the next two chapters) we draw all
the electron paths as straight lines, ignoring any rota-
tion. However, particularly in a modern condenser-
objective lens TEM, the lens field is relatively strong
and can introduce a significant rotation into the off-
axis incident and diffracted electrons (we described c/o

lenses and their effects on ray paths back in various
sections of Chapter 9). An interesting consequence of
this effect is that Kikuchi lines in modern TEMs may be
less sharp than in older TEMs, unless you illuminate
only a very small area of the specimen. If you’re in-
trigued by this problem then you must read ‘‘Skew
thoughts on parallelism’’ by Christenson and Eades.

CHAPTER SUMMARY
Pairs ofKikuchi lines define the road and, taken together, the roadsmake up amapof reciprocal
space. However, the key is different from real-space road maps because in our Kikuchi maps,
narrow roads are the most important! What is the relevance of the roadside curbs? Well, they
define the roads and tell us when we are standing on them, but we are not too interested in their
detailed appearance.You should by nowbe under the (correct) impression that we viewKikuchi
lines and maps as an invaluable tool for the microscopist. The key points are

& The Kikuchi lines arise from Bragg diffraction of divergent, incoherent
electrons scattered within the specimen.

& The Kikuchi lines consist of an excess (bright) line and a deficient (dark) line.
In the DP, the excess line is farther from the direct beam than the deficient line.

& The Kikuchi lines are effectively fixed to the crystal so we can use them to
determine orientations accurately.

& The trace of the diffracting planes is midway between the excess and deficient lines.
& We can use the Kikuchi lines to set up specific (e.g., two-beam) diffracting conditions
which are central to diffraction-contrast imaging.

& We can control and determine the value of sg by measuring the separation between the
gKikuchi line and the G reflection (the separation is 0 when sg =0). The precise value
of sg is also very important in controlling diffraction contrast.

Kikuchi lines and maps are two of the most important aids you have when orienting (or
determining the orientation of) crystalline specimens. Knowing the orientation of your
specimen is essential for any form of quantitative TEM, whether you’re analyzing disloca-
tion Burgers vectors by diffraction contrast, imaging grain boundaries with lattice resolu-
tion or measuring chemistry variations by EELS or XEDS. Kikuchi maps are especially
useful when combined with the map of zones and poles (directions and plane normals) on
the stereographic projection. Use a computer to check or to assist you in constructing such a
map for your material but if you’re doing any serious crystallography, never leave home or
sit at your TEM without a map to guide you.

IN GENERAL

Edington, JW (1976) Practical Electron Microscopy in Materials Science, Van Nostrand-Reinhold New

York. Part 2 of the book is still an excellent source of guidance if you are doing hands-on DP

acquisition and analysis and the Appendix has great Kikuchi maps.
Schwartz, AJ, Kumar, M and Adams, BL (Eds.) (2000) Electron Backscatter Diffraction in Materials

Science, Springer NY. Kikuchi patterns in the SEM: an insight into what could really be done in terms

of orientation determination in TEM, if we put our minds to it.

Thomas, G (1978) in Modern Diffraction and Imaging Technique in Materials Science p 399 Eds.

S Amelinckx, RGevers and J Van Landuyt North-Holland Amsterdam. Still the best reference because

no one has really done anything of significance withKikuchi patterns in TEM since Gareth Thomas, 40

years ago (check out the other references below).
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Christenson, KK and Eades, JA 1988 Skew Thoughts on Parallelism Ultramicroscopy 26 113–132.
Dingley,DJ1984On-LineDetermination ofCrystalOrientation andTextureDetermination in anSEM. Proc.Royal

Microsc. Soc. 19 74–75. The idea of texture mapping developed for the SEM can be applied to the TEM.
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URLS
1) http://cimewww.epfl.ch/EMYP/comp_sim.html

THE COMPANION TEXT
The main chapters in the companion text that relate to this topic are those on CBED and EFTEM.

SELF-ASSESSMENT QUESTIONS
Q19.1 When viewing different regions of your specimen, the intensity of the Kikuchi lines changes. Could the

reason be the variation in thickness?
Q19.2 Why is the Kikuchi line nearer 000 brighter than its partner that is farther away?
Q19.3 You record a series of DPs as you tilt along aKikuchi band. You paste the DPs together but the Kikuchi

lines appear to be slightly curved Kikuchi lines, but Kikuchi lines are drawn straight. Explain.
Q19.4 When viewing another DP, a pair of parallel lines is present where one line is dark and the other is bright.

Why does this happen, and how do we name each line?

Q19.5 You’re writing your dissertation on the beach in Aruba so you don’t have crystallography software
available but the crucial DP of a certain fcc specimen stored on your laptop is only showing Kikuchi
lines. Can you determine the orientation? If so, how can you do it?

Q19.6 Where is the g Kikuchi line relative to O and G if the excitation error, sg, is less than zero?

Q19.7 How does the distance between Kikuchi lines vary with specimen thickness?
Q19.8 How accurately can you determine orientations using Kikuchi lines?
Q19.9 Will a conventional TEM with a LaB6 filament give better Kikuchi lines than a new FEGTEM at the

same orientation and thickness?
Q19.10 We say that Kikuchi lines arise due to incoherently scattered electrons? This statement is a little

oversimplified. Why?

Q19.11 Why are Kikuchi patterns used for setting the value of s?
Q19.12 What are Kossel cones?
Q19.13 What is the distance between a pair of Kikuchi lines?

Q19.14 Can you just read off s from where the Kikuchi line cuts the systematic row?
Q19.15 Why is there an ideal thickness for a specimen when viewing Kikuchi diffraction?
Q19.16 How can we trace the location of a plane from Kikuchi lines?
Q19.17 Briefly describe how you can find poles using Kikuchi lines.

Q19.18 Is EBSD possible in the TEM?
Q19.19 What is the distance in reciprocal space between the �5g and +5g Kikuchi lines?
Q19.20 How do HOLZ lines and Kikuchi lines differ? (Read Chapters 20 and 21 before answering this.)

Q19.21 Construct a Kikuchi map where the [001] pole is exactly on the optic axis.
Q19.22 Why do we only need the Kikuchi map for the [001], [101] and [111] triangle in fcc crystals but have to

map much more of reciprocal space for hcp, and what is the largest area we would have to map for any

crystal?

TEXT-SPECIFIC QUESTIONS
T19.1 Assuming that Figure 19.1 was obtained from a cubic material, determine the approximate orientation

of the specimen.
T19.2 Redraw Figure 19.4A for the [011] and [111] poles but arrange for two low-index reflections to be excited

in each figure.
T19.3 Consider Figure 19.6. Sketch and label the Kikuchi bands which pass through the 115 pole.
T19.4 Using Figure 19.6 draw consistent DPs for the 102, 116 and 013 poles as you would expect to see them as

you tilt your fcc sample. (So you have to align them appropriately too.)
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T19.5 Using Figure 19.7 draw consistentDPs for the 1�213, 1�102 and 0�112 poles as youwould expect to see them
as you tilt your hcp sample. (So you have to align them appropriately too.)

T19.6 In Figure 19.10, determine what the pole is and how far it is inclined relative to the electron beam. How

would you tilt the sample to bring P onto the optic axis (assuming O is on the optic axis)?
T19.7 Consider Figure 19.10. Identify and index 10 pairs of Kikuchi lines (even if you can only see one of the

lines).

T19.8 In Figure 19.11, where are the diffracting planes?Why can we see the Ewald sphere in two places?Which
one is correct as the diagram is drawn?

T19.9 Sketch Figure 19.7 for Be showing the 1�102, 1�213, 0�223 and �1�123 poles. Now superimpose on this figure
the one for Ti as if the Ti had grown in perfect alignment on 0001 Be.

T19.10 Choose a 010 sample of olivine and construct the Kikuchi pattern to a radius of 458 about this pole.
Label the Kikuchi bands and sketch the main DPs you will find. (You should use theWeb or ICDD files
to help you with this question.)

T19.11 An Al-crystal (fcc) is observed exactly along a [011] direction. Draw the corresponding DP with the
associated Kikuchi lines (bands). After a small tilt of the crystal, the Kikuchi lines pass through three of
the low-index reflections. How far has the crystal been tilted and what was the tilt axis? The lattice

constant for aluminum is 0.405 nm. The wavelength for the electrons is 0.0025 nm. (Courtesy Anders
Tholen.)

T19.12 Explain how you would deduce the accelerating voltage of the TEM using a DP from Si.
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20
Obtaining CBED Patterns

CHAPTER PREVIEW

We know that SAD, while giving us useful information about the specimen, has two severe
limitations.

& We have to be very cautious in interpreting SADPs from areas which are < �0.5 mm in
diameter because the information in the pattern may not be limited to that region. This
scale is still large compared to the dimensions of many crystalline features that interest us
in materials science and much larger than nanotechnology dimensions.

& SADPs contain only rather imprecise 2D crystallographic information because the
Bragg conditions are relaxed for thin specimens and small grains within the specimen
(see Chapter 17).

The technique of CBED overcomes both of these limitations and also generates much
new diffraction information which we will introduce to you in Chapter 21 and expand in
greater depth in the companion text.

In this chapter, we will show you how simple it is to use the versatility of modern TEMs
to create a range of CBEDpatterns containing a variety of very useful contrast effects such
as higher-order Laue-zone (HOLZ) spots and lines. In Chapter 21 and the companion
text, you will see why these HOLZ features are so useful. They can give us a complete 3D
crystallographic analysis of our specimens. By now you are well aware that a major
advantage of doing anything in TEM is that we can get the information at high spatial
resolution at the same time as we are looking at the TEM image. CBED is no exception.
For most TEM operations, thinner specimens are better, but CBED patterns, like Kikuchi
patterns, are generally more useful from thicker specimens in which dynamical scattering
is occurring. Finally, as with many other sophisticated analytical techniques, CBED uses
various obscure initials and acronyms which we will attempt to clarify as we introduce
them.

20.1 WHY USE A CONVERGENT BEAM?

Historically, CBED is the oldest electron-diffraction
technique used in the TEM. It was originally developed
by Kossel and Möllenstedt, well before LePoole devel-
oped SAD. While SAD is the classic way to relate the
diffraction-contrast information in the TEM image to
the specimen orientation, it has a notable disadvantage.
Remember, we saw back in Chapters 9 and 11 that the
diameter of the smallest area you can select by SAD is
� 0.5 mm, with an uncertainty of similar dimensions.
However, if you have an intermediate-voltage HRTEM
with a very low Cs you may be able to extend the range
of SAD to analyze areas �100 nm in diameter, which is
still too large for examining any nanoscale material

(particles, films, devices) as well as all crystal defects
and most second-phase precipitates which influence
the properties of conventional engineering materials.
All these features are much smaller than 0.1 mm. As
we described back in Figure 9.4, one way we can over-
come this limitation is to use a convergent beam of
electrons. The region sampled by the convergent beam
is a function of its size and the beam-specimen interac-
tion volume, which increases with specimen thickness
but is generally a lot smaller than the spatial limitations
of SAD. In fact, several so-called micro- and nanodif-
fraction methods have been developed over the past
40 years to overcome the spatial-resolution limitations
of SAD in a TEM. But CBED is by far the most
simple and versatile of these techniques and easily
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penetrates the nanotechnology domain (< 100 nm), in
fact all the way down to single unit-cell dimensions
(truly nanodiffraction).

In addition to offering improved spatial resolution,
CBEDpatterns contain awealth of crystallographic and
other data which are difficult or impossible to obtain via
SAD and we’ll describe much of this new information in
the next chapter and in the companion text.

With such capabilities, CBED has transformed dif-
fraction in the TEM from the ‘poor relative’ of X-ray
and neutron diffraction to a more versatile and, in some
senses, a unique technique. CBED has already begun to
intrude significantly into XRD’s traditional domain of
quantitative crystallography, as a cursory reading of the
contents of Acta Crystallographica will show.

Some would argue persuasively that CBED should be
the diffraction method of first choice when operating a
TEM and this is not surprising given all the new informa-
tion you can access via CBED. However, much of diffrac-
tion theory, indexing methods, etc., were historically
developed for parallel-beam SADPs, and standard BF/
CDFandother imaging techniques build on suchpatterns.
So we have chosen to construct the text starting with SAD
and treat CBED as an ‘enriched’ variant of SAD.

In this chapter, we will concentrate on how you can
control the experimental variables to acquire and index
CBEDpatterns. In the next chapter, wewill introduce to
you, among other things, how to perform the basics of
what is known as ‘electron crystallography.’ All the
advantages of CBED can simultaneously be coupled
with TEM images and spectrometry data thus allowing
you to achieve a remarkable degree of characterization
of the same region of your specimen at the same time.

There are two potential drawbacks which you
should always keep in mind

& The focused probe may generate contamination
which can cause localized stresses.

& The convergent beam may heat or damage the cho-
sen region of your specimen.

In early probe-forming TEMs, the operator only had
a few seconds to observe and record the CBED pattern
before carbon contamination built up to a thickness
which masked all the information. Modern TEMs, par-
ticularly UHV instruments, should not suffer from this
problem (see Chapter 8). You should be able to study
small regions of a clean specimen for many minutes or
even hours without contamination.

As we described in Chapter 4, beam heating/damage
may be a problem in materials with poor thermal con-
ductivity but this can be minimized by applying a thin
conductive coating or, preferably, by using a liquid-N2

cooling holder. This latter approach has other advan-
tages for CBED, as we’ll see.

You will probably find that it is experimentally easier
to do CBED rather than SAD. SAD is used if your
primary interest is the image. In CBED, there’s no insert-
ing and removing of diaphragms andmore information is
almost always obtained, invariably from smaller regions.
You might not find this fact reflected in your reading of
the TEM literature, but remember that researchers
(including the authors) often use the technique with
which they are most familiar, rather than the best one
available. It’s also appropriate here to mention why we
include the ‘E’ inCBEDbut rarely in SAD; it’s only sowe
can pronounce the initials as ‘‘see-bed.’’ (Happily no one
ever says ‘‘sad’’ or ‘‘said’’ for thatmatter.) But if the world
were logical then all men would ride sidesaddle.

20.2 OBTAINING CBED PATTERNS

First, which holder should you use?As with SAD you will
need to do a lot of tilting so a double-tilt holder is
required. Some of the diffraction phenomena we will
be describing become more visible if the specimen is
cooled to liquid-N2 temperatures. If you want to carry
out XEDS and CBED simultaneously then you’ll also
need a low-background holder.

Single-tilt rotation holders can sometimes be advan-
tageous (e.g., to line up interfaces in certain directions)
and again are best if they can be cooled and are low
background (for XEDS).

Second, which kV should you use? Indiffraction,unlike
most other TEM techniques, there is often an advantage to
using lower kVs since the elastic-scattering cross section is
higher. So the patterns are more intense. Also the Ewald
sphere ismore curvedat lowerkVsand so it interceptsmore
electrons scatteredat higher angles than those in theZOLZ.
However, higher kVs give higher-resolution information
from smaller volumes of your specimen and you can ‘see’
through thicker specimens. So you may have to compro-
mise and gather patterns over a range of kVs.

CONTAMINATION
Most contamination is caused by the specimen-
preparation process or your careless handling of
your specimen.

THE CBED ADVANTAGE
. . .over all other diffraction techniques is that most of
the information is generated from minuscule regions
beyond the reach of other diffraction methods. THE CBED HOLDER

A double-tilt, cooling, low-background holder is
really useful for CBED.
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Third, how thick should your specimen be? As we
already mentioned, unlike most other TEM techniques,
thicker specimens can bemore useful than thinner speci-
mens since more dynamical scattering occurs. Much of
the undesirable diffuse scattering that hides the dynam-
ical information can be filtered out in an EFTEM (much
more about this later and in Section 38.2).

20.2.A Comparing SAD and CBED

Now let’s consider the differences in the electron optics of
SAD and CBED. In SAD the electron beam incident on
your specimen is parallel (fixed incident vector k) and
relatively large (usually �1–10 mm in diameter). In
CBED, the beam is convergent (range of k vectors) and
relatively small (usually �1–100nm in diameter) as
shown inFigure 20.1. (Compare this situationwithKiku-
chi patterns which are generated by a divergent beam of
electrons within the specimen.) We’ve already seen in
Chapters 11 and 16 that parallel illumination means
that the SADP consists of an array of sharp maxima (or
spots) in the BFP of the objective lens and, as mentioned
inChapter 9, the beam convergence inCBEDgives rise to
a pattern of disks of intensity. Figure 20.2A shows an
SADP from pure Si and Figure 20.2B is a CBED pattern
from a much smaller region of the same Si specimen.
While it isn’t obvious that the CBED pattern comes
from a smaller region of the specimen (i.e., has better
spatial resolution), you can certainly see that it contains a
wealth of contrast detail not present in the SADP. The
dark lines within the 000 disk and between the diffraction

disks are HOLZ effects which we’ll return to many times
throughout this and the next chapter. Converging the
beam, in effect, opens up a greater angular range of
reciprocal space for you to look into and in doing so it
reduces the angular resolution of the DP (which is not
something we worry about too much).

FIGURE20.1. Ray diagram showingCBEDpattern formation. If the c/o

lens system focuses the beam at the specimen, the illuminated area is very

small compared with parallel-beam SADP formation. A convergent beam

at the specimen results in the formation of disks in the BFP of the

objective lens.

(A)

(B)

FIGURE 20.2. (A) SADP from [111] Si showing the first few orders of

diffraction spots and no visible Kikuchi lines. (B) CBED pattern from

[111] Si showing dynamical contrast within the disks as well as diffuse

Kikuchi bands and sharp, deficient HOLZ lines.

RELATING SAD AND CBED
You can imagine CBED as magnifying the informa-
tion within the spots in the SAD. Like SAD, CBED is
most useful when you either orient the beam along a
zone axis in the crystal to give a symmetrical zone-
axis pattern (ZAP) or when you tilt to strong two-
beam conditions. Unlike SAD, CBED is also even
more useful when the probe is deliberately under- or
overfocused.
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From Figure 20.1 you can see that we need a con-
denser/objective (c/o) lens (i.e., a strong upper-objective
polepiece) to create a convergent beam, so any probe-
forming TEM or dedicated STEM can generate such
patterns. We’ve already described the lens systems and
ray diagrams associated with forming a convergent beam
in Chapters 6 and 9, so here we will emphasize the experi-
mental variables that you can control. The various steps
we describe below are covered in far greater detail, both
operationally and in terms of extraordinarily detailed ray
diagrams, in the essential text by Morniroli. We’ll start
with TEM mode and then describe STEM operation.

20.2.B CBED in TEM Mode

It’s a good idea to start practicing CBED with a thin,
single-crystal Si specimen or a stainless steel foil with
large grains, since these specimens give immediately
useful patterns containing many of the features that
we’ll be describing (without the need for cooling). The
Si is a little easier since the parent wafer will be in a
specific orientation such as<111> and you’ll invariably
get a pattern like Figure 20.2B.

When you converge the beam in image mode, you’ll
lose any useful image contrast and you’ll just see a
bright spot on the TEM screen or computer display.
But if you aligned the condenser system correctly then
the beam will be focused on the region you chose. You
will develop your own procedure as you gain experience.
Basically the approach is as follows:

& Start with your specimen in the eucentric plane, as
usual. Weaken C2 to give a broad, parallel beam,
then focus an image with the feature from which you
want to obtain the CBED pattern in the middle of
the screen. It helps if you can do this without the
objective diaphragm inserted. If you need it, then
you’ll have to take it out later (see below).

& Select a largeC2aperture about 100–200mmindiameter,
carefully center it, then adjust the C2 lens to converge
the beam to a focused spot on the area of interest.

& Keep C1 weakly excited to give a relatively large
spot, about 100 nm FWTM (see Chapter 5) which
should contain sufficient current to give a high-
intensity pattern.

& Select a small camera length, < 500 mm to give a
wide-angle view of the pattern.

& To observe the CBED pattern, just switch to diffrac-
tion mode, making sure the objective and SAD dia-
phragms are retracted.

Remember that you control the minimum illumi-
nated area on the screen (i.e., the beam diameter at the
specimen) by the strength of the C1 lens, so after these
initial steps, you might want to select a smaller probe
size by increasing the C1 strength.

20.2.C CBED in STEM Mode

You should first get a focused STEM image of the
specimen as we described in Section 9.4.

The procedure is quite simple because in STEM
you’re always operating with a focused probe and
you don’t have imaging-system diaphragms to worry
about

& First, stop the beam scanning (i.e., select ‘spot’ mode
on the STEM control system).

& Second, position the spot on the STEM screen on the
region of interest.

A CBED pattern should then be visible on the TEM
screen, but to see it you may have to remove the STEM
detector if it sits above the TEM screen, or lower the
TEM screen if the detector is below. The CBED pattern
is present because the TEM is operated in the diffraction
mode during STEMoperation. As before, youmay have
to reduce L to ensure that several orders of diffraction
maxima are visible on the screen. The other variables are
the same, except that in STEM, the C2 lens in some
TEMs is automatically switched off. This means that
the C2 aperture alone governs a and you can only focus
the pattern with the objective lens.

In a DSTEM you can see both image and DP at the
same time because the CBED pattern can be viewed by
introducing a screen after the last post-specimen lens
and viewing this screen with a TV camera. A hole in the
screen allows any selected portion of the pattern to
travel through the EELS to the BF detector and thus
both image and DP can be viewed simultaneously. If
you don’t have post-specimen lenses then you can’t vary
L; the CBED pattern is then viewed either directly using
a TV camera to image the BFP of the objective lens or by
scanning the pattern across the BF detector using post-
specimen scan coils (see Section 21.8).

If you send the CBED pattern through the EELS
before viewing it, then you can switch on the EELS and
use it to filter out energy-loss electrons, or form the
patterns with electrons of a specific energy. Energy-
filtered CBED (which you can do in a TEM as well as
a STEM) is a most powerful technique, as we’ll see (look
ahead to Figure 20.10).

The choice of operating mode then is really up to
you; TEM and STEM both have their advantages.

STEM AND CBED
In TEM you can’t see the area of the specimen you
have chosen without spreading the convergent beam;
in STEM you can always scan the convergent beam
to see the image.
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20.3 EXPERIMENTAL VARIABLES

To form CBED patterns, you have to create a small
(< 100 nm) beam with a convergence semi-angle (a)
�10 mrads. There are at least five microscope variables
you need to control when forming a CBED pattern

& The beam-convergence angle a (remember, we mean
semi-angle)

& The camera length L (i.e., the magnification of the
pattern)

& The size of the beam (the probe diameter)
& The thickness of the specimen
& The focus of the pattern (under/over or exact)

The last variable is the most complex because there
areCBED techniqueswhich require focused patterns and
those where we deliberately defocus the beam out of the
specimen plane to gain other advantages. So we’ll deal
with this last variable separately. You can also change the
kV if you want and as we noted above, low kV gives
better contrast, but this is more than offset by the drop in
gun brightness and the increased beam spreading. So, for
materials specimens, most CBED is done at the highest
kV, as with most other TEM techniques.

20.3.A Choosing the C2 Aperture

After you’ve read the next few sections you’ll probably
conclude that any full CBED study should include pat-
terns taken with a range of camera lengths, a range of
exposures, a range of C2 apertures and that the more C2
apertures you have in your TEM the better. You’ll be
right on all counts!

Once the CBED pattern is visible on the screen you
can adjust a by changing the C2 aperture, making sure
to center the aperture you finally choose. The size of the
diffraction disks depends on a as shown in Figure 20.3
(go back and check equation 5.6). Let’s start by choos-
ing a small aperture so we get a pattern of discrete disks,
similar to an SADP and we’ll use the terminology first
introduced by Steeds.

To get a K-M pattern you must select a C2 aperture
such that the disk size (governed by a) is less than the
spacing of the disks (governed by yB) for the particular
specimen and orientation. Typically, the Bragg angle is
a few milliradians, and C2 apertures in the 10–50mm
range will usually ensure that you have satisfied the K-M
conditions.

If a is large enough for substantial overlap of the
disks to occur such that individual diffraction maxima
are no longer discernible, then the term ‘Kossel pattern’
is used (although this can cause confusion with the
classic use of the term for geometrically similar X-ray
patterns). Figure 20.3A–C shows a series of ray dia-
grams illustrating the transition from a K-M pattern
to a Kossel pattern by increasing 2a. Equivalent experi-
mental patterns from pure Al are shown in Figure
20.3D–F. The patterns in Figure 20.3 were all taken at
a small camera length and, although the contrast is not
particularly strong, you can clearly see rings of intensity
which arise from electrons scattered to quite high angles
(�108). We’ll continue to read more about these HOLZ
diffraction effects throughout this chapter.

Kossel patterns are most useful when viewed with a
small camera length (see next section) because they dis-
play a relatively extensive area of reciprocal space, and
the large value of a gives rise to Kikuchi bands. For
reasons we’ll describe in Section 20.7, Kikuchi lines are
much more prevalent in CBED than in SADPs and
don’t require the usual thick specimen. As we described
in Chapter 18, the Kikuchi bands intersect in the center
of the pattern when the beam is incident down a zone
axis, as you can see in Figure 20.3F. Thus it is very easy
for you to tilt to a particular zone axis, simply by follow-
ing the bands until they intersect. So, to form aZAP, it is
best to start at very smallLwith a large a. Later, you can
worry about the best choice of C2 aperture, best choice
of L and focusing the pattern. Because these Kossel
patterns cover a large angular range in reciprocal
space they are also an example of a whole class of
large-angle CBED or LACBED patterns (see Section
20.4.B below) in which we defocus the beam to enhance
the contrast compared with the Kossel patterns.

Because we need to be able to vary a, a range of C2
apertures from about 10 mm up to 200 mm is desirable,
consistentwith the needs of other techniques.A reasonable
choice if you have only three C2 apertures: one of about
200 mm for routine TEM, EELS and Kossel patterns, a
50–70 mm ultra-thick aperture for XEDS (which can also
be used for STEM imaging and someK-Mpatterns) and a
10–20 mm aperture for most K-M patterns. Some TEMs
provide more than three apertures. More is better!

Because the C2 lens is excited in TEMmode, you can
use it to change a; if you do, the objective lens has to be
changed to maintain a focused pattern. You need to
adjust C2 if you change the beam size with the C1 lens
or if you want a value of a between those given by the
fixed C2 apertures.

KOSSEL AND MÖLLENSTEDT
The pattern of non-overlapping disks is a Kossel-
Möllenstedt (K-M) pattern. The pattern of com-
pletely overlapping disks is a Kossel pattern.

STAY IN FOCUS!
Use the specimen-height (z) control to maintain the
specimen in the eucentric plane as you tilt. A compu-
ter-controlled stage is a great advantage.
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If you need to know the value of a, you should use a
known crystal to calibrate its variation with C2 aperture
size for typical C2 lens excitations, as we described back
in Section 9.1 and in equation 5.6.

20.3.B Selecting the Camera Length

The choice ofL depends on the information that youwant
to obtain from the pattern and it’s easy to be confused
because L controls the magnification of the DP.

Typically we adjust the post-objective lenses in the
imaging system to give L> 1500–6000mm when we
want to observe detail in the 000 (BF) disk at the highest

possible magnification. We reduce L to < 500 mm to
view the low-magnification pattern, sometimes called
(not surprisingly) the ‘whole pattern’ (WP) that contains
electrons scattered out to high angles. Figure 20.4 shows
three CBED patterns obtained over a range of L and
you can see that if we start at a highLwe can only see the
000 disk (Figure 20.4A), then we see the array of ZOLZ
disks that is equivalent to an SADP (Figure 20.4B) but
at the smallest L the HOLZ diffraction effects that we
just mentioned become visible as a ring of intensity at
high angles (Figure 20.4C). So it’s often necessary to
record your CBED patterns over a range of L (in addi-
tion to a range of a).

(A)

(D) (E) (F)

(B) (C)

Kossel-Möllenstedt
pattern

Thin
specimen

Small
2α Medium

2α
Large

2α

Kossel
pattern

FIGURE 20.3. (A–C) Ray diagrams showing how increasing the C2 aperture size causes the CBED pattern to change from one in which individual disks

are resolved (K-Mpattern) to one in which all the disks overlap (Kossel pattern). (D–F)You can see what happens to experimental CBEDpatterns on the

TEM screen as you select larger C2 apertures.
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In dedicated STEMs that don’t have post-specimen
lenses, the CBED pattern is projected onto the BF
and/or ADF detector at a fixed magnification.

20.3.C Choice of Beam Size

We’ve already mentioned that you should start with a
reasonably large beam with enough current to give a
good intense pattern on the screen. Of course, a large
beam size doesn’t help if the crystal you’re trying to
analyze is small. The volume sampled by the beam defines
the spatial resolution and so it is important to control the
beam diameter. For the thinnest specimens, spatial resolu-
tion is close to the beam size but, in thicker specimens,
elastic scattering will spread the beam and degrade the
resolution in a manner similar to XEDS (see Chapter
36). Using the thinnest specimens and an FEG, CBED
patterns can be obtained from extraordinarily small
regions; we’ll see in Section 21.8.B that sub-nanometer
diffraction is possible. However, there is a drawback to
using the thinnest specimens because they don’t exhibit
dynamical-diffraction effects which, as you’ll soon see, are
really useful.

20.3.D Effect of Specimen Thickness

If your specimen is very thin youmay have kinematical-
diffraction conditions. Then the diffraction disks have a
uniform intensity and are devoid of contrast, as shown
in the ZAP in Figure 20.5A.Moving to a thicker area of
the specimen in the same orientation transforms the

pattern from an array of kinematically bland disks to
a display of striking dynamical contrast (Figure 20.5B),
which we’ll discuss in great detail. So to get themost out
of a CBED pattern, your specimen should be thicker
than one extinction distance (see Chapter 16). As we’ve
now mentioned many times, this requirement differs
from that of almost all other TEM techniques, such as
HRTEM, XEDS and EELS where the best information
is obtained from the thinnest foils. So if your specimens
are too thick for anything else, you can almost always
get something useful out of them with CBED! As we’ll
discuss in Section 20.5, you can always energy-filter
your CBED patterns from thick specimens and reduce
the diffuse-scattering background to enhance the useful
dynamical contrast.

20.4 FOCUSED AND DEFOCUSED CBED
PATTERNS

There are times when you need to focus the CBED
pattern and times when you have to defocus it. If you
think about it, a focused CBED pattern will always
come from the smallest possible region of your speci-
men and if you don’t focus your patterns you will miss
a lot of the fine detail! However, if the beam is defo-
cused then what happens is that some image informa-
tion appears in the CBED pattern (in an equivalent
way to creating multiple DF images, which we used
to calibrate the SADP rotation back in Section 9.6).
Thus, in defocused CBED techniques we sample both
direct and reciprocal space. In addition, slightly defo-
cusing the objective lens increases the contrast in the
patterns. Both of these advantages turn out to be par-
ticularly useful for direct analysis of crystal defects
such as dislocations and grain boundaries using large-
angle CBED (LACBED).

(A) (B) (C)

FIGURE 20.4. Decreasing the camera length,L, increases our view of reciprocal space. (A) Starting at highL, we see a CBEDpattern containing only the

000 diffraction disk. AsL decreases, we see in (B) the distribution of electrons in the ZOLZ, similar to a typical SADP.At the shortest camera length, (C) a

ring of HOLZ intensity is faintly visible surrounding the bright ZOLZ disks. Typically, we can record electrons scattered over an angular range of� 108.

LARGE L, SMALL ANGLE
A large L gives a high-magnification view of the
pattern but only spans a small angular range of recip-
rocal space.
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20.4.A Focusing a CBED Pattern

Your TEM image is focused if your specimen is at the
eucentric height and you can adjust the C2 lens to form
the smallest spot on the TEM screen before switching to
diffraction mode. To focus the CBED pattern

& Select K-M conditions (choice of C2 aperture) and
choose a value of L so you can clearly see the 000
disk.

& Deliberately underfocus (weaken) the objective lens
until a BF image is visible in the disk. This is because
the beam is now spread at the plane of the specimen;
see Figure 20.6A and the equivalent ray diagram
back in Figure 6.5C.

& Strengthen the objective lens. As the beam crossover
moves toward the specimen plane the image expands
to higher magnifications until it goes through an
inversion point at exact focus (see Figure 20.6B,
which is equivalent to Figure 6.5B).

& Overfocus and again you can see a BF image in the
000 disk, inverted with respect to the underfocused
image (Figure 20.6C). As you can see in Figure 20.6B
there is non-spatial (i.e., diffraction-contrast) infor-
mation in the 000 disk when you are at focus. (As
we’ll see in the next section, there are in fact several
CBED techniques which deliberately use either an
under- or overfocused beam).

If you leave the objective-lens current fixed and
focus the beam on the specimen by adjusting C2
you’ll see a similar effect to that shown in Figure
20.6, because the two lenses are coupled in a c/o
system. If you use the second (non-eucentric) tilt
axis or move to another region of the specimen,
you will probably have to refocus the pattern with
the z control, unless you have a stage that is fully
computer controlled.

The CBED pattern also has to be correctly focused in
the BFP and you can do this in the conventional manner
using the intermediate-lens fine focus to sharpen the image
of the C2 aperture. As you’ll see, you can also defocus the
pattern by moving the specimen above or below the
eucentric plane and this is just fine, unless you need to
tilt the specimen to set up specific diffraction conditions,
in which case the loss of eucentricity can make tilting
tedious because the image will shift as you tilt.

20.4.B Large-Angle (Defocused) CBED Patterns

The reason we want to defocus the objective lens is that in
some cases, aswithTEMimages, the contrast isminimized

(A)

(B)

FIGURE 20.5. (A) CBED pattern under kinematical conditions. Such

patterns give us no more information than SADPs, and their only advan-

tage over SAD is that they come from a smaller region of the sample. (B)

CBED pattern from a thicker area of the same specimen in (A) showing

detailed dynamical-contrast phenomena.

OBJECTIVE LENS CURRENT
Know the value of the objective-lens current
that focuses the beam at the eucentric plane in
your TEM. If your CBED pattern is focused
at a different value, then adjust the lens current
and refocus with the z control to maintain
eucentricity.
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at exact focus. This is clear if you go back and look at
the focusedKossel pattern inFigure 20.3F.At exact focus,
the defect and excess Kikuchi lines overlap and reduce the
overall contrast as shown in Figure 20.7A (although at the
edge of the pattern, (i.e., where the electrons are traveling
far off axis.) spherical aberration improves the contrast; a
rare advantage for this otherwise-limiting lens defect).
However, if you defocus the objective lens (either over or
under) then the contrast in that same Kossel pattern is
increased remarkably, as shown in Figure 20.7B. This

(A)

(B)

(C)

FIGURE 20.6. The procedure for correctly focusing the CBED pattern

by adjusting the strength of the c/o lens through focus. In both under-

focus (A) or overfocus (C) conditions, you see a BF image in 000 andDF

images in the hkl disks, but at exact focus (B) the disks contain non-spatial,

dynamical, diffraction contrast. Compare with Figure 6.5.

(A)

(B)

FIGURE 20.7. Kossel pattern from Si with the beam down a<001> zone

axis at (A) exact focus and (B) with the diffraction lens weakened to view a

plane before the BFP of the objective lens (i.e., overfocus).
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novel approach was pioneered by Tanaka and co-workers
in Japan (see the references). There are several forms of
defocused CBED patterns and we’ll summarize three here
and show you some applications of the techniques in the
companion text.

The first and most common defocus technique is
large-angle CBED or LACBED (Tanaka et al. 1980).
These patterns are extraordinarily useful, as a perusal
of Morniroli’s book will confirm, and they are invalu-
able in analyzing line and planar crystal defects such as
dislocations and interfaces (e.g., Spence and Zuo).
There are a couple of ways that you can form
LACBED patterns but they are based on Kossel pat-
terns which, as we’ve noted, display the largest area
of reciprocal space because they use the largest possible
C2 aperture. Now if you want to defocus the pattern, as
we just described in Figure 20.6, it’s simple enough:
you can either change the height of your specimen
by adjusting the z control on the stage or you can
defocus the C2 lens so that the beam does not form a
crossover in the plane of the specimen as shown
schematically in Figure 20.8A. This is a beautiful but
initially daunting diagram, characteristic of many by
Morniroli, but well worth taking the time to
understand.

Start by looking at the cone of incident electrons in
which two planes (ABE and CDE) are indicated where
the electrons satisfy the Bragg condition for �hkl and
these planes are bisected by the trace of the hkl plane
itself. The beam is focused on the object plane of the
objective lens and the specimen is raised a distance Dh
out of that plane so it is illuminated by a disk of inten-
sity. This has the effect of separating out the � ghkl
diffracted electrons. The electrons incident along the
lines AE-BE and CE-DE are Bragg diffracted and form
�ghkl diffraction spots at K and L, respectively, in the
object plane, and the direct-beam electrons form the 000
spot at E. All the electrons diverge through the spots
and are re-focused by the objective lens to form spots in
the image plane (K0, L0, and E0), respectively, and Figure
20.8B shows such a spot pattern. In the BFP there is a
LACBED pattern consisting of a disk of intensity
crossed by deficient lines (like Kikuchi lines but arising
from elastic scattering) which are called Bragg lines (see
Section 20.7 below). These deficient lines (AF-BF and
CF-DF) correspond to the lines in the specimen along
which strong diffraction occurred from the �hkl dif-
fracting planes as shown in Figure 20.8C and arise
from the superpositioning of the �h�k�l excess lines on the
hkl deficiency line (AF-BF) and vice versa (CF-DF). As
you can see, there are lines frommany diffracting planes
in this figure while, for simplicity, Figure 20.8A only
includes the ray paths for two strongly diffracting planes
exactly at s = 0.

Figure 20.8A shows that the key to getting the
best LACBED patterns is careful use of the SAD

aperture. If you insert an SAD diaphragm into the
image plane and permit only the direct beam to go
through the aperture, the (BF) LACBED pattern
you see on the screen is remarkably enhanced, as
shown in Figure 20.8D (compare this with Figure
20.8C which is a LACBED pattern without the SAD
aperture inserted). A DF LACBED pattern can be
acquired simply by selecting one of the ghkl reflec-
tions in the image plane with the SAD aperture and
such a pattern consists of just a single �hkl excess
line of intensity. It is possible to improve the con-
trast in the LACBED pattern by choosing a smaller
SAD aperture to cut out some of the inelastic,
higher-angle scattering. If you look carefully at Fig-
ure 20.8D, you see that, as in all LACBED patterns,
there is some real-space information about the speci-
men but the reciprocal-space information clearly
dominates. Figure 20.9 shows a montage of BF
and multiple DF LACBED patterns from Si in the
[111] orientation. The beauty of such a pattern is
only enhanced by the fact that the symmetry infor-
mation can be used to determine the point group of
the crystal directly; more about that in the compan-
ion text.

The second technique is called convergent-beam
imaging or CBIM, which is a little younger than
LACBED (Humphreys et al.). CBIM saw relatively
little use because all it really did was give you an
image of the area of your specimen from which you
were obtaining the CBED pattern. If you include an
objective aperture, a very small spot size and an
energy filter the quality of the CBIM patterns is
close to that of LACBED patterns although invari-
ably CBIM emphasizes real-space over reciprocal-
space information.

The last defocus technique in this acronym soup is
parallel recording of dark-field images (PARODI) as a
function of specimen thickness. The intensity variation
in the multiple DF images visible in a systematic row of
diffraction disks of a defocused CBED pattern (Wu et
al.) can be recorded in a single exposure and, if you
understand a lot of physics, you can use this approach
to determine various properties of your crystalline speci-
mens such as structure factors and valence-electron
distributions.

There are several other mechanisms for obtaining
LACBED patterns summarized by Morniroli, such as
eucentric LACBED, specimen rocking, BF and DF
LACBED and montages of CBED patterns, the last of
which is illustrated in Figure 20.9.

20.4.C Final Adjustment

Sometimes, in either defocused or focused CBED pat-
terns, it is quite difficult to make the ZAP exactly sym-
metrical as in Figure 20.2B. It often seems as if your last
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FIGURE 20.8 (A) Ray diagram for LACBED formation under �h (three-beam) conditions. With the specimen raised by Dh from the eucentric

plane in the objective lens, specific electrons in the incident cone are at the exact Bragg condition for diffraction from both sides of the hkl plane

indicated, creating a spot pattern in the eucentric plane (B) and a LACBED pattern of lines in the BFP (C). The SAD diaphragm can be

inserted to enhance contrast in the LACBED pattern by selecting only one beam to create (D) a BF LACBED pattern.
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minor tilt or traverse of the specimen is not precise
enough, or mechanical backlash occurs. If this is the
case, use the beam tilts or deflectors to make your final
adjustments to obtain a symmetrical pattern. In Sec-
tion 18.2, we used the same method to excite high-
order reflections in SAD. You can also move the C2
aperture and center it on the zone axis, but this
misaligns the illumination system so it should be
the last resort.

As with SAD, a range of exposure times for all
CBED patterns will give you the most information.

We can now summarize the experimental steps to
obtain a CBED pattern

& Focus the beam to a crossover on your specimen
at the eucentric plane and go to diffraction mode
in TEM (or stop the beam from scanning in
STEM).

& Decrease L to see the full pattern including HOLZ
scattering and tilt to the desired orientation.

& Adjust the convergence angle with the C2 aperture.
& Increase the beam size if necessary with the C1 lens
to make the pattern brighter.

& Decrease the beam size and/or go to a thinner por-
tion of the specimen to select a smaller region (which
generally increases the quality of the pattern).

& Increase L to examine the 000 disk and focus the
pattern.

& Defocus the pattern with the objective lens or raise/
lower the specimen from the eucentric plane if you
want to do LACBED, PARODI, CBIM or some
form of defocused CBED.

20.5 ENERGY FILTERING

Every kind of DP contains electrons that have lost
energy in going through the specimen. As we’ve seen
already, these inelastically scattered electrons can be
very useful if they cause Kikuchi lines, but if your
specimen is thick enough, then the diffuse, inelastic
scattering can raise the background intensity to levels
that mask the useful contrast in the pattern. This is
particularly the case in CBED patterns because, as
we noted back in Section 20.2 and Figure 20.5,
CBED is one of the few TEM techniques wherein
more useful information is present in patterns from
thicker specimens because they give rise to much
more interesting dynamical contrast within the CBED
disks.

So there’s a balance here: we want thicker specimens
to enhance dynamical effects but if the specimen is too
thick the diffuse, inelastic scattering hides the useful
contrast. If this is the case we can, in fact, have our
cake and eat it at the same time. All we have to do is
remove the diffuse-scattered electrons from the pattern
using an energy filter.

Now we’ll talk a lot more about energy filtering
when we discuss EELS in the last four chapters of
Part 4 and the seminal text on filtering is edited by
Reimer. Filtering can be achieved either with an in-
column or post-column filter. If we remove inelastically
scattered electrons, the CBED pattern contains elec-
trons that have lost no energy. Thus, in effect we have
removed any specimen-induced chromatic-aberration
effects from the pattern, and all the contrast pheno-
mena in the pattern appear much sharper because all
the electrons are focused in the (same) BFP (or image
plane if it is a LACBED pattern). All this text pales
in comparison with the example shown in Figure
20.10. This improvement is so dramatic that it really
never makes sense to do anything other than filter
your CBED patterns if you have the necessary
instrumentation.

FIGURE 20.8. (Continued).

TO FILTER OR NOT?
If you can energy-filter your CBED patterns, you
should always do so.
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20.6 ZERO-ORDER AND HIGH-ORDER
LAUE-ZONE DIFFRACTION

20.6.A ZOLZ Patterns

If you increase L above �800 mm you will magnify the
pattern on the screen and only see the first few diffrac-
tion maxima, as shown in Figure 20.4A. Assuming the

C2 aperture is small enough, the CBED pattern consists
of disks, similar to the array of spots in an SADP, i.e.,
discrete diffraction maxima surrounding the central 000
disk. Remember that such a pattern is termed a ZOLZ
pattern (see Section 18.4) since the permitted hkl diffrac-
tion maxima must all satisfy the Weiss zone law hU +
kV + lW = 0, where UVW is the beam direction.
Remember also that all the hkl maxima in the DP

FIGURE 20.9. Montage of Si [111] BF LACBED pattern (center) surrounded by six f2�20g DF LACBED patterns.
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correspond to points in the reciprocal-lattice plane con-
taining the origin, 000, of the reciprocal lattice, and this
plane is also called the ZOLZ. So in fact SADPs are
usually ZOLZ patterns, although we don’t always
describe them as such. From ZOLZ patterns, we can
obtain the usual interplanar spacings and angles, the hkl
maxima can be indexed and UVW identified, in exactly
the same manner as we described in Section 18.4 for an

SADP. The two options are the method of ratios or
using a calibration standard to determine the camera
length.

Because of the finite size of the diffraction disks, you
must take care to select equivalent points in each disk
when measuring the hkl spot spacings. If a is too large
(Kossel conditions) you might not see individual max-
ima and you should then select a smaller C2 aperture
(K-M conditions).

20.6.B HOLZ Patterns

The central portion of the CBEDpattern is bright due to
the relatively intense low-angle scattering (go back and
check Figure 3.5). At higher angles, the ZOLZ intensity
drops because the atomic-scattering amplitude, f(y),
decreases and the Ewald sphere no longer intercepts
the relrods from the ZOLZ. However, the intensity
increases again when the Ewald sphere intercepts the
relrods from the HOLZ reciprocal-lattice points and a
circle or ring of diffracted intensity is observed around
the ZOLZ pattern as in Figures 20.3D–F and 20.4C.
(You should recall that a circle can be defined geomet-
rically as the interception of a sphere and a plane).

If you’ve chosen a small enough aperture for K-M
conditions you’ll see a ring of discrete HOLZ spots as in
Figure 20.3D while a large C2 aperture gives a HOLZ
ring of intersecting lines as in Figure 20.3F. The HOLZ
intensity arises from relatively weak high-angle diffrac-
tion from crystal planes that are not parallel to the
beam. Low temperatures increase the HOLZ scattering
and also minimize the thermal-diffuse (phonon) scatter-
ing that, in some materials with a large Debye-Waller
factor, masks the weak HOLZ intensity. So this is why
you’ll find a liquid-N2 cooling holder very useful at
times. You can’t reduce the diffuse scattering via an
energy filter because phonon scattering has a very
small energy loss (�1 eV) and most of these electrons
still contribute to the filtered pattern.

Consider the intersection of the Ewald sphere with the
reciprocal lattice. The plane of HOLZ reciprocal-lattice
points/relrods intercepts the sphere (unlike the zero layer
which is tangential to the Ewald sphere). The first ring is
called the FOLZ because the possible hkl reflections
satisfy the relationship hU + kV + lW = 1, and so on.
Where the Ewald sphere intersects the HOLZ relrods,
diffracted intensity is expected, taking into account the
usual structure-factor effects (see the next section).

(A)

(B)

FIGURE 20.10. CBED pattern from a thick specimen of Si (A) without

energy filtering and (B) with energy filtering. This figure is included only

because it looks so striking, and similar patterns have been the basis of

many TEM lab Christmas cards.

SMALL L, LARGE ANGLE
Remember that the radial distance from 000 in a DP
is related to the angle of scattering; use a smaller L to
see higher-angle scattering.
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Because the beam converges on the specimen over an
angular range 2a, the Ewald sphere is effectively rotated
2a about the origin, and thus a range of angles along
each HOLZ relrod is sampled, as shown in Figure
20.11A. This range of angles manifests itself as the
CBED disk reflecting the effective angular broadening
of the relrod, as shown in Figure 20.11B. Different
interception points on the relrod correspond to different
points in the disk as shown in Figure 20.11C. Figure
20.11D shows a K-M CBED pattern containing the
expected distribution of diffraction maxima from the
Ewald-sphere construction in Figure 20.11A.

We’ll make use of this 3D information in the next chap-
ter and in the companion text.

To observe HOLZ rings in addition to the ZOLZ
pattern, choose a very small L (< 500 mm) so that you
can see the full angular range of the BFP permitted by
the imaging system (��108). As shown schematically in

Figure 20.11A, the Ewald sphere only intercepts relrods
in HOLZs many orders of diffraction maxima away
from the direct beam. Because of the large scattering
angle, the intensity in the HOLZ spots is relatively low
and the exposure time to reveal HOLZ maxima is
usually long enough to ensure that the ZOLZ is over-
exposed on the negative (go back and see Figure 20.3).
You might be lucky with your thin area; sometimes you
can produce reasonable ZOLZ and HOLZ intensity on
the same exposure as in Figure 20.11D. But generally, if
you’re still stuck with recording your patterns on film
you will probably have to record at least two DPs: a
relatively short exposure for the ZOLZ pattern contain-
ing only 2D crystallographic information and a longer
exposure for the weak HOLZ reflections containing the
3D information. As we’ve already said, a range of expo-
sures is useful for all DPs.

There are some alternatives

& A CCD camera will give a greater dynamical range
making it easier to record a good pattern showing
detail at both low and high scattering angles.

& You can use image-processing techniques on your
computer to combine differently exposed patterns
(see Chapter 31).

(A)

Direct
beam

g

Range of
Ewald
sphere

2α

Diffracted
beam

2α

Convergence
angle

Reciprocal lattice points
(expanded to disks because

of beam convergence) Reciprocal lattice rods
(due to specimen thickness)

SOLZ

FOLZ

ZOLZ

FIGURE 20.11 (A) The Ewald sphere can intercept reciprocal-lattice points from planes not parallel to the electron beam whose g vectors are not

normal to the beam. The sphere has an effective thickness of 2a because of beam convergence and so intercepts a range of these HOLZ

reciprocal-lattice points.

3D
Themost important point to remember is that there is
3D crystallographic information in the CBED pat-
tern whenever significant HOLZ diffraction intensity
is present.
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The HOLZ ring radius is defined by the interception
of the Ewald sphere with the allowed HOLZ relrods in
the reciprocal lattice and so depends on the interplanar
spacing in the crystal, the electron wavelength (i.e., the
kV), L and any off-axis lens distortion. Depending on

the crystallography of the specimen, the HOLZ rings
may have very large diameters making them difficult to
observe experimentally even at very small L. Under
these circumstances, you should tilt to a low-symmetry
zone axis (e.g., <114>) since this gives you a better
chance of observing the FOLZ than a high-symmetry
zone axis such as <001>. (If the reason for this is not
clear, then look at Figure 20.12.) Cooling your speci-
men will reduce thermal-diffuse scattering that can
mask HOLZ effects. If you still can’t see a HOLZ
ring, then the last thing you can try is increasing l by
lowering the kV. If all this fails, you need to pick
another specimen!

In the next chapter, we will show you how to index
HOLZ patterns and howHOLZ ring measurements can
be used to deduce the lattice-repeat vector of the crystal
parallel to the beam direction. You’ll see that you can
then determine the unit cell, the crystal system and also
the type of lattice centering.

20.7 KIKUCHI AND BRAGG LINES IN CBED
PATTERNS

In CBED patterns you almost invariably see sharpKiku-
chi lines, while in SADPs Kikuchi lines are often rather
diffuse or absent (see Chapter 19). This difference arises

(B)

(C)

(D)

FIGURE 20.11. (Continued) The relrod has a shape shown in (B) and the

intensity at specific points xi in the relrod is directly related to equivalent

points in the hkl disk (C). The interception of the Ewald sphere with the

HOLZ layers gives rings: the first ring is called the FOLZ, the second the

SOLZ and so on shown in the experimental pattern in (D).

(A)

(B)

H

H

Incident beam [UVW]

Incident beam
[UVW]

FIGURE 20.12. (A) The reciprocal-lattice spacing (H) is large if the beam

is down a major zone axis in the crystal. (B) The spacing is small if the

beam is down a low-symmetry direction.
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in part because the convergent beam samples a much
smaller region of the specimen than that selected by the
SAD aperture. So, in the volume of specimen contribut-
ing to the CBED pattern, there is usually little or no
strain, either elastic (due to specimen bending) or plastic
(due to lattice defects). As a result, CBED Kikuchi lines
will in general be sharper than SAD lines. This effect is
shown in Figure 20.13A which is a conventional SADP
containing very diffuse Kikuchi lines. This pattern was
obtained from a large region of heavily deformed copper.
By comparison, Figure 20.13B shows a CBED pattern
from a much smaller region of the same specimen show-
ing several pairs of well-definedKikuchi lines. So you can
use Kikuchi lines in CBED patterns to attack problems
which are beyond the capability of SAD, for example, to
determine accurate misorientation relationships between
small grains in deformed materials (see Heilman et al.).
However, if you put the probe right on a defect which has
significant strain associated with it then even the CBED
pattern may be blurred. On the positive side, this effect is
used in LACBED patterns to characterize the crystal-
lography of defects (e.g., the Burgers vectors) and this is
explained in detail in the companion text. So, unless you
want to study defects, always check the TEM image and
tilt around to make sure that the area is clear of defects
before getting your CBED patterns.

If the CBED pattern is not a ZAP, as in Figure
20.13B, the Kikuchi lines appear as pairs of excess
(bright) and deficient (dark) lines, as in SADPs. But
when you obtain a ZAP, the ZOLZKikuchi lines appear
as bright bands. These bands increase in intensity and
definition as you increase the convergence angle, as
shown back in Figure 20.3D–F. A similar effect is seen
in channeling patterns in the SEM that are generated by
rocking a parallel beam around the optic axis. If you need
to understand the difference between Kikuchi lines in
SADPs and Kikuchi bands in CBED patterns, Reimer
gives a clear discourse in his 1997 text.

The generation of Kikuchi lines in a CBED pattern is
marginally more complex than in an SADP. Remember
how Kikuchi lines arise in a specimen illuminated by a
parallel beam (see Chapter 19) and how a divergent beam
of scattered electrons samples the various crystal planes
(see Figure 20.14A). In Figure 20.14B you can see what
happens when a convergent beam is used. In this case the
incident rather than the scattered electrons span an angu-
lar range and therefore, just as in Kikuchi-line genera-
tion, some electrons in the beam will probably be at the
exact Bragg angle to a ZOLZplane (this is identical to the
argument we used to explain the Kikuchi lines in
LACBED patterns back in Figure 20.8A). Thus, there
will be an elastic-scattering contribution to the Kikuchi
lines where they cross the ZOLZ disks in CBEDpatterns.
If you choose Kossel conditions (i.e., 2a > 2yB) as in
Figure 20.3F, there will always be electrons in the beam
with the correct trajectory for exact Bragg diffraction
from the planes in the UVW zone and so there will
invariably be an elastic contribution to the Kikuchi lines.

Strictly speaking, we should only use the term ‘Kiku-
chi lines’ when inelastic scattering alone is responsible
for their formation (i.e., the lines between any hkl disks).
However, the term is used rather loosely in the literature
to describe the ZOLZ intensity bands, despite the elastic
contribution to the scattered intensity. Morniroli has
proposed that this uncertainty be resolved by using the
term ‘Bragg lines’ for the deficiency lines in CBED and
LACBED patterns; this terminology is gaining wider
acceptance.

20.8 HOLZ LINES

20.8.A The Relationship Between HOLZ Lines
and Kikuchi Lines

As we just noted, Kikuchi lines can also arise from
inelastic scattering by the HOLZ planes and HOLZ
Kikuchi lines exist in many CBED patterns. You can
see the array of deficient HOLZ Kikuchi lines between
the ZOLZmaxima in Figure 20.2B. These HOLZKiku-
chi lines are, in principle, more useful than ZOLZKiku-
chi lines because they come from planes with much
larger Bragg angles (and g vectors) so they are even
more sensitive to changes in lattice parameter than the
ZOLZ lines. Since

jgj ¼ 1

d
; jDgj ¼ �Dd

d 2
(20:1)

then for smaller d values, the value of |Dg| is much larger
at the same Dd. We take advantage of this fact, not by
using HOLZ Kikuchi lines specifically, but by seeking
out a closely related phenomenon called HOLZ lines.
HOLZ lines are simply the elastic part of the HOLZ
Kikuchi lines, that is, they are the segments of the lines

(A) (B)

FIGURE 20.13. (A) Comparison of the poor quality of Kikuchi lines in

an SADP and (B) the relatively clear distribution in a CBED pattern from

deformed copper.
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which appear within the diffraction maxima. By ana-
logy with the production of Kikuchi lines and, as
already shown in Figure 20.8A for LACBED patterns
(although both these situations referred to ZOLZ dif-
fraction), the HOLZ lines arise when electrons within
the cone of the incident probe are at the correct Bragg
angle for diffraction by a HOLZ plane. Therefore,
these electrons are diffracted out to very high angles
compared with ZOLZ diffraction. The result of this
scattering is a bright line through the HOLZ disk and
a dark line across the 000 disk. Not surprisingly, given
what you’ve learned in the preceding nine chapters, the
theory for the origin of HOLZ lines is much more
complicated than this sparse summary. When you
have time and the necessary inclination (tilt?) you
should read the paper by Jones et al.

An example of HOLZ lines is shown schematically in
Figure 20.15, which compares with the experimental pat-
tern in Figure 20.32B. Because these HOLZ lines contain
3D information they show the true, fcc, 3D, threefold
{111} symmetry, while the ZOLZKikuchi lines and spots
show sixfold, 2D, {111} symmetry. We will make use of

these differences when we discuss indexing such patterns
and crystal-symmetry determination in Chapter 21 and
in the companion text.

000 Kikuchi lines

2θB

BFP

Electrons within probe
at exact Bragg angle to

hkl plane

Incident
convergent
probe

2α

Thin
specimen

000 Kikuchi lines

2θB

θB

BFP

Inelastic
scattering

’center’

Distribution of
inelastic scatter

hkl
diffracting planes

Incident
parallel
beam

Thin
specimen

hkl
diffracting planes

θB

Zone axis
<UVW>

FIGURE 20.14. Comparison of the generation of Kikuchi lines (A) by inelastic scattering of electrons in a parallel beam and (B) by elastic scattering of

electrons in a convergent beam when the convergence angle, a is greater than the Bragg angle, yB.

PAIRS OF HOLZ LINES
HOLZ lines come in pairs, likeKikuchi lines, with the
bright (excess) lines within the HOLZ hkl maxima
and the dark (deficient) lines within the 000 disk.

FIGURE 20.15. The relationship betweenKikuchi lines andHOLZ lines is

shown in this schematic of a <111> CBED pattern from a cubic crystal.

The three principal pairs of 2�20 ZOLZ Kikuchi bands show sixfold sym-

metry (characteristic of the 2D 111 planes) and bisect the g vectors from000

to the six 2�20 ZOLZmaxima. The inelastic deficient Kikuchi lines from the

HOLZplanes are shown in the regions between the ZOLZ diffraction disks

and the elastic deficient lines from the HOLZ planes are present within the

000 disk. In both cases, the HOLZ lines show threefold symmetry char-

acteristic of looking down the <111> direction in a 3D crystal.
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20.8.B Acquiring HOLZ Lines

Steeds (1981) described the practical problems of
recording HOLZ lines in some detail. Nothing much
has changed in the intervening decades and the main
points you have to consider are

& The lines are often only visible ‘on the negatives’ and
not on the screen, so you should record all the DPs,
not just ones on which you can see the lines. This
poor visibility is less of a problem with a CCD
because you can easily enhance the gain.

& You may have to make small changes in the operat-
ing voltage or the orientation in order to view the
HOLZ rings, especially if the crystal has a small
lattice-repeat spacing parallel to the beam and the
angular view of the BFP is poor.

& Strains in the specimen from bending and thermal stress-
es smear out the HOLZ-line intensity. Choosing the
smallest region (i.e., the smallest beam) may help this
problemandwill alsominimize local thickness variations.

& Planar or point disorder as well as thermal (Debye-
Waller) effects can reduce high-angle scattering. In
practice, this means that cooling the specimen and
reducing the kV can help to increase HOLZ-line vis-
ibility by reducing contamination and beam heating.

& Minor adjustments in HOLZ-line positions can help
to distinguish HOLZ lines that overlap. To do this
you need to change the kV by a small amount.

The experimental procedure for observing HOLZ lines
is quite straightforward but, since the lines themselves
can be rather elusive, as we suggested at the start of the
chapter, you should practice with a specimen such as Si
or stainless steel in which the lines are almost always
visible. The best way to search for the lines is

& Select the largest C2 aperture and go to the smallest
L (� 3–500mm) at which you can see the full angular
view of the BFP.

& Examine the Kossel/LACBED pattern (make 2a
large) which should reveal Kikuchi bands intersect-
ing at many poles, spanning a good fraction of the
stereographic triangle as shown in Figure 20.16A.

& If you tilt to such a pole, as shown in Figure 20.16B,
you should see the ring of HOLZ intensity.

& Tilt to a suitable zone axis for optimizing HOLZ
effects. Remember, the best orientation for seeing
the HOLZ lines in the 000 disk is not a low-index,
high-symmetry pole such as <100> or <111> , but
a higher-index, lower-symmetry one such as<114>.

& To see the deficient lines, increase L to look in detail at
the 000 region of the pattern, and if necessary, put in a

(A)

(B)

(C)

FIGURE20.16. (A) Low-L, large-aCBEDpattern showing a wide area of

reciprocal space, away from ZAP conditions. (B) When the specimen is

tilted to a high-symmetry <111> ZAP and a smaller C2 aperture is

inserted, a ring of excess HOLZ lines appears. In (C) taken at high L, the

deficient HOLZ lines are visible in the central 000 disk of the lower

symmetry <114> pattern.

CONTROLLING kV
Continuous kV control is an essential accessory to
your TEM for serious CBED work.
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smaller C2 aperture, center it and look for the fine dark
lines crossing the bright disk as in Figure 20.16C.
Usually, you’ll just need this deficient-line distribution.

You have to use a range of L (from �300 to
1500 mm) to obtain all this information and this is
easy in any post-1980 TEM. DSTEMs with sufficient
post-specimen lenses are as versatile. Energy filtering
improves everything that we’ve just described.

20.9 HOLLOW-CONE/PRECESSION CBED

As we described in Chapter 18, for SAD, we can acquire
CBED patterns by rotating the incoming convergent
beam about the optic axis in a hollow cone. Just as
with SAD, hollow-cone CBED supplements the infor-
mation we get in a stationary-beam pattern (i.e., all the
patterns we’ve discussed so far). Remember, hollow-
cone operation deflects the incident beam and rotates
the pattern in the BFP while precession de-scans the
beam so that the actual pattern is stationary. A good
review of hollow-cone CBED and its relationship to
other CBED methods is given in Tanaka’s 1986 paper.
Hollow-cone patterns do not show specific diffraction
spots like CBED patterns since the rotating disk inten-
sity is averaged out and the only stationary features are
diffraction events at specific angles such as HOLZ lines.
We can take advantage of this because if, for example,
the cone angle is set to that of the FOLZ ring then the
pattern consists predominantly of an array of excess
HOLZ lines as shown in Figure 20.17. The ZOLZ
disks, which would normally be so bright that they

might mask the excess lines, are removed because the
rotation of the incident beam averages out the intensity.

Precession of CBED patterns has all the advantages
of precession of SADPs as discussed in Section 18.8. A
comparison of a precessionDP and a standard DP under
K-M conditions is shown in Figure 20.18. Precession
extends the FOLZ ring into an annulus of width of �10
mrad. This dynamical background averaging can
improve intensity measurements from DPs by consider-
ably simplifying the problem of background subtraction.

FIGURE 20.17. Hollow-cone CBED pattern showing bright, excess

HOLZ lines only. All the usual diffraction-disk intensity is averaged out

(Graphite 0001; 200 kV).

(A)

(B)

FIGURE 20.18. Comparison of (A) unprecessed and (B) precessed pat-

terns from a very thick specimen of Mg3V2O8. A small precession angle

(� 5 mrad) was used to form (B) and the reflections in the ZOLZ are more

clearly defined. Dynamical scattering still contributes to the pattern so a

thinner specimen would be better.
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CHAPTER SUMMARY
In this chapter we’ve covered how to obtain different CBED patterns experimentally.
Particular points and terms that you should know are

& If you vary the specimen thickness, a, L, and the focus you can obtain CBED and
LACBED patterns showing many different features. As with SAD, two-beam and
zone-axis conditions are the standard operating conditions to get the most useful
information.

& You’ll probably have to record patterns at different values of a and L, each with different
exposure times.

& If you have an EELS then always filter your patterns.
& Even if you can filter the patterns, we strongly recommend using a double-tilt holder,
cooled to LN2 temperature.

& You must be able to change the kV by very small steps, if you are studying HOLZ lines.
& You can precess your CBED patterns or form them with hollow cones of incident
electrons.

& Learn the meaning of such terms as ZAP, ZOLZ, FOLZ, HOLZ, K-M, and Kossel
patterns.

In the next chapter, we’ll show you how to use this contrast information to get the
maximum amount of crystallographic information from your specimen.

TEXTS

Champness, PE 2001 Electron Diffraction in the Transmission Electron Microscope BIOS Oxford UK. A

concise and essential summary textbook full of useful examples often from non-cubic systems, since the

author is a mineralogist not a metallurgist.

Morniroli, J-P 2002 Large-Angle Convergent-Beam Electron Diffraction SFm (Société Française des

Microscopies) Paris France. Highly recommended reading for serious students for whom CBED will

be an important tool.
Reimer. L (Ed.) 1995 Energy-Filtering Transmission Electron Microscopy Springer-Verlag New York. For

some specifics.
Reimer, L 1997Transmission ElectronMicroscopy; Physics of Image Formation andMicroanalysis (4th Ed.)

Springer New York. For more specifics.
Spence, JCH and Zuo, JM (Eds.) 1992 Electron Microdiffraction Kluwer New York. The book for the

dedicated CBED researcher.
Steeds, JW 1979 Convergent Beam Electron Diffraction in Introduction to Analytical Electron Microscopy

387–422 Eds. JJ Hren, JI Goldstein and DC Joy Plenum Press, New York. The first book-chapter

dedicated to the technique and still a superb introduction.

THE JEOL CBED ATLAS
This set of four volumes is perhaps the definitive work on CBED and describes an alternative approach to

much of what is discussed in Chapters 20 and 21 and also in the companion text. The texts contain hundreds

of beautiful and useful patterns.

Tanaka, M and Terauchi, M 1985 Convergent Beam Electron Diffraction JEOL Tokyo.

Tanaka, M, Terauchi, M and Kaneyama, T 1988 Convergent Beam Electron Diffraction II JEOL Tokyo.
Tanaka, M, Terauchi, M and Tsuda, T 1994 Convergent Beam Electron Diffraction III JEOL Tokyo.
Tanaka, M, Terauchi, M and Tsuda, T 2002 Convergent Beam Electron Diffraction IV JEOL Tokyo.
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Humphreys, CJ, Maher, DM, Fraser, HL and Eaglesham, DJ 1988 Convergent Beam Imaging – A
Transmission Electron Microscopy Technique for Investigating Small Localized Distortions in Crystals
Phil. Mag. 58A 787–798. CBIM.

Jones, PM,Rackham,GMand Steeds, JW 1977Higher Order Laue Zone Effects in ElectronDiffraction and
Their Use in Lattice Parameter Determination Proc. Roy. Soc. A354 197–222. When you have the time
to really study HOLZ lines.

Steeds, JW 1981Microanalysis by Convergent Beam Electron Diffraction in Quantitative Microanalysis with
High Spatial Resolution 210–216 Eds. GW Lorimer, MH Jacobs and P Doig The Metals Society
London. For the terminology in Section 20.3.A.

Tanaka, M, Saito, R, Ueno, K and Harada, Y 1980 Large Angle CBED J. Electr. Microsc. 29 408–412.

Tanaka, M 1986Conventional Transmission-Electron-Microscopy Techniques in Convergent-Beam Electron
Diffraction J. Electr. Microsc. 35 314–323. Includes a good review of hollow-cone CBED.

Wu, L, Zhu, Y and Taftø, J 1999 Towards Quantitative Measurements of Charge Transfer in Complex

Crystals Using Imaging and Diffraction of Fast Electrons Micron 30 357–369.

APPLICATIONS AND TECHNIQUE
The companion text has a complete chapter devoted to CBED. Some of that material was in the original

edition; it includes techniques that are still very powerful but that are not so widely used.

SELF-ASSESSMENT QUESTIONS
Q20.1 If CBED was invented before SAD, why did it only come into widespread use many years later?
Q20.2 What advantages accrue when using a convergent rather than a parallel beam of electrons to create a

diffraction pattern?
Q20.3 What disadvantages are there to using CBED rather than SAD?
Q20.4 How do you control the beam size in CBED?

Q20.5 What are the advantages and disadvantages of using smaller beams to form CBED patterns?
Q20.6 How do you control the size of the disks in the CBED pattern?
Q20.7 Why would you want to change the camera length when viewing a CBED pattern?
Q20.8 Define HOLZ, ZOLZ, FOLZ, K-M, ZAP, LACBED. Find any other acronyms from this chapter that

are not in this list and define them.
Q20.9 Explain why there is image information inside a CBED pattern disk when the pattern is not focused.
Q20.10 Explain why this image effectively expands to infinite magnification when the pattern is focused.

Q20.11 Why is it so important to align the C2 aperture when performing CBED?
Q20.12 What is the role of thickness in CBED-pattern contrast?
Q20.13 How can 3D information find its way into a 2D CBED pattern?

Q20.14 Why is a higher-order ZAP preferable to a lower-order one for viewing a CBED pattern?
Q20.15 Why do hollow-cone CBED patterns not show any diffraction disks, just HOLZ lines?
Q20.16 What advantages accrue from precessing a CBED pattern?
Q20.17 HOLZ lines within the 000 disk are continuous with lines outside this disk. What is the difference

between the electrons contributing to the line within the disk and those in the line outside the disk?
Q20.18 Why can we see Kikuchi lines in CBED patterns from specimens that are too thin to show such lines in

SADPs or in specimens which are too deformed to show such lines in SADPs?

Q20.19 Why do HOLZ lines appear more clearly at low temperatures?

TEXT-SPECIFIC QUESTIONS
T20.1 Look at Figure 20.1 and work out what would happen to the probe convergence angle if you switch on

the C2 lens (a) weakly and (b) strongly enough to introduce a crossover before the upper objective lens.
Sketch the ray diagrams for each case. Do the same for changing the size of the C2 aperture.

T20.2 Look at the symmetry of the spots in Figure 20.2A and B and compare with the symmetry of the

lines within the 000 disk in B. They are not the same. From what you know of the symmetry
down the [111] direction in an fcc crystal, which pattern symmetry is correct? Why is the other

symmetry observed?
T20.3 Why does the intensity of the overall pattern increase from Figure 20.3D—F? Do you think the probe

size has stayed constant as the C2 aperture has increased in size, and if not, why not? From what you
know of lens limitations, what prevents us from keeping a very small probe size to localize the CBED
pattern while increasing the current in the probe to generate a high-quality pattern? Are there experi-

mental methods to overcome this problem?
T20.4 Look at Figure 20.4 and explain why most of the intensity is in the 000 disk while it is barely possible to

see the intensity scattered out to high angles in C. Is there anything you can do to increase the intensity
scattered out to higher angles?
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T20.5 Draw schematic ray diagrams to explain the reversal in the image direction contained in the 000 disk in
Figure 20.6 as the objective lens goes through focus.

T20.6 List the pros and cons of forming CBED patterns in TEM versus STEM mode.

T20.7 Why do you think that dynamical scattering causes regions of low (or zero) intensity to occur in CBED
disks as in Figure 20.5B?

T20.8 Explain what will happen to your CBEDHOLZ intensity as you go to higher kVs. (Hint: look at Figure

20.11 and remember the effect of kV on l.)
T20.9 Compare and contrast HOLZ lines and Kikuchi lines in terms of their generation, intensity and

distribution in low camera-length CBED patterns.
T20.10 Since we know that the intensity of elastic scatter decreases rapidly with increasing angle away from the

direct beam, where does the high intensity come from in the outer ring in Figure 20.16B?
T20.11 Look at Figure 20.15. Explain what happens as the deficient HOLZKikuchi lines are extended such that

they intercept other hkl disks in the ZOLZ.

T20.12 Explain, with reference to Figure 20.8A, why it doesn’t matter if you raise or lower the specimen out of
the eucentric plane when forming a LACBED pattern. What experimental operation becomes increas-
ingly difficult when you remove the specimen from the eucentric plane?

T20.13 Why is the LACBED BF pattern so extensive while a LACBED DF pattern covers only a very small
region of reciprocal space (e.g., see Figure 20.9)?
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21
Using Convergent-Beam Techniques

CHAPTER PREVIEW

In the preceding chapter, we described how to obtain a variety of CBED patterns under
various experimental conditions. In this chapter you will find out why these patterns are so
useful: they contain a wealth of quantitative data, much of which you can’t obtain by any
other technique and many of which augment standard X-ray crystallographic methods (but
always at higher spatial resolution). The established techniques largely depend on simple
observation of the patterns whereas newer techniques involve quantitative simulations of
the patterns.

CBED gives quantitative data on

& Specimen thickness
& Lots of crystallographic data such as the unit cell and associated lattice parameters, the
Bravais lattice, crystal system, and full 3D crystal symmetry (point group and space
group)

& Precise lattice-strain measurement (invaluable for semiconductors and other multilayer
nanostructures)

& Enantiomorphism and polarity
& Valence-electron distribution, structure factors, and chemical bonding
& Characterization of line and planar defects

Between this chapter and in the companion text, we’ll cover most of these applications of
CBED. First, we’ll show how to index the patterns and the HOLZ lines when they occur
within those patterns. We’ll also show you how to measure the specimen thickness, which is
very useful in many aspects of TEM, particularly the spectrometry that we describe in Part
4. Next, we’ll introduce the steps for a complete symmetry analysis of your specimen, which
is fully described in the companion text. Then, we’ll introduce you to methods of determin-
ing extremely small changes in lattice parameter which can be used to measure lattice strain
and, indirectly, composition. Like any other TEM technique, we can simulate the contrast
in CBED patterns in extraordinary detail and we’ll tell you a little about how this is done.
Other CBED methods are also available as well as different micro- and nanodiffraction
methods, all of which offer better spatial resolution than SAD and we’ll briefly summarize
these at the end of the chapter.

We should warn you at this stage that some of the analyses we introduce here require a
very good understanding of crystallography. Both the learning and the doing can be time-
consuming processes, depending on your background. If you’re a metallurgist, in a pre-
dominantly cubic world, then life is relatively easy, but in the rest of materials science, in
functional materials, and in much of the nano-world, more complex crystal structures are
common. In studying these materials, CBED is absolutely invaluable, but also really
challenging. We suggest that you skim the chapter and see how many of the topics you
can already relate to, given your current knowledge of crystallography and crystal defects. If
you draw a blank, then it’s time to read some of the basic texts listed in Chapter 18 before
moving ahead.
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21.1 INDEXING CBED PATTERNS

You’ve seen in the preceding chapter that, in addition to
improved spatial resolution, CBED patterns often con-
tain a wealth of new and sometimes spectacular contrast
information not available in SADPs. However, before
you do anything quantitative, you have to index the
patterns. Indexing CBEDZOLZ patterns is no different
to indexing SADPs, which we’ve already described back
in Chapter 18. With indexed CBED patterns you can do
exactly the same kind of orientation determination as
with SADPs, but on a much smaller dimensional scale,
suitable for crystallographic analysis of nanostructures,
as shown in Figure 21.1, which also shows the power of
CBED-pattern simulation.

What you need to learn now is how to index HOLZ
spots, disks, and lines and understanding these requires a
little extra thought since such diffraction effects come from
lattice planes that, unlike those contributing to SADPs, are
not parallel to the electron beam and, thus, are the key to
obtaining 3D information about your specimen.

21.1.A Indexing ZOLZ and HOLZ Patterns

Remember that in a ZAP the HOLZ reflections appear
as a ring of spots (or a ring of intensity) (see Figures
20.3, 20.4, 20.11, and many others). If you’re not at a
zone-axis orientation, the HOLZ spots might appear as
an arc or somewhat randomly distributed, but always
farther away from the direct beam than the ZOLZ

reflections. As with SAD, it’s easiest to index ZAPs, so
tilt around under Kossel conditions until you find a
ZAP where Kikuchi bands intersect, then select a C2
aperture size to form diffraction disks (K-M conditions)
in the HOLZ ring (like Figures 20.11D and 20.16B),
which you can index as follows

& Index the ZOLZ for which hU+ kV+ lW= 0 (see
Section 18.4).

& Consult a stereographic projection to identify the poles
of the principal planes constituting the FOLZ (hU +
kV+ lW=1) and SOLZ (hU+ kV+ lW=2), etc.

& Alternatively, you can just solve the Weiss zone law
(see Section 18.4) for the appropriate UVW.

& Check to see if the poles on the stereographic projec-
tion constitute allowed reflections.

& Index the HOLZ maxima.

If you want to make use of a stereographic projec-
tion, see Chapter 18. Remember that the stereographic
projection just gives you the major, low-index, hkl
planes and ignores any systematic absences.

Examples of indexed ZOLZ, FOLZ, and SOLZ pat-
terns are shown in Figure 21.2A–C for the fcc lattice
under (a) [001], (b) [110], and (c) [111] beam directions;
Figure 21.3A–C show similar patterns for the bcc lat-
tice. Only the first few orders of diffraction maxima are
shown in these figures but, paradoxically, you’ll rarely
find these reflections, and you’ll never see them if you’re
under zone-axis conditions. This is because the Ewald
sphere intercepts the HOLZ at large scattering angles
(go back and check Figure 20.11) so relatively high
orders of diffraction maxima are present in the
HOLZs. Therefore, the schematic patterns in Figures
21.2 and 21.3 should be extended accordingly to match
up with the experimental patterns. From the schematic
HOLZ patterns in Figures 21.2 and 21.3, you can see
that the symmetry of each <UVW> zone is retained in
each HOLZ pattern, but they are often shifted by a
displacement vector relative to the ZOLZ because there
is no allowed HOLZ reflection on the zone axis (i.e.,
directly above 000 in the ZOLZ). Note that in the HOLZ
patterns we do not index the central spot. This displace-
ment can be calculated for any zone axis using equations
which we’ll discuss in a while. So you should generate
similar diagrams for the major zone axes of any speci-
men that you are going to study by CBED. You may
have to generate less symmetrical patterns than those in
Figures 21.2 and 21.3 (e.g., [233] or [114]), since these
give rise to FOLZ rings with smaller radii (Figure 20.12),
in which HOLZ phenomena are easier to see.

In some circumstances, the first ring of spots
observed is from the second layer of the reciprocal
lattice but it is still called the FOLZ. Well-known exam-
ples, as you can see in Figures 21.2 and 21.3, are the fcc
(110) and bcc (111) patterns. You can’t predict the total

(C)(B)

(A)

(D)

FIGURE21.1 (A)Dark-field TEM image recorded from a comb-like ZnO

nanostructure. (B) A structural model of ZnO projected along 0110,

showing polarity on the (0001) surfaces. (C) Experimental CBED pattern

recorded from the ribbon. (D) Simulated CBED pattern using dynamical

electron-diffraction theory. The simulation includes 127 beams in both the

ZOLZ and HOLZ and the Debye-Waller factor at room temperature. The

diffraction intensities are very sensitive to thickness. The best thickness

match at 200 kV and beam direction <0110> was 165 nm.
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absence of a ring of HOLZ reflections just from the
crystal symmetry, but it does vary with orientation.
For example, in rhombohedral a-Al2O3, which has tri-
gonal symmetry, all HOLZ layers are present for the

[001] beam direction but, in other directions in this
system, e.g., [121], [141], and [542] only every third
Laue zone is present. (Ceramists would use 4-index
notation for a-Al2O3 but remember the symmetry is

FCC [001] SOLZ   hU + kV + lW = 2

FCC [001] FOLZ   hU + kV + lW  = 1

FCC [001] ZOLZ   hU + kV + lW  = 0

FCC [110] FOLZ   hU + kV + lW = 2

FCC [110]  hU + kV + lW  = 1

FCC [110] ZOLZ   hU + kV + lW  = 0

FCC [111] SOLZ  hU + kV + lW  = 2

FCC [111] FOLZ   hU + kV + lW  = 1

FCC [111] ZOLZ   hU + kV + lW  = 0
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FIGURE 21.2 The possible ZOLZ, FOLZ, and SOLZ reflections for the three principal zone axes of an fcc specimen. Allowed reflections are shown as

black dots, forbidden reflections as crosses, the direct beam direction is a red spot, and the arrow indicates the displacement vector between the ZOLZ and

FOLZ.
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only threefold.) A detailed explanation of this behavior
is given by Raghavan et al. (1984). As with SADPs,
computer indexing of HOLZ diffraction maxima is
available on theWeb. Once you are sure you can extend
the principles you learned in Chapter 18 from the ZOLZ

to the FOLZ, then it’s easy to use the commercial soft-
ware available at any of the URLs #1–3 listed at the end
of the chapter. There is also freeware available (URLs
#4–7). One particularly good site isWebEMAPS (URL
#4); Figure 21.4 illustrates computerized indexing of

BCC [001] SOLZ   hU + kV + lW  = 2

BCC [001] FOLZ   hU + kV + lW  = 1

BCC [001] ZOLZ   hU + kV + lW  = 0

BCC [110] SOLZ   hU + kV + lW  = 2

BCC [110] FOLZ   hU + kV + lW  = 1

BCC [110] ZOLZ   hU + kV + lW  = 0

BCC [111] FOLZ   hU + kV + lW  = 2

BCC [111]   hU + kV + lW  = 1

BCC [111] ZOLZ   hU + kV + lW  = 0
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FIGURE 21.3 The possible ZOLZ, FOLZ, and SOLZ reflections for the three principal zone axes of a bcc specimen. Allowed reflections are shown as

black dots, forbidden reflections as green crosses, the direct beam direction is a red spot, and the arrow indicates the displacement vector between the

ZOLZ and FOLZ.
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HOLZ and Kikuchi-line simulations of a GaAs ZOLZ
CBED pattern.

21.1.B Indexing HOLZ Lines

When you’re recording the pattern containing the defi-
cient HOLZ lines, you must also record another pattern
with a smallL and a small a to show the FOLZ disks. The
first thing youhave todo is index theFOLZ hklmaxima in
the manner we just described. Then observe which max-
ima show the clearest HOLZ excess lines. Each HOLZ-
line pair will be perpendicular to the g vector from 000 to
theFOLZdisk.There shouldbe aparallel deficientHOLZ
line in the 000 disk, and this linemust be assigned the same
indices as the FOLZ disk. If you repeat this exercise
around the FOLZ ring, most of the HOLZ lines should
be indexed, as shown in Figure 21.5. Below the schematic
pattern is a magnified drawing of the 000 disk and you
should be able to see the association of each HOLZ line
with a corresponding FOLZ maximum (Ecob et al.).

In some cases you may find it difficult to associate a
specific HOLZdeficient line in 000with a specific FOLZ
reflection due to strong excitation of two diffraction

maxima. Under these circumstances, the two deficient
lines may merge and appear to form a hyperbola. If you
make small changes in the kV, the overlaps may resolve
into two discrete lines. You should also be aware that
faint HOLZ lines in the 000 disk may sometimes arise
from second-order or even third-order Laue zones;
these very high order lines are even more sensitive than
first-order HOLZ lines to changes in kV and lattice
parameter. As with the HOLZ patterns themselves, the
indexing of HOLZ lines also lends itself to computer
assistance. As we just showed in Figure 21.4, such pro-
grams can generate simulated HOLZ line patterns for a
given orientation, lattice parameter, and kV. Matching
of the computer simulation with the experimental pat-
tern then allows direct indexing. This procedure is also

FIGURE 21.4 Computerized indexing of ZOLZ disks and simulation of

deficient HOLZ lines in the 000 disk (red) and Kikuchi lines in a 001 ZAP

of GaAs (at 200 kV) using WebEMAPS. The indices for the ZOLZ disks

are difficult to read because of the computer-output font size so several of

the outer disks are indexed more clearly.
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Expanded
view of 000

Allowed FOLZ
reflections but not

intercepted by
Ewald sphere

Allowed FOLZ
reflections
intercepted

by Ewald sphere

Ewald sphere

FIGURE 21.5 How to relate deficient HOLZ lines to the HOLZmaxima;

the indexed FOLZ reflections in this [111] pattern are shown as full circles

and the open circles are the rest of the FOLZ reciprocal lattice points that

don’t intercept the Ewald sphere. The g vector from 000 to each hklFOLZ

disk is normal to the hkl HOLZ line and the lines are shown in the

expanded 000 disk below.

FOLZ WARNING
Be aware when you are indexing HOLZ rings that
structure factors can cause every reflection in a FOLZ
to be forbidden. So then we call the SOLZ the FOLZ!
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the first step in measuring the lattice parameter of the
specimen and we will discuss this, along with other
applications such as composition and strain measure-
ments later in this chapter. Fournier et al. give a clear
introduction to the step-by-step indexing and you
should read this and then practice indexing some pat-
terns by hand once or twice, just to get the hang of it.
New software continues to become available to refine
the various methods of HOLZ-line indexing (e.g.,
Morawiec).

21.2 THICKNESS DETERMINATION

As you read through this book, you will become aware
that a direct and accurate measure of the specimen
thickness is essential for many aspects of TEM and
AEM, such as the correction of X-ray intensities for
absorption within the specimen (Chapter 35), determin-
ing the attainable X-ray spatial resolution (Chapter 36),
and obtaining EELS data with reasonable P/B (Chap-
ters 37 and 38). A most useful application of CBED
patterns is that you can use them to measure the thick-
ness of a crystal.

When you record a ZAP under conditions where 2aS
< 2yB such as shown back in Figure 20.2B, the 000 disk
usually contains concentric diffuse fringes known as
Kossel-Möllenstedt (K-M) fringes. If you move the
specimen under the beam and it is not too bent then
you will see that the number of these fringes changes. In
fact the number of fringes increases by one every time
the thickness increases by one extinction distance, xg; if
the specimen is < xg in thickness, then you’ll see no
fringes and the 000 and hkl disks will be kinematical
and uniformly bright and boring, as shown back in
Figure 20.5A. So these fringes clearly contain thickness
information. In fact, because the foil thickness can be
measured at precisely the point you are doing diffrac-
tion and analysis, and because the method is very amen-
able to computerization, it has become a most popular
use for CBED patterns. The region of the foil you select
should be flat and undistorted (this is relatively easy
when you are using a small focused probe, compared
to a broad beam for SAD) and the beam must be
focused at the plane of the specimen. The method is, of
course, limited to crystalline specimens and it can be a
bit tedious, but it is one of the best and, certainly for
fully crystalline materials, the most accurate method of
thickness determination.

In practice, to simplify the interpretation, we don’t
make thickness measurements under zone-axis condi-
tions. You need to tilt to two-beam conditions with only
one strongly excited hkl reflection. If you do this you
will see that the CBED disks contain parallel rather
than concentric intensity oscillations, as shown in
Figure 21.6.

We’ll see in Chapter 23 that these fringes are the
reciprocal-space analog of rocking-curve intensity oscil-
lations that occur across a bend contour in two-beam
BF and DF images. We’ll also see in Chapter 23 that
bend contours arise when elastic deformation bends the
diffraction planes and so an incoming parallel beam
‘sees’ a range of scattering angles across the bent region
(see Figure 21.7A). In a similar manner, when you use a
convergent beam and the illuminated region is unde-
formed, then the convergent beam provides a range of
incidence angles to the diffracting hkl planes (see Figure
21.7B). The procedure to extract the thickness from the
fringe pattern was first described by Kelly et al., refined
by Allen, and is easily computerized. Energy filtering
also helps to improve the clarity of the K-M lines.

FIGURE 21.6 Parallel Kossel-Möllenstedt fringes in a ZOLZ CBED

pattern from pure Al taken under two-beam conditions with (200)

strongly excited.

(A) (B)

FIGURE 21.7 The reciprocal relationship between electron ray paths

during (A) the formation of bend contours in BF images and (B) the

formation of K-M fringes in CBED disks.

FRINGES IN THE DISK
These oscillations are symmetric in the hkl disk and
asymmetric in the 000 disk for two-beam conditions.
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But before you click on yourWeb browser, let’s do it
first by hand so you understand the process. If you look
at the hkl disk through a 10� Lupe containing a grati-
cule then it is easy to measure the distances between the
middle of the central bright fringe and each of the dark
fringes with an accuracy of about�0.1 mm. The central
bright fringe is at the exact Bragg condition where s=0.
The fringe spacings correspond to angles Dyi as shown
schematically in Figure 21.8A, and from these spacings
you can obtain a deviation si for the i

th fringe (where i is
an integer) from the equation

si ¼ l
Dyi

2yBd
2

(21:1)

where yB is the Bragg angle for the diffracting hkl plane,
d is the hkl interplanar spacing, and we’ll use the magni-
tude of s, ignoring its sign. The angle 2yB in the CBED
pattern is, of course, just the separation of the 000 and
hkl disks. The specimen in Figure 21.6 is pure Al and the
200 reflection is excited. For Al, d200 is 0.2021 nm. If the
extinction distance xg is known, then you can determine
the foil thickness t since

s2i
n2k
þ 1

x2gn
2
k

¼ 1

t2
(21:2)

where nk is an integer (k is an integer identical to i or
differing from i by a constant integer not related to l). If
you don’t know xg, then you have to use a graphical
method, plotting the measurements for several fringes
as follows.

& Arbitrarily assign the integer n=1 to the first fringe,
which corresponds to an excitation error s1.

& Then assign n = 2 to the second fringe, s2, etc.
& Plot (si/nk)

2 versus (1/nk)
2. If the result is a straight

line, your arbitrary assignment was good. That is,
the relationship between i and k is given by k= i+ j
where j is the largest integer <(t/xg).

& If your plot is a curve, then repeat the procedure by
re-assigning n = 2 to the first fringe.

& Continue to iterate until you find a straight line, as
shown in Figure 21.8B.

You have to do all this because the minimum thick-
ness may be >xg. From the straight-line plot, the inter-
cept is t–2 and the slope is �xg�2. We will now go
through an example in detail.

An example: If we apply this method to Figure
21.6, we find that the first set of values of si for
the three dark fringes are s1, s2, and s3 given in
Table 21.1. Now we guess the values of n as
shown in column 2 to give the values for (sj/nj)

2

in column 3.
These data do not plot as a straight line because

both (s1/1)
2 and (s3/3)

2 are less than (s2/2)
2. So

we then assign the integer 2 to the first fringe, etc.
We then find a second set of values as shown
in Table 21.2, and these numbers plot as a str-
aight line as shown in Figure 21.8B. The intercept
of the line with the ordinate is 1/t2, and this

(A)

(B) 2θB Intensity
minima

hkl000

Δθ2

Δθ1

si
2

1
nk

2

Slope = 1
ξg

2

Intercept = 1
t 2

nk
2

FIGURE 21.8 (A) The measurements necessary to extract thickness (t)

from K-M fringes. From ni measured spacings of Dyi, determine the

deviation parameters si, then (B) plot (si/nk)
2 against (1/nk)

2. If the plot

is a straight line, extrapolate to the ordinate to find t–2 and hence t.

TABLE 21.2 Alternative CBED Data for Thickness Determi-
nation

si (nm�1) ni
s2

i

n2
i

(nm-2)

s1 = 0.84 � 10�2 n1 = 1 1.7 � 10�5

s2 = 2.1 � 10�2 n2 = 2 4.9 � 10�5

s3 = 3.0 � 10�2 n3 = 3 5.6 � 10�5

TABLE 21.1. CBED Data for Thickness Determination

si (nm�1) ni
s2

i

n2
i

(nm-2)

s1 = 0.84 � 10�2 n1 = 1 0.7 � 10�4

s2 = 2.1 � 10�2 n2 = 2 1.1 � 10�4

s3 = 3.0 � 10�2 n3 = 3 1.0 � 10�4
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equals 6.1� 10�5 nm�2. Therefore, we find that
t2=((6.1)�1� 105) nm2=(1.64� 104) nm2 and so
t=128 nm.

Now you can see why this procedure lends itself to
computerization.You can digitize the fringes by scanning
the pattern on your TEM screen across the STEM detec-
tor or do it directly via a CCD camera. As we noted,
software is available to do this analysis but this isn’t
difficult and you may even want to try writing the pro-
gram yourself or incorporate equation 21.2 into a spread-
sheet/graphing program. A good example of the relative
strengths of CBED and EELS thickness measurements
for a nanostructured material is given by Berta et al.

21.3 UNIT-CELL DETERMINATION

Before you start on the more esoteric aspects of crystal-
structure determination, such as the analysis of point
groups and space groups, you can make life much easier
for yourself by determining the unit cell of your speci-
men. Remember

The unit cell is the smallest group of atoms or
molecules which, when repeated in 3D, generates
the lattice structure of the crystal.

The unit cell possesses the symmetry and properties
of the lattice (assuming we could ever test a single,
isolated unit cell!). In fact, determination of the unit
cell is only possible if you already know the crystal
system of the specimen. So don’t start with an unknown
structure! Remember

There are seven different axial/coordinate systems
into which all crystals are classified: cubic, ortho-
rhombic, tetragonal, hexagonal, trigonal, mono-
clinic, and triclinic.

Now in TEM investigations it is rare that we look at a
totally unknown specimen and so, in this chapter, we’ll
assume that you know the crystal structure of your speci-
men. If in fact you don’t know the structure, then you
have to start with symmetry determination to find the
point group/space group (also see the companion text)
and then you can deduce the crystal system. Remember

The point group defines a set of 2D symmetry
operations (rotations or reflections), acting through
a point, which leaves the crystal unchanged. There
are 32 unique point groups.

We can extend the definitions of symmetry to 3D.
Remember

The space group is the complete set of 3D symme-
try operations (rotations, reflections, translations,
and combinations thereof) that leave the crystal
unchanged. There are 230 space groups.

So, assuming you know the crystal system, let’s
determine the unit-cell dimensions. We saw in the pre-
vious chapter that a CBED pattern at small L often
reveals one or more rings of HOLZ intensity and
you’ve just learned how to index the diffraction disks
that make up these rings and the pairs of HOLZ lines
that attach themselves to the HOLZ reflections. If you
don’t know the crystal structure, then, of course, it will be
rather difficult to index the pattern since you don’t know
the appropriate systematic absences. But these rings are
useful, even if you haven’t indexed the individual disks.

If you measure the radii of the rings (G), you can
deduce the lattice-repeat vector of the crystal parallel to
the beam direction.

So by tilting to an orientation in which the beam is
coming down an axis of the unit cell such as [001] in an
orthorhombic crystal, the disk spacings in the ZOLZ
pattern will give you the [100] and [010] lattice param-
eters and the HOLZ-ring radius will give you [001].
(Now you see why you can’t do this if you don’t know
the crystal system to start with, since you don’t know
what lattice spacings and angles to expect.)

So you should be able to determine all the lattice
parameters of the unit cell from a single ZOLZ/HOLZ
pattern. If you’re not sure which pattern to choose, any
low-index (i.e., high-symmetry) pattern is a good starting
point. There are appropriate analytical expressions for
calculating the spacing between atomic planes parallel to
the beam and we’ll discuss them next. These expressions
give you the lattice parameters, since the lattice spacing is
related to the lattice parameter by standard equations,
given in basic crystallography texts (see Chapter 18).
Then you have to look at differences between the
ZOLZ and HOLZ disk patterns to determine the type
of lattice centering. So we’ll now show you how to utilize
a unique aspect of CBED patterns, namely, that from a
single 2D pattern, you can obtain 3D information about
your crystalline specimen.

21.3.A Experimental Considerations

The first thing you have to do is get CBED patterns
containing clear ZOLZ and HOLZ maxima. The pat-
terns should have a small L to reveal one or more rings.

WARNING
If you don’t recognize any of these definitions then
stop, do not pass this section. Return to the basic
crystallography texts (referenced in Chapter 18).

TWO PATTERNS
It is good practice to record two patterns, one with a
large C2 aperture (therefore large a, Kossel condi-
tions) and one with a small C2 aperture to show the
individual disks (K-M conditions).
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Such a pair of patterns is shown in Figure 21.9A and
B.Wewill use the ring pattern tomeasureG and the disk
pattern to index individual HOLZ reflections and
observe both the relative spacings and positions of
ZOLZ and HOLZ reflections.

21.3.B The Importance of the HOLZ-Ring
Radius

If you go back and look at Figures 20.11A–D and 20.12
you will be able to work out the simple geometrical
relationship between H and G.

& H in Figure 20.12 is the spacing of the reciprocal-
lattice planes parallel to the electron beam.

& Gn is the projected radius of a HOLZ ring that you
measure on the recording of the pattern. If the
HOLZ ring is split, always measure Gn using the
innermost ring.

& If the order of the ring is high, then the electrons are
scattered out to large angles (� � 108), and your
measurements may suffer from the effects of lens
distortion because the electrons are traveling close
to the polepiece. If this is happening, you must
calibrate the distortion in reciprocal space using a
known specimen from which G1, G2, etc., can be
calculated and compared with the values you obtain
experimentally. Of course, Cs correction will mini-
mize such distortion.

Experimentally, you’ll find it much easier tomeasure
G from a Kossel pattern because the HOLZ intensity
appears as one or more rings as in Figure 21.9A. Since
the radius of the Ewald sphere increases with decreasing
electron wavelength l, the value of G for any given
orientation will increase as the accelerating voltage is
raised, so it becomes increasingly difficult to see HOLZ
rings at intermediate voltages.

From the geometry of Figures 20.11 and 20.12, and
assuming that terms inH2 are negligible, the radii of the
FOLZ and SOLZ rings, G1 and G2, are

G1 ¼
2H

l

� �1=2

(21:3)

And from a theorem you learned in high-school
geometry

G2 ¼ 2
H

l

� �1=2

(21:4)

where both G andH are in reciprocal-space units (nm–1

or Å�1). Similar expressions can be developed, if you
need them, for third- and higher-order zones. In prac-
tice, most people find it easier to think in real space
rather than reciprocal space and so we rewrite these
equations in terms of the spacing between Laue zones
(H�1) in real-space units. We use the inverse relation-
ship between real and reciprocal spaces to give, for the
FOLZ

1

H
¼ 2

lG 2
1

(21:5)

The value of H�1 can be expressed in real-space units
(nm) through the measured radius R (mm) and the
camera constant lL (nm mm)

(A)

(B)

FIGURE 21.9 (A) CBED Kossel pattern from a carbide particle taken

with a 150-mmC2 aperture showing the FOLZ ring of intensity surround-

ing the overexposed ZOLZ region. In (B) the same pattern taken with a

20-mm aperture reveals individual reflections in both the ZOLZ and

FOLZ.
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1

H
¼ 2

l

� �
lL
R

� �2

(21:6)

You must take the time to measure lL carefully (see
Section 9.6) because this will minimize errors in H�1

which could be quite large due to the (lL)2 dependence
in equation 21.6. From the above equations and from
Figure 20.12, you can see that a low-symmetry zone axis
with a smallHwill give rise to a smaller HOLZ ring than
for a high-symmetry zone. The smaller ring will be easier
to observe at any chosen L.

Summarizing the story so far: by measuringR values,
you can determine the real-lattice spacing (H�1) parallel
to the beam direction. The next thing to do is compare
this measured value, H�1m with calculated values H�1c

assuming a certain unit cell. NowH�1 is directly related
to the magnitude of the real-space direction vector

1

H
¼ j½UVW �j (21:7)

and so this magnitude can be calculated for a specific
beam direction [UVW].

An example: For an fcc crystal (Steeds 1979)

1

H
¼ a0ðU2 þ V2 þW2Þ1=2

p
(21:8)

where a0 is the lattice parameter, p ¼ 1 when
(U+V+W) is odd, and p ¼ 2 when (U+V+W)
is even. For bcc crystals p¼ 2 ifU,V, andW are all
odd, otherwise p ¼ 1. These conditions for p just
take account of structure-factor effects which
cause systematic absences of some reflections, or
in some cases whole rings. If a whole ring is absent,
the calculated reciprocal-lattice layer spacing H�1c

must be an integer multiple of the measured spac-
ing H�1m . Thus

1

Hc
¼ n

1

Hm

� �
(21:9)

where nmust be an integer. If n is non-integral then
your indexing is wrong. A generalized method for
determining which Laue zone you should see has
been given in Jackson’s 1990 paper. If you have
indexed the ZOLZ (i.e., [UVW] is known), R is
measured and l is known, then you can determine
Hwithout the need to index individual spots in the
HOLZ ring of intensity.

There are more generalized equations for H�1

than equation 21.8 (see Raghavan et al. and Ayer).

Other examples: In a crystal system with orthogo-
nal axes (orthorhombic, tetragonal, or cubic sys-
tems, with lattice-repeat spacings a, b, c) if there

are no absences of HOLZ layers (p=1) then for a
given zone axis UVW

1

H
¼ a2U2 þ b2V2 þ c2W2
� �1=2

(21:10)

Similarly for hexagonal or rhombohedral systems
using a three-index system

1

H
¼ ða2ðU2 þ V2 �UVÞ þ c2W2Þ1=2 (21:11)

and for the four-index system

1

H
¼ ð3ðU2 þ V2 þUVÞ2þ c2WÞ1=2 (21:12)

and for the monoclinic system with a unique b axis

1

H
¼ ðU2a2 þ V2b2 þW2c2 þ 2UWac cos b2Þ1=2

(21:13)

If you are working with a low-index, high-symmetry
zone axis it may be just as easy to determineH�1 directly
from reciprocal-lattice constructions rather than using
equations. However, for lower-symmetry crystallo-
graphic directions, such constructions are effectively
impossible to visualize and then you should use these
equations.

So in summary we can give some guidelines

& Measure the radius of the HOLZ ring to give a value
of the reciprocal of the spacing between the HOLZ
and the ZOLZ, H�1m .

& Compare the measured spacing with the spacing
calculated assuming a given unit cell, H�1c .

& Themeasured value should agree with, or be amulti-
ple of, the calculated value. For example, if given a
square ZOLZ DP, you assume a cubic crystal then
the unit-cell repeat vector should be identical in all
three dimensions. So the FOLZ ring diameter should
give the same value ofH�1 as that determined for the
other two axes from the square [100] pattern. If H�1

is different, then the crystal is not cubic but another
system, such as tetragonal.

21.3.C Determining the Lattice Centering

When you have measuredH�1 from the Kossel pattern,
the next thing to do is to compare the ZOLZ and FOLZ
reflections in the K-M pattern obtained with a small C2
aperture such as Figure 21.9B. The superposition of the
FOLZ and ZOLZ gives you information on the type of
lattice you are dealing with, since centered lattices of all
types will give different superposition patterns com-
pared with a primitive lattice.
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(A)

(B)

FIGURE 21.10 (A) The overlap between the ZOLZ and the FOLZ when

looking down the [001] axis of cubic crystals. In the fcc pattern, 111 is a

FOLZ index, likewise 101 in bcc. In the primitive pattern, only the ZOLZ

is indexed. (B) Schematic illustration of the superposition of the FOLZ

pattern on the ZOLZ pattern for an orthorhombic crystal with the elec-

tron beam down [001] showing the differences in the superposition for

(P) primitive, (A) A-centered, (B) B-centered, and (C) I-centered lattices.

In a primitive lattice, the FOLZ will superimpose
directly on the ZOLZ because there are no systematic
absences. However, face-centered and body-centered lat-
tices will give rise to displacements of the FOLZ pattern
with respect to the ZOLZ in certain beam directions as
illustrated schematically in Figure 21.10A. You can quite
easily work out the displacement in terms of a shift vector
for cubic crystal patterns in low-index orientations and we
showed examples back in Figure 21.2 and 21.3. It is not so
simple in more complex crystals but Jackson (1987) has
developed a generalized method of determining the shift
vector t for all crystal systems and all orientations

t ¼ g� u�
HNL

ju�j

� �
(21:14)

where g is the vector for the hkl HOLZ reflection, u* is
the vector normal to the ZOLZ and parallel to H, and
NL is the number of the Laue zone containing hkl. To
determine t then all you do is look up values of H, u*,
and H/|u*|, tabulated by Jackson.

An example: We can illustrate the shift due to
lattice type, by looking at Figure 21.10B, which is
a series of schematic patterns for an orthorhombic
cell (given byAyer) oriented along the [001] axis. In
each pattern the experimentally observed distribu-
tion of ZOLZ and FOLZ reflections is shown and
adjacent to it is the same pattern but containing the
FOLZ reciprocal-lattice points. So the FOLZ ring
of spots is always coincident with the FOLZ recip-
rocal-lattice points. In the top pattern (P) the
ZOLZ and FOLZ superimpose exactly and this
would be the case for a primitive unit cell. In (A)
the FOLZ lattice is displaced from the ZOLZ
reflections by half the spacing of the ZOLZ recip-
rocal-lattice points in the [010] direction; this is the
situation expected for an A-face-centered lattice.
The next two patterns (B and I) show the expected
displacements for a B-face-centered and an I
(body-centered) lattice.

So you now know how to measure the lattice-repeat
vectors in three dimensions and determine the type of
lattice centering. This information should be sufficient
to allow you to determine the correct unit cell of your
specimen, particularly if you have further information,
such as elemental analysis by XEDS or EELS.

21.4 BASICS OF SYMMETRY
DETERMINATION

21.4.A Reminder of Symmetry Concepts

Before you study the following two sections in the com-
panion text, you must have a basic understanding of
crystal-symmetry elements (both rotational and
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translational) and be familiar with the standard inter-
national notation for point groups and space groups
(see Section 16.10). You will also need to know how to
represent the point-group symmetry of a crystal using
the stereographic projection we discussed in Section
18.4. In Figure 21.11 we reproduce the standard point-
group table familiar to any student of crystallography.

Historically, point-group determination has been
the domain of X-ray crystallographers and electron
microscopists have gladly avoided such concepts. How-
ever, the point group is not only useful for classifying
crystals with common symmetry elements, but it is also
an important indicator of many of the properties of the
crystal, such as anisotropy in the electrical resistivity or
the refractive index (all described in glorious detail in
the classic text by Nye). With the availability of CBED
you can determine the point group of a crystal directly
in the TEM, simply by recording two or three low-index
ZAPs.

This process has a tremendous advantage over clas-
sic X-ray techniques because

& We obtain this information from much smaller
regions than is possible using X-rays.

& We can also distinguish all 32 possible point groups
unambiguously, which is a non-trivial process using
X-rays.

So as an electronmicroscopist, youmust nowmaster
the details of point-group determination if you are to
take full advantage of the capabilities of a modern
TEM. This is described in detail in the companion text
and you’ll see that it’s not too difficult an exercise, but
there is no escaping the need to comprehend some of the
basic principles of crystal symmetry. The exercises will
require quite a lot of careful work and time. Therefore, if
you can uniquely identify the unknown phase in your
specimen through some other technique, such as XEDS
or EELS, do so.

21.4.B Friedel’s Law

Symmetry determination in crystals has evolved from
the early work of Friedel and von Laue on the kinemat-
ical theory of XRD. We can summarize a fundamental
aspect of Friedel’s work by Friedel’s law.

If this law holds, then it is not possible to tell by
diffraction whether an inversion center is present in the
crystal or not. This is the case for most XRD patterns

from single crystals, because most XRD occurs under
kinematical conditions.

So, under kinematical diffraction conditions, we
cannot readily distinguish amirror plane from a twofold
rotational axis (diad) parallel to the mirror plane. That
is equivalent to saying that we cannot distinguish point
groups m and 2. Similarly, the presence of a fourfold
rotation axis (tetrad) in a crystal, parallel to the c axis,
results in Ihkl ¼ I�hkl ¼ I�h�kl ¼ Ih�kl where Ihkl denotes the
diffracted intensity of a reflection of type hkl. This DP
cannot be distinguished from one containing two per-
pendicular mirror planes whose intersection is parallel
to the rotation axis.

XRD is thus severely limited for point-group deter-
mination because of Friedel’s law. Since crystals which
do not possess true centers of symmetry (non-centro-
symmetric crystals) still appear in X-ray DPs to possess
a center of symmetry; they cannot be readily distin-
guished from centrosymmetric crystals. If you go back
and look at the 32 point groups in Figure 21.11 and
remove all those which do not contain a center of symme-
try, then you are left with only 11 centrosymmetric point
groups: �1, 2/m (equivalent to mm), mmm, �3, �3m, 4/m, 4/
mmm, 6/m, 6/mmm, m�3, and m�3m. These 11 point groups
are known as the Laue classes in XRD. Except under
‘anomalous’ scattering conditions, XRD can only deter-
mine these 11 symmetry groups.

So, to get the full symmetry information, the crystal
must be thick enough for you to see dynamical diffrac-
tion contrast within the CBED disks. If you then exam-
ine the intensity distributions within individual hkl
reflections you can distinguish centrosymmetric and
non-centrosymmetric crystals. Thus, in CBED patterns,
the 32 crystal point groups are not reduced to the 11
Laue classes, as occurs in XRD.

21.4.C Looking for Symmetry in Your Patterns

You can’t perform point-group determination with-
out learning how to discern symmetry elements in

FRIEDEL’S LAW
Under kinematical diffraction conditions, the inten-
sity of a reflection hkl is equal to the intensity in its
opposite reflection �h�k�l.

MIRROR PLANE
The presence of a mirror plane in a crystal, parallel to
axes a and b, makes the intensity of all reflections of
type hkl equal to the intensity of the corresponding
�h�k�l reflection.

WHEN FRIEDEL FAILS
In CBED patterns, Friedel’s law breaks down
because of dynamical scattering.
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FIGURE21.11 The 32 crystal point groups represented by stereograms showing the operation of rotational, mirror, and inversion symmetry elements on

a general pole hkl. The international notation describing the point groups is given under each of the stereograms.
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CBED patterns. When we look at CBED-pattern sym-
metry we use the same notation as for point groups,
i.e., a number X (=1, 2, 3, 4, or 6) for a rotation axis
and m for a mirror plane parallel to the rotation axis
and a second m for any independent mirror plane.
Inversion symmetry or a mirror normal to the beam
direction cannot be discerned and so the terms of the

formX or X/m are not used. The only combinations
we can get are the same as for the 10 2D point groups:
1, 2,m, 2mm, 3, 3m, 4, 4mm, 6, or 6mm. These symbols
refer to the observable symmetry in the pattern, and
four examples of different pattern symmetries are
shown schematically in Figure 21.12.

(A)

(C) (D)

(B)

FIGURE 21.12 Four examples of symmetry in CBED patterns. (A) Symmetry 2 refers to a twofold (diad) rotation axis; i.e., the pattern has identical

symmetry when rotated 1808. (B) 2mm is a diad symmetry with two independent mirror planes parallel to the diad. (C) 3m indicates threefold rotation

(triad) symmetry with one mirror plane, i.e., rotational symmetry every 1208 with one mirror plane present at each 1208. (D) 4mm indicates a fourfold

rotational symmetry (tetrad) with two independent mirror planes parallel to the tetrad.
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Symmetry determination is generally carried out
using ZAPs although there is useful information in off-
axis patterns. Remember, to get a well centered ZAP

& You may find it easier to do the final adjustments to
get an exact ZAP using the beam tilt/shift controls.

& As a last resort, you may have to displace the C2
aperture slightly off axis to center it precisely around
the center of symmetry in the ZAP.

Once you’ve got a centered ZAP, there are specific
kinds of symmetry for which to search

& Whole-pattern (WP) symmetry.
& Bright-field (BF) symmetry.
& Projection-diffraction symmetry.

The first andmost important is theWP symmetry.
To be sure you get the correct symmetry, you

should take a small camera-length pattern to include
the HOLZ rings since HOLZ effects are not always
visible in the ZOLZ (e.g., they may be hidden by the
intense 000 disk). The pattern can be either a Kossel or a
K-M pattern. The WP symmetry at any orientation
must belong to one of the 10 2D point groups listed.

The second kind of symmetry is the BF symmetry.
In this case, the presence of the HOLZ lines ensures

that the BF-disk symmetry contains 3D information.
Take care to ensure that the C2 aperture is small enough
so that you can see the 000 disk without any overlap
from other diffraction disks. For example, the 000 disk
back in Figure 20.2B has an array of deficient HOLZ
lines which displays 3m BF symmetry.

If there is only 2Ddiffuse intensity within the disk, or
if you ignore theHOLZ lines, then the symmetry is more
correctly called the BF projection symmetry. The sym-
metry in either of these latter cases should again be
classified into one of the 10 2D groups just listed.
You’ll see in the companion text that combination of
the WP and BF symmetry in three ZAPs is often suffi-
cient to determine the point group.

On some occasions the projection-diffraction symme-
try may be all that is available.

The diffuse contrast within these disks arises from
dynamical interactions within the zero-order reciprocal-
lattice layer of the crystal that give rise to K-M fringes,
which we used above for thickness determination. The
projection-diffraction symmetry is simply the symmetry
displayed in SADPs. Since this symmetry is only 2D, it is
not as useful as the WP and BF symmetry. If you go
back and examine Figure 20.2B, the projection-diffrac-
tion symmetry is visible in the ZOLZ Kikuchi bands
which show a sixfold rotational symmetry with two
independent mirror planes, one within the Kikuchi
bands and one between them, giving 6mm symmetry.
Similar symmetry is shown in the SADP from Si in
Figure 20.2A.

Now that you’ve learned the basics you should be able
to breeze through the companion text which describes the
process for point-group determination, step by step. After
point-group determination you’ll also be shown how to
determine space groups. This exercise is a little more
challenging and space groups are somewhat less impor-
tant than point groups in terms of relating crystal sym-
metry to materials properties. Nevertheless, the space
group of your specimen is an important crystallographic
characteristic and since there are 230 of them it is a much
more selective characteristic than the point group.

We’ll now go on to discuss some more informa-
tion that is available in HOLZ lines but, before you
do this and before you read the CBED chapter in the
companion text, we must warn you that symmetry
determination from CBED patterns requires that
you use your eyes to make a judgment on the pres-
ence or absence of certain symmetry elements and so
this is not an exact science. There are ‘error bars’ in
CBED symmetry and guidance on how to judge
whether imperfections in the symmetry of the pat-
terns can be ignored or not is also given in the
companion text.

21.5 LATTICE-STRAIN MEASUREMENT

Strain arises from local changes in the lattice spacings of
the material. Strain may arise from the presence of
defects such as dislocations and coherent precipitates

WP SYMMETRY
The WP symmetry is just what it says: it’s the sym-
metry of the whole pattern, including the relative
positions of the HOLZ reflections and any HOLZ
Kikuchi lines.

PROJECTION-DIFFRACTION SYMMETRY
This is displayed by the intensity in the direct 000
beam plus the hkl diffracted beams in the ZOLZ layer
and corresponds to the projected 2D symmetry of the
crystal down the zone axis that you have selected. It
ignores any contributions fromHOLZ layers, such as
HOLZ lines and HOLZ reflections, but includes any
diffuse intensity within these disks.

BF SYMMETRY
BF symmetry is the symmetry of the 000 disk

only, when HOLZ lines are present.
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or through local changes in chemistry. Such chemical
changes can arise naturally or can be carefully intro-
duced by controlling the deposition parameters for
layered nanostructures formed by MBE or CVD meth-
ods. Either way, knowing the exact value of the strain is
important in areas as diverse as mechanics, electronics,
and optics. We can get a reasonably accurate measure-
ment of the lattice constants (�2%) by indexing the
reflections in the ZOLZ and/or by measurement of the
HOLZ-ring diameter. However, the best method is to
use the positions of HOLZ lines in the BF disk which,
because they arise from very high order reflections, are
very sensitive to changes in lattice parameter. Results
that are an order of magnitude more precise (�0.2%)
can be obtained by computer simulation of the position
of the HOLZ lines using different lattice constants. The
values that produce the best match with the experimen-
tally observed HOLZ-line positions can be identified as
the lattice constants of the crystal. So by measuring the
HOLZ-line positions we can measure changes in lattice
parameters. Materials scientists and nanotechnologists,
particularly in the electronics industry, are most inter-
ested in changes due to lattice strain.

Local measurement of lattice strain has always been
of interest to materials scientists and indeed we devote
the whole of Chapter 25 to imaging of strain effects.
Typically, direct lattice-strain measurements were per-
formed by X-ray methods but the need for higher spatial
resolution in semiconductor technology and nanostruc-
tured materials has created a tremendous market for
CBED-based methods. For example, in semiconductor
manufacturing and optical technologies, strain-layer
superlattices (e.g., epitaxial layers of GaAs and AlGaAs
which differ slightly in their precisely controlled lattice
parameters) are widely used. Specific infrared sensors can
be tuned, optical waveguides can be modulated, the

threshold voltages of lasers can be tweaked, and so
on. Introducing local strain into the channel in semi-
conductor junctions to enhance carrier mobility and
reduce the resistance between the source and drain has
increased chip performance markedly, permitting
Moore’s law to be extended for yet a few more years.
This concept is also referred to as ‘strain engineering’
and is central to the success of nanostructured electron-
ics and optical devices.

Early CBED work in this area involved the measure-
ment of strain around precipitates in thin foils (Rozeveld
andHowe) and this has been extended down to nanometer-
size probes coupled with sophisticated algorithms for
matching the HOLZ-line patterns and extracting the strain
measurement. Figure 21.13 shows the extraordinary match
that can now be achieved between experiment and theory
using Zuo’s software which is a development of the early
algorithms given in Spence and Zuo. Similar software is
continuously being refinedbymany researchers andvarious
forms are available on the Web at the URLs listed at the
end of the chapter. As always, check the validity of the
software by checking how well it simulates patterns from
known specimens in known orientations: caveat emptor
even if it’s free!

In early computer programs, the position of the
HOLZ lines in the simulation was derived from kinemat-
ical diffraction theory only, but dynamical effects may
be important and should always be included, otherwise
the match is incorrect (Eades et al.). The method is
summarized in three steps.

& Start with a standard specimen of known lattice
parameter to establish the exact electron wavelength
for subsequent simulations.

& Adjust the continuous kV control. Since you know
the lattice parameter, you can determine the exact kV.

(A) (B) (C)

FIGURE 21.13 (A) Cross-sectional BF image from a high-density, plasma-filled, shallow-trench isolation structure prepared along the line indicated on

the SEM image (inset). (B) Experimental CBED HOLZ pattern taken at the cross in (A) �10 mm away from the trench structure. (C) Simulation of a

selected area of (B) where the HOLZ lines (highlighted in red) intersect showing the best fit for strain analysis. Both experimental and theoretical patterns

were processed to enhance the contrast.
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& At this predetermined kV setting, obtain a HOLZ-line
pattern from the unknown and compare the experi-
mental pattern with simulated patterns generated for a
range of lattice parameters, until good matching is
achieved between the simulated and experimental pat-
terns (see Figure 21.13). Theoretically, an accuracy of
0.02% should be achievable but in practice an accu-
racy of 0.2% is generally obtained.

While this approach has demonstrated reasonable suc-
cess in measuring lattice-parameter shifts as reviewed by
Randle et al., you should be wary of other possible causes
of HOLZ-line shifts and the difficulties of exact matching
between theory and experiment. Often the HOLZ-line
patterns display asymmetries which make matching diffi-
cult. Remember, you’ll probably need to cool the speci-
men so you can see HOLZ lines in some materials. There
are some necessary precautions you should take

& Compare your standard and unknown under identi-
cal conditions.

& Take account of any differences in thermal-contrac-
tion coefficient if you cool the specimen to liquid-N2

temperatures.
& Watch for problems such as surface relaxation, or
local strain, or the presence of dislocation lines
which can give rise to spurious measurements of
lattice parameter.

With this same approach we can also make localized
measurements of strain around precipitates or defects,
but the data are always averaged through the foil thick-
ness and in one dimension and so the interpretation can
be difficult. Furthermore, strain relaxation due to the
presence of the surfaces of the specimen is an ever-
present challenge. However, particularly in planar,
thin-film layered structures it is often possible to tilt
the specimen so that the local strain is projected along
the beam direction. It is also feasible to use this HOLZ-
line shift approach to infer, indirectly, the composition
of a specimen by comparing the lattice parameter of an
unknown with a standard of known composition and in
the case of binary solid solutions, extrapolating to other
compositions assuming that Végard’s law applies. Such
an analysis is not limited by elemental considerations or
absorption, as is the case for XEDS, and does not
require ultra-thin specimens as for EELS. However,
this method is indirect and makes several assumptions
that may not always apply. It’s a last resort.

21.6 DETERMINATION
OF ENANTIOMORPHISM

The terms ‘handedness,’ ‘chirality,’ and ‘enantiomorph-
ism’ all refer to the same thing. We say that a crystal or
molecule is ‘handed’ if two forms of the structure occur,
and if we describe the atomic coordinates of one of them
in a right-handed set of axes, the atomic coordinates of
the other structure will be identical in a left-handed coor-
dinate system. These two structures, termed ‘enantio-
morphic’ or ‘chiral,’ are mirror images of each other
and we refer to them as the right-handed and left-handed
forms. (Look at your hands and try and rotate them into
exact coincidence and all this should be clear.) If you go
back and look at the section on symmetry concepts, you
should be able to convince yourself that any crystal that
contains a mirror (m), inversion center (�1), or a fourfold
inversion axis (4) cannot show chirality.

By the way, if you don’t think such an esoteric topic
as enantiomorphism is important then a salutary fact is
that the drug thalidomide (2-(2,6-dioxo-3-piperidyl)
isoindole-1,3-dione) comes in enantiomorphic crystal
forms. One enantiomer (the S-form) causes catastrophic
birth defects in children and the other (R-form) provides
the desired therapeutic effects for women suffering dif-
ficult pregnancies and is particularly efficacious as a
treatment for disfiguring skin lesions such as those aris-
ing from leprosy. Thousands of seriously deformed chil-
dren were born because of the failure to distinguish the
different effects of the two enantiomorphs. This tragedy
gave rise to the whole field of single-enantiomer drug
development (currently a $100B/yr market in the USA
alone), avoiding the common racemic mixture of both
forms that is produced in most chemical processes.

So, although we don’t often need to know which of
the two-handed forms we are looking at, there are occa-
sions when it is of the utmost importance, and several
groups have worked hard on the determination of hand-
edness from CBED.

Enantiomorphism is an essentially 3D phenomenon
(again, look at your hands). Since the projection of a
crystal is a 2D object, a projection of the structure
cannot tell you anything about the handedness. This
means that, in ZAPs, to see handedness, we must look
at effects of HOLZ diffraction or, more generally, if
your specimen is not at a zone axis, there must be
diffraction involving at least three non-coplanar diffrac-
tion vectors in addition to the direct beam. This condi-
tion does not necessarily mean that we have to look at a
HOLZ pattern. It means that we have to look at HOLZ
diffraction effects which, as you now know well, may
appear in the ZOLZ as well as in HOLZ directly. In the
example given in Figure 21.14, the asymmetric effects
are visible only in the reflections in the first HOLZ ring.

Looking at HOLZ effects, we can readily see the
difference between enantiomorphs. But just observing

LATTICE PARAMETERS FROM CBED
For determining precise values, compare the experi-
mental HOLZ-line patterns to the computer-
simulated version.
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the difference does not let us to say which structure is
which hand. It does allow us to say whether two crystals
have the same or opposite handedness.

The determination of whether a particular crystal is
right-handed or left-handed requires a dynamical calcu-
lation to simulate CBED patterns which you must then
compare with the experimental patterns. But note

& You’ll find that such a comparison with experiment
is not always easy because there is often ambiguity in
the indexing of the pattern and, if your indexing is
wrong, the handedness will be wrong.

& To perform the simulation and thus to determine the
handedness, you need to know the full crystal
structure.

& Some authors have suggested that the dynamical cal-
culations (needed to say which enantiomorph is which)
can be done by hand, e.g., by calculating the phases of
the structure factors and working out the effects of
multiple-diffraction paths. However, this calculation
requires considerable understanding of dynamical dif-
fraction and it is surely easier, as well as more reliable,
to perform a full dynamical simulation using some of
the software we’ve already referenced.

Recently Inui et al. have systematically tabulated
appropriate zone axes for the determination of handed-
ness for all the point groups that can show handedness.
In studies of enantiomorphism, it is crucial to determine

whether or not a CBED pattern contains mirror sym-
metry or not. You’ll find that doing this is not always
easy but, if you use off-axis patterns rather than ZAPs,
the asymmetries tend to be stronger, as described by
Jones (and also shown in Figure 21.14).

21.7 STRUCTURE FACTOR AND CHARGE-
DENSITY DETERMINATION

When you read the literature about CBED and its
applications, you’ll often come across references to
extraction of structure factor (Fhkl) values via CBED.
(Go back to Chapter 3 to remind yourself of the impor-
tance of structure factors in electron diffraction.) You
should remember that |F(y)|2 is direct measure of the
diffracted intensity. Direct, reproducible, and quantita-
tive measurement of the diffracted intensity is basically
impossible in SADPs but is quite feasible in CBED
patterns, especially when they are energy-filtered. When
we determine a specific crystal structure for our specimen,
it is, in fact, equivalent to assigning a structure-factor
phase to the diffraction disks in the pattern. There are

FIGURE 21.14 CBED pattern from a specimen of Ho2Ge2O7, tilted

slightly away from the zone axis to improve the contrast. The ZOLZ

(the bright spots just below the center of the figure) shows mirror sym-

metry but in the HOLZ ring (above the center) the reflections are clearly

asymmetric. If the specimen had the other chirality, the HOLZ ring would

be mirrored across the vertical axis of the pattern.

FIGURE 21.15 A three-dimensional rendering of the experimental differ-

ence map between the static crystal charge density (determined from quan-

titative analysis of CBED patterns) and the superimposed spherical charge

density of O2– and Cu+ ions. The color scheme is blue where the difference

in charge density is negative (Dr < 0), white where it is zero (Dr= 0), and

red where it is positive (Dr> 0). The difference would be zero everywhere

if cuprite were purely ionic (i.e., the ions were indeed spherical). The non-

spherical charge distortion on the Cu atoms shows the characteristic

shape of d orbitals. The positive charge in the tetrahedral interstitial

regions suggests Cu–Cu covalent bonding.

364 ..............................................................................................................................................US ING CONVERGENT-BEAM TECHNIQUES



several ways to do this and advances in computer simu-
lation and CCD cameras make the direct, quantitative
interpretation of diffracted intensity much more tract-
able, but the essential steps were all described by Spence
and Zuo. Basically, we match computer simulations of
intensity variations in the CBED disks with the experi-
mental patterns, assigning specific values of Fhkl to each
of the reflections until the best fit is obtained. So it is
computer-intensive, but that is not a problem today.

Once the structure-factor data are obtained, a very
useful side effect is that the valence-electron density can
be measured from the low-order structure factors and
this characteristic is otherwise inaccessible experimen-
tally for crystals without an inversion symmetry (Spack-
man et al.). Once measured, the valence-electron density
can be mapped out and the culmination of much of this
work was the first-ever direct imaging of an atomic
bond (Zuo et al.) (Figure 21.15).

21.8 OTHER METHODS

21.8.A Scanning Methods

Diffraction is as useful in scanning-beam instruments as
in TEM. As we discussed back in Chapter 18, electron-
backscatter diffraction (EBSD) studies are as ubiqui-
tous today as SAD and CBED and very complemen-
tary. Many more crystals can be studied by EBSD and
the specimen does not need to be thinned. EBSD pat-
terns contain HOLZ lines just like CBED patterns.

(A)

(C)

(B)

FIGURE 21.16 Series of Eades double-rocking ZAPs obtained from a

thin Al foil in the [001] orientation. (A) is the BF image, (B) is the 200 DF

image, and (C) is an energy-filtered version of (A). The removal of energy-

loss electrons sharpens the image.

FIGURE 21.17 Nanodiffraction patterns from a multi-walled carbon

nanotube (top).
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Historically, electron channeling was another way to
obtain crystallographic information in the SEM but the
patterns are of such low contrast that EBSD has ren-
dered the channeling technique obsolete (for now).

Scanning DPs can be obtained in STEMs using
either one or two sets of coils both before and after the
specimen. In both cases the beam is stationary at the
plane of the specimen and rocks back and forth in a
manner similar to the hollow-cone or precession meth-
ods we described in Chapters 18 and 20. Using only one
scan coil below the specimen partially ‘de-rocks’ the
beam but two coils fully ‘de-rock’ the beam such that,
instead of the DP scanning across the BF STEM detec-
tor and being recorded sequentially, the 000 disk is
always on the optic axis and thus on the BF detector.
However, the HOLZ lines, etc., move continuously
across the detector because, like Kikuchi lines, they are
‘fixed’ to the specimen. The resulting double-rocking
patterns, which are often named after their inventor,
Alwyn Eades, cover several degrees in comparison
with the fractions of a degree visible in a normal
CBED disk. These patterns are very striking as you
can appreciate from Figure 21.16; such patterns can be
viewed in BF orDF and, as with all CBED patterns, can
be sharpened by energy filtering. These scanning meth-
ods can be used to study the occurrence of forbidden

reflections which are important in crystal-symmetry
determinations and more detail is given in the compan-
ion text.

21.8.B Nanodiffraction

Nanodiffraction, as the term implies, involves diffrac-
tion with a nanometer-scale beam and has been pio-
neered by Cowley. Nanometer beams have only a few
picoamps of current so the patterns are noisy and
require a FEG-TEM (or DSTEM), which also provides
a coherent beam. If you scan the literature, you’ll find
that nanodiffraction permits determination of local var-
iations of crystallography within large individual unit
cells, dislocation cores, grain-boundary segregant films,
individual nanotubes or nanoparticles such as catalysts.
Figure 21.17 shows nanodiffraction patterns from a
single, multi-walled, carbon nanotube.

In addition, it is possible to assess crystallographic
effects associated with medium-range ordering by
correlating atom positions over distance of a few nan-
ometers. Nanodiffraction methods have helped develop
the new field of fluctuation microscopy which we men-
tion again in Chapter 29; they are also essential for
diffractive imaging with atomic resolution.

CHAPTER SUMMARY
CBED patterns contain contrast information which gives a complete crystallographic
characterization of small crystals, as well as other information such as thickness. To make
the most of this capability you need detailed knowledge of crystal-symmetry concepts,
stereographic projections, and the ability to produce ZAPs from a variety of orientations.
In addition, the determined operator is often rewarded with patterns that are both very
useful and stunningly beautiful. Before you go and read about CBED in the companion text,
remember that, if you want to determine the point group and/or the space group from your
CBED patterns, you need to determine

& WP symmetry
& BF symmetry
& Projection-diffraction symmetry

CBED symmetry information from the HOLZ-line distribution in the 000 disk is also
very useful for measuring other characteristics of our specimens which cannot be deter-
mined, on a nanoscale, by other techniques. The examples we showed were lattice strain, an
essential variable in the electronics and optical industries, enantiomorphism, structure-
factor and charge-density determinations. If you’ve successfully worked your way through
these two chapters, then you’re ready for the companion text and the more challenging
aspects of CBED, such as measurement of defect crystallography, structure factors, Debye-
Waller factors, polarity, and charge density which are discussed in depth in the essential
texts by Spence and Zuo and by Morniroli.

THE JEOL CBED ATLAS
By Tanaka, M et al, 1985-2002 Convergent Beam Electron Diffraction I-IV JEOL Tokyo. The details are in

Chapter 20.
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BONDS
Spackman, MA, Jiang, B, Groy, TL, He, H, Whitten, AE and Spence, JCH 2005 Phase Measurement for

Accurate Mapping of Chemical Bonds in Acentric Space Groups Phys. Rev. Lett. 95 085502–05.
Inversion symmetry.

Zuo, JM, Kim, M, O’Keeffe, M and Spence, JCH 1999 Direct Observation of d-Orbital Holes and Cu-Cu

Bonding in Cu2O Nature 401 49–52. ‘Imaging’ atomic orbitals

URLs
1) http://cimewww.epfl.ch/people/stadelmann/jemsWebSite/DiffractionPatterns.html (Stadelmann’s EM

Yellow Pages at EPF Lausanne)
2) www.gatan.com/imaging/dig_micrograph.php (Gatan’s software suite)
3) www.soft-imaging.net (Olympus’s Soft Imaging System)

4) http://emaps.mrl.uiuc.edu (Maintained by Zuo at UIUC)
5) http://cimesg1.epfl.ch/CIOL (Stadelmann’s JEMS for students) and http://cimewww.epfl.ch/people/

stadelmann/jemswebsite/jems.html, the main site
6) www.amc.anl.gov (Zaluzec’s Argonne National Laboratory site)

7) www.public.asu.edu/�jspence/ElectrnDiffn.html (the IUCr site)

SELF-ASSESSMENT QUESTIONS
Q21.1 \Why would you want to measure your specimen thickness with CBED?

Q21.2 Why do you need a foil of a certain thickness before you see K-M fringes?
Q21.3 Why do the K-M fringes increase in number as the specimen gets thicker?
Q21.4 List the experimental factors that can limit the accuracy of your thickness determination.
Q21.5 How can you create a continuous ring of HOLZ intensity rather than a distribution of HOLZ

disks? Why would you want to do this, thus losing the distribution of individual disks in the
pattern?

Q21.6 Why might you have to record several CBED patterns to get all the useful information?

Q21.7 Why is the HOLZ-ring radius important and what microscope parameters should you use to
ensure that you can easily see the ring(s)?

Q21.8 Distinguish A-, B-, C-, and I-lattice centering.

Q21.9 What is Friedel’s law and why is it important when trying to infer symmetry fromCEBD patterns?
Q21.10 Distinguish the BF symmetry and the whole-pattern symmetry.
Q21.11 Distinguish diffraction groups and point groups.
Q21.12 What distinguishes space groups from point groups?

Q21.13 Define WP and CBIM.
Q21.14 How can compositional changes manifest themselves in CBED patterns?
Q21.15 Why would lattice strain effects appear in HOLZ-line patterns?

Q21.16 What is enantiomorphism and why would this property affect the symmetry of DPs?
Q21.17 Why might you want to form a DP while the beam is scanning rather than stationary?
Q21.18 Why might it be useful to see both image and diffraction information in the same picture at the

same time, as in CBIM?
Q21.19 Why is the nanodiffraction pattern in Figure 21.17 noisy?
Q21.20 List the main applications of CBED that cannot be performed with standard SAD

techniques.

TEXT-SPECIFIC QUESTIONS
T21.1 We get parallel fringes in CBED patterns under two-beam conditions and also in TEM images

under two-beam conditions. Explain why this is so and why the symmetry of the fringes changes in

the 000 and the hkl disk in a similar manner to changes in BF and DF images. (Hint: go and look in
the imaging chapters.)

T21.2 Reproduce the data in Tables 21.1 and 21.2 from the information given in the chapter.

T21.3 Given that the lattice parameter of stainless steel is 0.405 nm, work out the lattice spacing in the
[111] direction from the HOLZ ring in Figure 20.16B.

T21.4 Draw schematic diagrams like in Figure 21.12 to show threefold (triad) and 6mm symmetry.

T21.5 Go back and look at Figures 20.4A and 20.16C and state the BF symmetry in each case.
T21.6 Why is the CBED technique seeing increasing usage for crystal structure determination, displacing

some of the more conventional XRD techniques?

T21.7 Why are there diffraction spots in Figure 21.17 when there are no visible crystal planes in the center
of the image from where the pattern is taken?

T21.8 Why does energy-filtering sharpen the DP in Figure 21.16C? (Hint: look ahead to the EELS chapters.)
T21.9 If lattice strain disturbs the crystal plane spacing in three dimensions, how is it possible to deduce

this strain from 2D HOLZ-line distributions?
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