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Foreword 

The activities of the "Et tore Majorana" International Centre for Scientific 

Culture started in 1963 with the Courses of the International School of 

Subnuclear Physics and have since extended to include the Courses of other 

National and International Schools. This year we have a new international 

School which has been established in one of the most important and promising 

fields of modern research, i.e.: electron microscopy. 

This new School is, for the Centre, a further step in developing the 

promotion of international collaboration among scientists actively working 

in those disciplines which are likely to bring fundamental contributions to 

our understanding of the world around us. The research work needed to 

reach this understanding requires a high degree of specialization. But spe

cialization often implies lack of communication even among various branches 

of the same discipline. It is our duty not to forget that the simplest or most 

complicated phenomenon is studied in order to acquire a new contribution 

to the universality of our knowledge. 

I am sure that the electron microscopists will contribute a great deal 

to help the Centre in pursuing its aims. 

A . ZICHICHI 

Director of the Centre 



Introduction 

Application of electron microscopy in material science has registered 
a rapid growth in the past ten years and many have felt the need for a 
school with the following purposes: 

i) to bring scientists up to date with a refresher course on the latest 
developments in conventional and non conventional electron microscopy; 

ii) to favour contacts between the three main groups of scientists 
interested in electron microscopy (i.e. instrument designers, experts in elec
tron diffraction and contrast theory, and users of electron microscopes) in 
order to allow each group to be acquainted with the problems and perspec
tives in the other fields; 

iii) to stimulate discussions on specialized topics which are likely to 
bring fundamental improvements in electron microscopy. 

To meet this need an International School of Electron Microscopy was held 
in Erice in 1970 and was attended by 65 scientists from 17 different countries. 

The programme was mainly devoted t o : new developments in electron 
optics and electron microscopy instrumentation; basic ideas on diffraction 
contrast and applications (partly as fully solved problems) to material science; 
recent progress on the transfer of image information and on phase contrast, 
with particular emphasis on high resolution microscopy and Lorentz micro
scopy. 

The School has proved to be very successful and the many requests received 
have suggested the publication of the lectures, which are contained in this 
book. I hope the reader will benefit from this book as the participants did 
from the Course. 

The School was sponsored by the Italian National Research Council 
(CNR), the Italian Ministry of Public Education (MPI), the Nor th Atlantic 
Treaty Organization (NATO), the Regional Sicilian Government (ERS) and 
the Organizing Committee of the Rome Conference for Electron Microscopy. 
The financial support of these Institutions is gratefully acknowledged. 

I wish to thank the lecturers and the many colleagues and friends who 
helped with encouragement and advice in the organization of the School; 
I am particularly indebted to Di s. C. Colliex, M. J. Goringe, A. Howie, 
G. Pozzi and Miss I. Salerno. 

Bologna, March 1971 
THE EDITOR 



The Impact of Transmission Electron Microscopy 
in the Science of Materials 

P. B. HlRSCH 

Metallurgy Department, University of Oxford - Oxford, England 

1. Historical introduction. 

In the 1940's a number of commercial (50^100) kV electron microscopes 

became available with resolution for routine operations of about 100Â, 

and down to (25-"-30)Â under optimum operating conditions. These in

struments were powerful tools for the biologists, who could (although not 

without some difficulty) prepare specimens suitable for observation by trans

mission. The metallurgists and physicists were rather slow in utilizing these 

new and powerful instruments, mainly because of the difficulties of specimen 

preparation, and because the studies were in any case limited to surface topog

raphy by replica methods; in addition the motivation for electron micro

scope observation was perhaps rather stronger for the biologists, who had a 

clear appreciation of the need for studies of ultra-fine structure in biological 

specimens. 

In 1949 Heidenreich showed that it was possible to produce thin sec

tions of aluminium by etching, thin enough for direct observation by trans

mission; these sections revealed the substructure in cold-worked aluminium. 

In this classic work Heidenreich showed a) that sufficiently thin metal films 

could be produced, b) how thickness and orientation variations give rise to 

contrast effects, in terms of the dynamical theory of electron diffraction, 

c) that metallurgically significant results could be obtained in this way (

x
). 

Although this work showed great promise, there was an incubation period 

of 7-8 years before the transmission technique was developed further. The 

reason for this long interval was at least in par t due to actual and to some 
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extent imagined difficulties associated with the preparation of thin specimens; 

it was commonly thought at the time, it would be impossible to « see through » 

thicknesses of metal greater than a few 100 Â, and this acted as a deterrent. 

Then in the mid-1950's dislocations were observed by transmission elec

tron microscopy (TEM), in stainless steel (

2
) and in aluminium (

3
), and 

G. P. zones in Al 4 % Cu (

4
). A number of factors contributed to the very 

rapid development of T E M from this time onwards: 1) Important advances 

in specimen preparation techniques, in particular of the electropolishing 

technique due to Bollmann (

2
). 2) Improvements in resolution of the elec

tron microscopes, down to 25 Â in routine operation and a few Â under op

timum operating conditions. 3) Availability of double condenser systems. 

4) Development of the theory of contrast of images of crystal defects, following 

the work of Whelan on stacking faults (

5
). 5) Development of specimen 

manipulation techniques, e.g.  goniometer stages etc., to which Valdrè has 

made many important contributions. (See Valdrè and Goringe in this volume.) 

2. Applications of T E M in materials science. 

Apart from Heidenreich's early pioneering studies, T E M has now been 
used extensively in studies of materials over a period of about 15 years. We 
shall now consider the contribution the technique has made to the advance
ment of knowledge in this field. 

Materials science is concerned with the structure, properties, production 
and application of materials of all kinds. One most important aspect is the 
relation between properties and microstructure on all levels, from macroscopic 
down to atomic dimensions. 

Microstructure includes not only the size, shape and nature of the constit
uents,  e.g.  grains, precipitates etc., but also deviations from regularity of 
the crystal lattice, i.e.  lattice defects. Optical microscopy can be used to study 
microstructures down to ^ 1 μηι, or somewhat less using special techniques. 
At the lower end of the scale the crystal structure can be determined using 
X-ray diffraction. 

In the intermediate range X-ray diffraction can give some of the answers, 
but often only in the form of statistical information; an example is the use 
of X-ray line broadening measurements in studies of the cold-worked state. 
The low-angle X-ray diffraction technique certainly yields important and 
essential data about the structure of small precipitates etc., but it does not 
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give direct information about the distribution of particles within a grain, 

or about the presence of defects. 

The electron microscope has essentially filled the gap in this important 

size range. The information which can be obtained includes: 

1) The size, shape and distribution of microstructural entities, e.g. pre

cipitates, transformation products in general, etc. These can of course be 

studied by replica techniques, and much valuable information has and is 

being obtained in this way. For the study of slip lines replica techniques are 

invaluable. However for work on precipitation and transformation products 

T E M can be used without having to rely on differential etching methods, 

structures can be observed on a smaller scale, no modifications due to etching 

take place, and associated lattice strains and defects can be observed directly. 

Coupled with the selected-area diffraction method the T E M technique is very 

powerful. 

2) Lattice defects and strains can be observed directly at high resolution. 

3) Dynamic observations can be made of structural changes, although 

the results must of course be interpreted very carefully as they are not neces

sarily typical of the behaviour in bulk material. 

4) Special contrast effects, e.g. due to Lorentz deflection from magnetic 

fields, can give additional information, in this case about magnetic domain 

structure. 

We shall now survey briefly the fields in which the T E M technique has 

made particular impact. 

2 1 . Dislocation theory. 

In the late 1940's and the 1950's there was intense development of this 
theory by solid state physicists. Experimental observations were rather dif
ficult to make, although some beautiful techniques were developed, including 
etching, and decoration methods. There is little doubt that in this area T E M 
has made a most important contribution in putting the theory firmly on the 
m a p ; many theoretical models were confirmed, but it soon become evident 
that the variety of defects and their interaction in three dimensions are so 
numerous that the experiments could guide the further development of the 
theory. Furthermore, dislocation theory is essential for the understanding 
of mechanical properties, a very important field in metallurgy. By enabling 
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dislocations to be studied in the most complex materials T E M played an im

portant part in leading to the general acceptance of the theory in metallurgy. 

It is not necessary to quote examples, there are a number of review ar

ticles and books to which reference may be made (e.g. (

6 - 8
)). It might be 

mentioned however that the technique yields not only information on disloca

tion reactions, configurations, distributions etc. but important parameters such 

as the stacking fault energy can be obtained directly from the micrographs. 

2*2. Mechanical properties. 

In this area correlation experiments of dislocation structure as a function 

of strain, temperature of the deformation etc. have yielded important data on 

the distribution of dislocations under a variety of conditions. Some workers 

have claimed that the electron microscope observations, particularly the 

early studies, may have confused the subject of work-hardening rather than 

clarifying it. It is fair to say that whereas the interpretation of the structures 

observed in relation to their effect on hardening is still controversial, at least 

T E M has given a reasonably detailed picture of the dislocation structure; 

which, alas, is rather more complex than had been envisaged in most work-

hardening theories. 

There is a vast literature on the dislocation arrangements in various 

materials treated in different ways. In annealing studies, T E M has furnished 

important data on processes such as polygonization, or on mechanisms of 

recrystallization, particularly in polycrystalline materials. The structures in 

fatigue hardened metals or in specimens deformed in creep have been studied 

in considerable detail. In the study of deformation of more complex materials, 

e.g. two-phase alloys, the technique enables unique information to be obtained 

about dislocation particle interactions, leading to considerable clarification in 

this field. In short the technique is indispensable in the development of our 

understanding of mechanical properties of all kinds of materials. (Appli

cations of T E M in metallurgy are discussed by Brown in this volume.) 

2*3. Point defects and dislocations: quench-hardening. 

When a metal is quenched from a temperature close to the melting point, 
a high concentration of vacancies is retained in supersaturation at the low 
temperature. On annealing, the vacancies coagulate into clusters, which can 
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assume a variety of forms depending on the nature and crystal structure of 

the metal, purity, quenching rates, etc. With T E M the nature of the clusters, 

e.g. dislocation loops, tetrahedra of stacking faults, cavities etc. has been 

revealed in considerable detail. The technique essentially opened up a new 

field here, concerned with structure of point defect clusters, which could not 

have been studied by any other method at present available. 

2*4. Radiation damage. 

T E M was being developed just at the time when the need to understand 

radiation damage in materials used in reactors became acute. In this field 

it has been possible to determine the small point defect clusters formed by 

neutron or ion irradiation, giving important evidence relevant to radiation 

damage theory. 

Furthermore important problems in reactor materials technology could 

be investigated and solved. For example swelling of uranium fuel elements 

was found to be associated with pores formed at grain boundaries and small 

gas bubbles in the grain interior. 

The shape change is probably due to interstitial and vacancy loops forming 

on different planes causing anisotropic expansion and contraction. Applica

tions in this area are discussed by Makin in this volume. There is no doubt 

that the T E M techniques is an indispensable tool in this important field. 

2*5. Phase transformations. 

This is another area in which the T E M technique has been particularly 
fruitful. The sizes and distribution of zones and precipitates have been de
termined in age-hardening alloys, and the coherency strains associated with 
precipitates studied (see Brown, this volume). Precipitation on grain bound
aries, stacking faults and dislocations has been revealed in many systems. 
Platelets of precipitate in type-I diamond were observed directly, thereby 
confirming the interpretation of X-ray studies which had been carried out 
over a number of years. Another application has been to the study of anti
phase domain boundaries in ordered alloys, which have been revealed in 
great detail. In the field of martensite transformation, much information has 
been obtained on the structure of martensite plates; in a number of cases 
twinning has been observed, and this is important in connection with the theory 
of martensite transformations. 
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2*6. Kinetic studies. 

These can be carried out either in situ in the electron microscope, or by 

monitoring the structure after various times of annealing etc. of the specimen 

outside the microscope. The shrinkage and growth of prismatic loops, faulted 

or unfaulted, have been studied for a variety of metals and conditions. The 

shrinkage experiments demonstrated the dislocation « climb » process for 

the first time, and later experiments on faulted and unfaulted loops were used 

to determine the stacking faults energy. The growth of loops under certain 

conditions has been shown to be related to surface oxidation, and illustrates 

the effect of lattice defects on this process (

9
'

1 0
) . Precipitation processes have 

been followed in situ in the microscope, and observation on the break-up 

of dipoles into loops and other related experiments gave direct evidence for 

the important mechanism of pipe diffusion. Provided care is taken in the 

interpretation of the experiments on thin foils, very valuable data can be ob

tained in this way. 

2 7 . Surface layer studies. 

This is an important area in solid-state physics, and particularly in the 

microelectronics field. T E M has given important results on the structure and 

growth of nuclei of a layer on a substrate, on the nature of lattice defects 

in these thin films and how they are formed, on how a continuous film is 

formed etc. The nature of interface dislocations has been studied in a number 

of cases. There is little doubt that the technique has helped considerably 

to establish a realistic model of growth of thin films, and it is an important 

tool for determining the actual structure of surface layers to be correlated 

with their properties (for review see (

n
) ) . 

2*8. Magnetic properties. 

Antiferromagnetic domain structures have been studied in considerable 
detail, the contrast arising from the twin boundaries between twin related 
regions of crystal produced by the lattice structure transformation below 
the Néel temperature. Ferromagnetic domains in thin foils have been studied 
in great detail using the technique of Lorentz microscopy pioneered by Fuller 
and Hale (

1 2
) and Boersch and Raith (

1 3
). One of the discoveries was that 
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3. Conclusions. 

There is no doubt that the T E M technique has had a profound influence 

in the development of physical metallurgy during the last (10-^15) years. 

It is hard to see how our knowledge of, for example, radiation damage in 

of magnetization ripple, and the nature of domain structures has been revealed 

at very high resolution. An important feature of this technique is that the 

magnetization process can be followed in situ in the electron microscope, 

giving unique information in this way. More recently, observations on Heusler 

alloys have shown strong pinning of the magnetic domain walls by the anti

phase domain boundaries in the ordered alloy (

1 4
) ; information of this 

kind is difficult to obtain by any other way. (For reviews see (

1 5
) and Wade 

and Wohlleben, this volume.) 

2*9. Miscellaneous applications. 

T E M has been applied in other fields and to many materials and problems 

not included in the above brief and quite incomplete survey. Applications to 

polymer and mineral studies might be mentioned as well as investigations 

of solid state or surface reactions of interest in chemistry. Special techniques 

for particular problems have been developed; e.g. the electric field distribu

tion across a p-n junction can be determined using a method analogous to 

Lorentz microscopy for magnetic domain structures (

1 6
) . 

There is one important point which should be mentioned. In the course 

of the development of the T E M technique, the image contrast theory had 

to be worked out. To achieve this the dynamical theory of electron diffrac

tion from perfect and imperfect crystals was extensively studied and developed. 

The effect of inelastic scattering is also now understood much better as a 

result of the intense activity in this field. These advances also helped in the 

development of contrast theories for other related techniques, e.g. X-ray 

topography and more recently the scanning electron microscope channelling 

technique (

1 7
) ; the high-energy electron diffraction theoreticians have also 

turned their attention to the field of low-energy electron diffraction (LEED), 

and important contributions are being made by them as well as by the band 

theory groups in this area. 
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materials, could have progressed at anything like the rate it has done during 

this period without the availability of this technique. It is clear that T E M 

is now established in metallurgy as one of the basic techniques alongside optical 

microscopy, X-ray diffraction, and electron probe X-ray microanalysis. 

In solid-state physics the impact has perhaps been somewhat less in rela

tion to the field as a whole. Nevertheless it has had an important impact in 

dislocation theory, theory of point defect clusters, radiation damage, and 

structure of thin films. In magnetism there have also been important contri

butions to domain structures in ferromagnetic thin films, and it is clear that 

much of the basic work on domain structures had already been done using 

other methods. 

In mineralogy relatively little work has been carried out so far, partly 

because of the difficulty of specimen preparation. But high-voltage electron 

microscopy should help to open up this field. 

4. Future prospects. 

In physical metallurgy T E M will remain an essential technique for many 
years. The advent of high-voltage electron microscopy will extend its applica
tion to new materials, to investigations in controlled environment, and to 
studies of electron irradiation damage. There are many problems waiting 
to be solved, both on the fundamental aspects and on technologically impor
tant materials. 

There is little doubt that new techniques will be developed, which will 
increase the power of T E M further. Much progress is already being made 
with high resolution techniques, e.g. by the Japanese using direct lattice 
resolution methods. The new « weak beam » technique (

1 8
) , is already yielding 

important results on the separation of partials in dislocations in f.c.c. metals, 
and on the structure of dislocations in complex ordered alloys; it is a very 
promising high resolution technique. (See Howie and see Goringe and Hall 
in this volume.) 

The methods which are being developed for biologically important 
structures, whereby images can be improved by correcting for intrumental 
aberrations using data from a through-focus series of pictures (see Lenz and 
Thon in this volume), should have important applications in the study of 
materials. There is an urgent need to develop techniques for studying small 
nuclei, clusters of point defects and clusters of atoms (see Hall in this volume). 
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Recent experiments using the high-voltage electron microscopy have shown 

that it is possible to determine scattering factors with an accuracy apparently 

greater than that possible using X-ray diffraction (see Howie, this volume); 

this technique should certainly be explored. 

Finally, there is an urgent need to develop further the technique of com

bined energy analysis and electron microscopy, or using « filtered » electrons 

(see Castaing, this volume). This method has already revealed segregation 

at grain boundaries in some Al-Mg alloys (

1 9
) , but further exploration is 

necessary; a high-intensity electron gun plus a monochromator may well be 

needed to make this technique more widely applicable. There is little doubt 

that an urgent need in materials studies is for a technique capable of yielding 

composition analysis of very small volumes of material, and of interfaces, 

on a scale from a few to ~ 1000 Â. It may well turn out that a scanning 

technique utilising a field emission type gun (see Crewe, this volume) will 

provide the means for this. 



Geometrical Electron Optics 

A . SEPTIER 

Institut d'Electronique Fondamentale, Laboratoire associé au CNRS, 

Faculté des Sciences - Orsay, France 

1. Electrostatic lenses. 

Γ 1 . Introduction. 

During the last few years, we have seen spectacular developments in 

high voltage electron microscopes. The electrons have energies from hundreds 

of keV to several MeV as they pass through the lenses and relativistic effects, 

which are regarded as a minor perturbation in most of the books on electron 

microscopy, then become dominant. I feel that it will be useful, therefore, 

to recapitulate some formulae that describe the variation in the mass and 

velocity of the particles as the energy is increased. 

The quantity 

is known as the rest energy (m0, rest mass; c, velocity of light). 

The kinetic energy of an electron is then given by 

in which φ0 denotes the potential difference between the point of observation 
and the cathode from which the electrons are emitted. The mass m, how
ever, varies with the velocity v. Writing β = v/c, we have 

W — m0c
2 

(1) 

Τ = mc
2
 — m0 c

2
 = ecp0, (2) 

m = m0(l (3) 
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so that 

(4) 

Expanding eq. (4) as a power series, we find that, for small values of β, we 

recover the « nonrelativistic » formula for T: 

T=im0vK (5) 

We can express m, ν and mv (the momentum) as functions of φ0. Writing 

Τ ecp^ 
nQ c

1
 m0 c

2 
=

 2ε
Ψο » 

we obtain 

m - /;70(1 ! 2εφ0), 

β 
ν __ν4εφ0(1 + εφ0) 
c 1 + 2εφ0 

Ρ 
c 

•™==2m0Ve<p0(l + e<p0). 

The quantity σζ, 

<P*o = Ψο(
ι
 +

 ε
Ψο) » 

is usually referred to as the « relativistic potential ». 

The electron velocity v, which at low energies is given by 

(6) 

(7) 

(8) 

ν = V2eqpjm0 

becomes at high energies 

V i + εφ0 2εφ0 
and mv = V2, (9) 

As φ0 increases, ν tends rapidly towards c and we can conveniently divide 

the energy range into three regions: 

1) nonrelativistic, ν oc \/ψο (εφ0<0Α9 say, and hence 990< 100 kV); 

2) relativistic; 

3) ultra-relativistic, ν = c\ this zone corresponds to values of φ0> 2 MV. 
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The variation of m with energy introduces a term dm [at into the equa

tions of motion of the particle, but the basic equation of dynamics, 

F=±(mv) (10) 

remains valid, with F=eE in an electrostatic system and F=evxB in a 

magnetic system. (E and Β denote the electric field and magnetic induction 

respectively; Β = μ0Η). 

1*2. Equation of motion in an electrostatic lens. 

The electrons, which have been accelerated through a potential φ0, pass 

through a region in which the potential varies φ = cp(r, Θ, z). We consider 

here only systems possessing rotational symmetry about the optic axis, Oz; 

this implies that δφ/ΰθ = 0. In the absence of free charges, φ satisfies La

place's equation V

2
<p = 0. For electron beams of low current density, we may 

assume that the potential distribution is not affected by the passage of the 

electrons, but in the case of intense beams, Poisson's equation, V

2
ç? = —ρ/ε0, 

must be solved, (ρ is the density of charge in the beam.) 

If the expression for the potential along the axis, 99(0, z) = <p0(z)> is known 

(the axis is the line r = 0), we can use the fact that 

<p(r, z) = cp0(z) — ^r
2
(po(z) + ^r^'(z) — ... (11) 

The origin of potential is taken at the cathode. 

Close to the axis, we neglect terms of fourth and higher order in eq. (11) 

and find 

Er = — θ φ / θ Γ = \r(p"Q(z) = — \rdEzjc)z . (12) 

The radial force, Fr = eEr, that acts on the electrons is therefore propor

tional to their distance from the axis (and to φ'ό(ζ)). By analogy with the 

optics of glass lenses, we recognize that this property corresponds to the 

action of a lens without aberrations. Equation (12) is, however, valid only 

in the immediate vicinity of the axis. If the r

4
-term in (11) is not negligible, 

the force will contain a term in r
3
 and rays far from the axis will be deflected 

more than those close to the axis. This is one of the causes of the « third 

order » aberrations, spherical aberration in particular. 

2 
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With the aid of eq. (10), we can establish the equation of transverse mo

tion of the electron: 

iL (mvr) = eEr = — ed(p(r, z)jdr. (13) 
at 

Knowing that 

— - | ' + ( £ ) T 4 > + ^ 

we can replace m and dt by functions of <p{r,z): 

ν dr d 
dt 

= eEr, (14) 
^

1 +
 ^ > ( H F ^ £ ] 

v ^ ^ h * ^ - «
+

^ ' Λ + 4 1 - ° '

 ( 1 5) 

with r'= âr/dz. This general equation must be used if trajectories far from 
the axis or steeply inclined ( d r / d z > 0 . 1 , say) are to be studied. If, how
ever, we restrict ourselves to the conditions of Gaussian optics (r small, 
drfdz <c 1 and hence vz ^ v), we obtain a simpler equation, from which we 
can deduce the « first order » trajectories: 

J J ^ L r+ '/''><;) r.+ | % > r = 0. (16) 

1 + 2εφ0(ζ) ^2φ0(ζ)
 τ

 4φ0(ζ) > 

For low-energy electrons, 
r

' + T ^
r

' + f r \
r = 0

-
 ( 1 6 b i s

> 

Writing R = r((p0(z))*, eq. (16 bis) becomes 

The term in φΙ(ζ) has vanished, which often makes the equation simpler to 

solve. 
Equation (16) must be used in calculating the optical properties of the 
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accelerating systems of magnetic microscopes operating at very high voltage. 

In electrostatic microscopes, however, breakdown imposes a limit on the 

voltage that can be employed, and the accelerating voltage does not exceed 

(50^-70) kV. Equations (16 bis) or (17) can then be used. 

Remarks: 

i) At the cathode, we have φ0(ζ) = 0 ; the factors φ'/φ and φ"/φ are 

infinite, so that computer calculation is impossible. Moreover, the electrons 

that leave the cathode with small but not zero energy W0(W0 ^ 1 0

-1
 eV) are 

emitted into a solid angle of In sr so that the condition d r / d z < 1 is 

no longer satisfied. The same problem arises in any region of space in which 

φ0(ζ) is zero or negative; the electrons are reflected back towards the source, 

since vz = 0 if φ0(ζ) = 0 and dr/dz is infinite at the point of reflection. 

ii) At low energies, the factor e/m0 does not appear (eq. (16 bis)) so 

that for the same value of the potential φ0(ζ), the trajectories of charged par

ticles of the same kinetic energy Τ will be identical. Ions having different 

masses and charges, from the ion source of a mass-spectrograph for example, 

can thus be brought to a focus at the same point. 

iii) Examination of eqs (16 bis) or (17) reveals an extremely interesting 

feature of electrostatic lenses. If the potentials applied to the electrodes from 

a single voltage source vary with time, the trajectories will remain unaltered 

(provided that all the variations are in phase). 

iv) In Gaussian optics, the trajectory equations are linear. It can easily 

be shown that any rotationally symmetric electrostatic system is stigmatic 

for pairs of conjugate points situated on or close to the axis, just as in light 

optics; the elementary lens formulae of Descartes or Newton can be applied 

once the positions of the foci and principal planes have been established. 

The Lagrange-Helmholtz relation is also valid, in the form 

νψο^ό = Vvîwi = c o n s t > O8) 
in which r and η denote the radius of the beam in the object and image 
planes, and r

r

0, r\ denote the slope of the ray that intersects the axis in these 
planes (Fig. 1). 

If ψ0 = ψΐ, the quantity rr' remains constant and so we cannot reduce r 
and r' simultaneously by means of a « unipotential » lens. If, on the con
trary, ψι :^>φ0, we have r^ < r0r

r

0 (as in an accelerating tube). 
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Γ
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Lens Φ. 

Object 

Fig. ι. 

Image 

The quantity \/φ behaves just like the refractive index η in glass optics. 

We may, for example, write 

„ ( z) = j /
2

^ ) 
m0c

2 
or 

v) The object and image focal lengths are related by 

V¥ofo = V<PÎfi · (19) 

Γ 3 . The properties of some electrostatic lenses. 

In practice, only three types of lenses are used: 

i) Unipotential (einzel) lenses. 

ii) Immersion lenses, accelerating or retarding. 

iii) Cathode lenses, or immersion objectives. 

1*3.1. The unipotential or einzel lens. - The potential is the same on either 

side of the lens and is equal to the accelerating voltage of the electrons, φ0. 

Φ. ι ~Φ. 

V " , 

ΦΛ 

ζ
 1

 ζ
 1

 ζ 
*1 2 ^3 

Fig. 2. 
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The lens consists of three diaphragms (Fig. 2); the two outer electrodes are 

earthed and the central electrode is connected to a variable voltage supply 

(the polarity of which is such that the particles are retarded). 

The lens is very often symmetrical about its mid-point O, and the curve 

representing φ0(ζ) is then symmetric (Fig. 3). Nevertheless, we may have 

ΖΧΦΖ% and ΚχΦΤίζ, with electrodes of complex shape. The function is 

then unsymmetric. 

Φ0(ζ) 

Φ 

1̂ 
ζ 

Fig. 3. 

This type of lens has provoked a considerable quantity of theoretical and 

experimental work. Before the advent of the computer, φ0(ζ) was determined 

in an electrolytic tank or by means of analogue networks (devices yielding a 

solution of Laplace's equation). 

Equation (16 bis) was then integrated, either step-by-step or by repre

senting φ0(ζ) by an approximate analytic function. The second method is 

less accurate, but has the advantage that analytic expressions for r(z) are 

obtained, in which the role of the various lens parameters can be seen. 

Nowadays, the potential q)(r, z) within a set of diaphragms can be com

puted by the method of relaxation ; the potential distribution need be known 

only over a surface bounding the region of interest. 

In a lens of given geometry, the only variable parameter is the potential 

(—Ψι) applied to the central electrode. If we take the origin of potential at 

the cathode, the outer electrodes have potential + φ0 and the excitation of 

the lens can be characterized by R = (pm/(p0. <pm denotes the minimum po

tential on the axis, 

ψπι = Ψθ~1<ψΐ 

(k is a constant, less than unity, determined by the geometry alone). 
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Before we examine the variation of the lens convergence with φΐ9 we must 

first consider briefly the definitions of the cardinal elements of a lens. We 

assume that the lens occupies a limited region of space of length L. We denote 

the values of r and r' at the exit from the lens by rs and r's respectively for an 

incident ray parallel to the axis (r0,r
f

0 = 0). We have (Fig. 4) 

fi = -r0[r's ; SFt = -rs/r's ; SH^SF,-/,. (20) 

ι ι f. 
I 

Fig. 4. 

Whatever the form of φ0(ζ), the object and image focal lengths, defined in 

this way, are equal, but \OF0\ = \SFt\ only when the lens is symmetric. 

These cardinal elements are the asymptotic elements, which involve only 

quantities outside the lens. In reality, if the trajectory intersects the axis at a 

point within the lens, the asymptotic focus is different from the real focus F^ 
(Fig. 5). 

r° 1 
\ ^ 

2 

Hi! 

i 1 

Fig. 5. 

If we know the slope of the trajectory at F-, an « i m m e r s i o n » focal 

l e n g t h , / i , can be defined. Unlike the case of magnetic lenses, these immersion 

elements cannot be used to design an objective, because the potential distri-
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bution will be considerably altered, especially in symmetry, by the insertion 

of an object into the lens. 

Fig. 6. 

When \φλ\ is increased, the trajectories are modified as shown in Fig. 6. 

The focal length f% first decreases, then passes through a minimum and finally 

tends to infinity, which corresponds to a telescopic system (the ray emerges 

parallel to the axis). In Fig. 7, which shows / a s a function of R, we see that 

there is a series of ever narrower regions in which the focal length takes 

alternate signs. 

Έ 

rnin 
1 

0 

A 

R
m i n 

Π 
Fig. 7. 

There is thus an infinite number of regions, corresponding to an increasing 
number of real foci. When R<0, the electrons are reflected and the lens 
becomes an electrostatic mirror, initially convergent when the incident elec-
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trons reach the central zone, and subsequently divergent, when R is very 

negative and the trajectories are reflected in the outer region where the force Fr 
is positive. 

If an image is required, we use region I of the diagram, and operate near 

to the minimum value of fi (R = Rmin). For an objective, an electrode ge

ometry must then be selected that will give a real focus outside the lens. For 

a projector on the other hand, the asymptotic foci may be immersed since 

the object is virtual. The minimum focal length is approximately equal to 

the distance between the diaphragms. 

In these lenses, the principal planes are always crossed. In unsymmetrical 

lenses, the optical centre roughly coincides with the minimum of φ0(ζ). 
The transition between I and II is used in analyzers of the Mollenstedt 

type, but there slit lenses are used, which are convergent in one direction 

only. We see (Fig. 8) that for a very small variation of R, the slope of the 

emergent ray corresponding to a ray T0 incident parallel to the axis varies 

very rapidly. A variation in R can be obtained either by altering φ1 or by 

changing φ0. If the electrons that arrive along T0 have an energy dispersion 

± Δφ0 about φ0, they will be distributed between A and Β on the final screen, 

and the separation d is effectively proportional to Δφ0. In this way the energy 

spectrum of the electrons that have passed through the object can be displayed, 

and the characteristic energy losses in particular can be studied. 

1*3.2. Immersion lenses. - By definition, we have φ0Φψί. These lenses 

may be accelerating or retarding. 
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Three-electrode lenses. If the three electrodes of the lens are held at po

tentials φ0, φλ and ψΐ, pairs of values of the ratios ψχ/ψβ and ψί/φ0 can be 

obtained which enable us to vary the convergence for a given pair of conjugate 

points, chosen from the outset (fixed object and image). We thus have the 

equivalent of a zoom objective. The whole image space must obviously be 

held at the potential ψι of the third electrode. 

Fig. 9. Fig. 10. 

Two-tube or two-diaphragm lenses. These lenses are extensively used in 

oscilloscopes. The distribution φ0(ζ) corresponding to two tubes of the same 

Fig. 11. 
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radius is shown in Fig. 9 and the equipotential surfaces are shown in Fig. 10, 

together with two trajectories Γχ and T2 parallel to the axis. T± and T2 have 

different appearances: Tx is first convergent, then divergent, while T2 is first 

divergent, then convergent. 

In these lenses, we always have f0ffi = vVo/9V The principal planes 

always lie in the low energy region. The convergence increases with the ratio 

γ = φί/φ0 for a given value of φ0 (Fig. 11). 

Here too, the optical properties have been extensively studied, especially 

in the last few years by designers of electrostatic accelerating tubes. In such 

a tube, containing Ν lenses say, each lens supports the same potential dif

ference Δ99 ((100-^250) kV). The ratio γ therefore decreases gradually from 

input to exit, tending towards unity: the last lenses are only very weakly 

convergent. The optical properties of the accelerating tube, regarded as a 

thick optical system, are obtained with the aid of matrix algebra. Each lens, 

like any linear system, may be characterized by a matrix containing four 

elements, relating rs and r's to r0 and r'Q. If such a matrix is denoted by Tj9 
we have 

|Γ| = | 7 ^ | . . . | ^ | . . . | Γ2| | 7 ; | . (21) 

A lens of this kind can equally well provide a family of electrostatic mir

rors; for a given φ0, we have merely to make the second tube negative with 

respect to the electron source. 

Γ3.3 . The immersion objective. - This is the name given to the optical 

system with which an image of a plane surface emitting electrons can be 

obtained. Immersion objectives are employed in emission microscopes (using 

thermal emission or secondary emission caused by ion or photo-electric 

bombardment). The first electrode Κ is a plane cathode (at zero potential). 

Two types of objectives are used. 

a) The three-electrode objective. The electrons are emitted from Κ with 
a very small initial energy φ0 (the most probable value lies between a few tenths 
of an eV and a few eV) and are then accelerated by an anode A to a 
final potential φΑ. An intermediate electrode, the Wehnelt W9 is held at 
the potential V close to that of Κ (for electrons, it is usually negative) and this 
enables us to vary the field E0 at Κ and the convergence of the system between 
wide limits. By varying V, the image can be focused on the screen. The func
tion <fo(z) now has the form shown in Fig. 12. Sets of curves are available, 
giving the characteristics of objectives of this types for a range of geometries. 



Geometrical electron optics 27 

We see (Fig. 13) that the crossover C of the beam lies close to the opening 

in the anode, and that the useful aperture of the beam of electrons leaving M 
with a 0 = rQ<90° can be reduced by placing an aperture in this plane; the 

Fig. 12. 

width of the energy spectrum of the electrons will likewise be reduced. When 

the distance between the object and the Wehnelt is varied, and V is adjusted 

to focus onto E, we see that E0 remains effectively constant (with E0 ^ 0.35φ Jd). 
This very simple objective operates with a relatively low field E0, there

fore, since φΛ cannot exceed (30-f-50) kV, with dmin = (2.5-i-3) mm. 

Κ W A 

d 
Fig. 13. 

We can however show that the resolving power of an immersion objec

tive is given by an expression of the form 

δ = ΚΨο[Ε0, K ~ l , (22) 
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for 0 < α 0< 90°. It is very difficult in practice to use an aperture plate, and 

it is wiser to try to increase E0. 

β) The high-field objective. In order to reduce δ, E0 must be increased. 

This is achieved by using a more complicated system consisting of a cathode 

lens with two electrodes followed by a convergent (electrostatic or magnetic) 

Κ A . 

\ . Ζ 
N
V- • 

\ . Ζ 
N
V- • 

1 
1 
1 
I ι a 

0 

d/3 
Φ
Α 1 

L \ 
r · 

φ = 0 d 
Φ
Α 1 

L \ 

Fig. 14. 

lens. The lens KA is divergent. If the anode opening is very small, the image 

of AT falls at K\ with ΟΚ'= — άβ, and the magnification is § (Fig. 14). 

A high magnification at the final image is achieved simply by arranging that 

the object focus of L is close to K'. 
In this objective, the field EQ is given by 

E0~q>Jd. (23) 

For d = 2 mm and φΑ = 50 kV, we have E0 = 250 kV/cm, giving a minimum 

improvement of 3 over the preceding objective. All the high resolution images 

((100-^-200) Â) that have been obtained have used this system. 

γ) Electrostatic mirrors. The three electrode objective is regularly 
employed as an electrostatic mirror in the mirror microscope. The cathode 
has simply to be held at a potential slightly more negative than that of the 
source producing the beam. The trajectories of electrons reflected in the im
mediate vicinity of the cathode surface are very sensitive to small local de
formations of the equipotentials. These may be caused by surface relief, or by 
potential differences between neighbouring points on the surface (crystals, 
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1*4. Aberrations of electrostatic lenses. 

The main aberration of lenses is spherical aberration, which limits the 

resolving power of objective lenses. Moreover, Scherzer has shown that, for 

rotationally symmetric lenses, the spherical aberration cannot be corrected, 

as it can in the case of glass lenses. It is for this reason that efforts have been 

made to find lenses with as little spherical aberration as possible. 

For a high magnification objective, in which the object lies very close 

to the object focus, the spherical aberration for a point on the axis can be 

defined by a relation of the form (Fig. 16) 

ρ = MCso?, (24) 

where M is the magnification and Cs the spherical aberration constant. 

At 
I Ζ 

0 
1 

Fig. 16. 

adsorbed layers) or by small magnetic perturbations. By adjusting q)k and V, 
we can then obtain « pseudoimages » of the perturbed region, in which the 

perturbations correspond to contrast (Fig. 15). 
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The constant Cs can be calculated by various methods, which lead to 

equivalent results: 

i) a perturbation method based on Fermat 's principle, in which a gener

alized refractive index is decomposed into terms of zero, second and fourth 

order; 

ii) the trajectory method, in which fourth order terms in the potential 

are retained in the equations of motion, and the effect of terms in r'
2
 is con

sidered. 

Writing u = φΌ(ζ)/φ0(ζ), we obtain an expression of the form 

in which φ0 is the potential in object space, z0 and z\ are the abscissae of the 

object and the image respectively and ra(z) is the first order trajectory that 

satisfies the conditions ra(z0) = 0 and r'a(z0) = 1. Equation (26) can be con

verted by partial integration into various forms. In particular, the quantity 

in brackets can be written as a sum of squared terms, which shows immedi

ately that Cs cannot be zero. 

The coefficient Cs can be reduced by making the lens smaller, which also 

reduces the focal length of the lens. This process is limited by breakdown 

between the electrodes, however, for a given value of ψ0, and by the require

ment that the foci of the lenses must lie outside the electrodes. Alternatively, 

the shape of the electrodes may be varied until the minimum value of Cs 
is attained. Unsymmetrical three-electrode lenses are much better than sym

metrical ones, provided that the zone in which φ0(ζ) varies more rapidly is 

near to the object, when we have objectives in mind. 

The best values of Cs are four or five times greater than those of mag

netic lenses with their foci outside the lens, and 20-f-50 times greater than 

those of the best magnetic lenses with their foci within the lens. It is for this 

reason that electrostatic lenses are used in transmission electron microscopy 

only in simplified instruments of modest resolution ((50-i-100) Â) , op

erating at maximum accelerating voltages of 30 to 50 kV. 

δ = C sa
3
. (25) 

(26) 

Referred back to the object plane, this aberration corresponds to a disc of 

radius 



Geometrical electron optics 31 

2. Magnetic lenses. 

2' 1. Principle. 

A typical round magnetic lens is an electromagnet consisting of a winding 

carrying an adjustable current Ic, a yoke and pole pieces made of a soft 

magnetic material (Fig. 17). The electrons travel through an axial hole bored 

through the centre. 

The magnetic field produced in the gap is the sum of two terms : the field 

produced by the poles Bp, and the field of the coil itself Bc. Under normal 

circumstances, Bc is much smaller than i?p . As Ic is increased, saturation in 

the magnetic circuit restricts Bv to (20-^-25) kG, the exact value depending on 

the nature of the magnetic material employed. If higher fields are required, 

Bc must be increased. Ruska has recently succeeded in operating a standard 

objective with 

Bm = Bioi,x = 21 k G . 

(We shall see later that if superconducting windings are employed, fields 
Bm ~ (50—80) k G can be attained.) 

The curve representing the axial distribution of induction B0(z) is bell-
shaped, and the half-width is slightly smaller than the gap S. The half-width 
increases slowly as the poles saturate. 
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In such a lens, the principal component of the induction Β is parallel 

to the optic axis (Fig. 18), and this has no eifect at all on trajectories that are 

Fig. 18. 

exactly parallel to the axis. The force F that Β exerts on a particle of velocity υ 
is given by 

F=evxB, 

so that F = 0 if vjJB. At the beginning of the lens, however, the radial com

ponent Br causes the particle to rotate about the axis, giving it an azimuthal 

velocity νθ = radjàt. The field Bz then exerts a radial force Fr = evdBz 
which is always towards the axis. 

2*2. The motion of particles in a magnetic lens. 

In a magnetic field a particle gains no energy, so that m = const = 

= m0( l + 2εφ0). Setting out from the general equations, namely 

F = evxB = ~(mv) , and Β = curl A (27) 

(where A is the vector potential, which here has a single component Ad), 
it is easy to derive the equations of motion 

r», ' + '" (A

 d A
° - r' A ^ Λ - ο (28) r+

2imoleM-Al(
A
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Α
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Ό
'
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Close to the axis, we have 

LB0(z)-jèBfc) +  ..., 

where B 0(z) is the axial distribution of B z. For small values of r, and r'
2
 < 1 

(the conditions characterizing Gaussian optics), we obtain simpler equations : 

r"+[eBl(z)/Sm0<p*0]r =  0 9 (29) 

e'+(elSm0cp*0YB0(z) =  0.  (30) 

<pl denotes the relativistic accelerating voltage. Equation (30) gives the total 

rotation ΔΘ of the particle, 

"--hstd1™*- (3,) 

Zo 

For an unsaturated lens, in which the coil is carrying a total current of nl A, 

this reduces to 

Ae=-(e/Sm0cpl)^0nI (32) 

when z0 and n lie outside the lens, η is the number of turns in the coil. 

If now we consider the meridian plane rOz containing the trajectory of 

the incident particle, and regard it as rotating within the lens at a rate given 

by eq. (30), then eq. (29) allows us to determine the radial motion of the par

ticle in this rotating plane. 

Lenses with no overall rotation can be designed by using two identical 

gaps in succession, in which the fields Bz are in opposite directions. The 

combination is always convergent, since the convergence is related to the square 

of the field: Fr = — ±(e
2
fm)rB

2

0(z). 

2*3. Optical properties. 

In order to solve eq. (29), we need therefore to know only the axial 
distribution B0(z) and this can be measured accurately. Acomputer can then 
be used, given the measured values of B0(z), and the maximum field Bmax 

3 
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or φ0 can be varied. If an accuracy of a few percent is adequate, B0(z) may 

be represented by an approximate function that allows eq. (29) to be solved 

analytically. This procedure has the advantage that simple expressions for 

the cardinal elements (focal lengths, positions of the foci) and aberration 

coefficients (spherical and chromatic) are obtained. For symmetric lenses, 

a function of the form 

B0(z) = Bm/[l+(z/a)
2
] (33) 

is selected, which has the same maximum value Bm as the experimental curve, 

and the same area: 

+ CO +CO 

— CO —CO 

This condition determines the length a (the half-width of the theoretical bell-

shaped curve). The solution of eq. (29) is to be found in Glaser's articles. 

Writing 

Ω
2
 = 1 + k

2
 k

2
 = eB^a

2
/^ φ*0 

we finally obtain 

f0 = α/sin(π/Ω) zFo = a ctg(n/Q). (34) 

The principal planes are crossed. The two focal lengths (object and image) 
are always equal in magnetic lenses, since the electrostatic potential is con
stant. An object can be inserted into the magnetic field without disturbing 
i?0(z), and strongly excited lenses can therefore be employed, in which F0 is 
« immersed » in the field (Fig. 19). 

A study of the variation of f0 with Ω shows thatf0 decreases indefinitely 
as Ω increases (Fig. 20). In particular, f0 = a if Ω = 2 (k

2
 = 3) and the foci 

coincide at ζ = 0, the centre of the lens. If the voltage 99* is too high, it is 
not possible to reach Ω = 2, since saturation restricts Bm to about 25 kG. 

The function (33) extends from — 00 to + 0 0 (whereas B0(z) is bounded 
in space), and the focus F0 given by eq. (34) is thus always immersed in the 
field. When i?0(

z
) theoret< lO~

2
Bm, however, we may regard the effect of B0(z) 

as negligible, and say that we are « outside » the lens specified by eq. (33). 
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For a projector lens, asymptotic cardinal elements must be defined, in 

terms of the slope of the ray r(z) at infinity (Fig. 19). We find 

/ i = αΩ/sm (πΩ), zFi = αΩ ctg (πΩ) . (35) 

i 
1
 B 0( z ) 

a r(z) 

ζ 

H0 !H, 
1 
1 f

0 

Fig. 19. 

This focal length passes through a minimum as β is increased (Fig. 20) and 

becomes infinite at k
2,
 = 3. For this particular excitation, a beam incident 

parallel to the axis intersects the latter at ζ = 0 and emerges parallel to the 

axis (Fig. 21). If we place the object at ζ = 0, the part of the field for which 

ζ < 0 behaves as a condenser, and we have the very singular type of lens 

known as the « condenser-objective ». This lens has been studied by Riecke 

Fig. 20. Fig.21. 
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and Ruska and is now used in various high resolution microscopes and in 

particular, in the first high voltage electron microscope (HYEM) at Tou

louse. Its spherical aberration coefficient is moreover very small: 

Cs = 0.3a 

(in Ruska's instrument, Cs = 0.45 mm). 

2'4. Aberrations of magnetic lenses. 

If we retain terms of third order in the expansion of Αθ9 and terms in r '

2
, 

the spherical aberration coefficient Cs can be calculated by a perturbation 

method. If ra(z) is the Gaussian trajectory satisfying the boundary conditions 

ra(z0) = 0, r
r

a(z0)= 1, we find 

Zi 

Cs = 1 f l^BKz) + 5Bf(z)-B0(z)B^z)\r%z)àz . (36) 
96 m^l J [m0(p0 J 

Zo 

Here again, quite an accurate value of Cs can be obtained by representing 

B0(z) by the bell-shaped curve (33). Equation (36) can then be integrated, 

and for a high magnification objective we find 

Cs ink
2
 \4k

2
~3 . 2π\, J π \ 

~a = 8 W+3
 S m

Î 3 J Ï
C 0 S eC

 ( δ ) ·
 ( 3 7) 

As the excitation is increased, Cs first falls rapidly, and then remains nearly 
constant between k

2
 = 2 and k

2
 = 7, after which it slowly increases. The 

minimum (Cs = 0.25a) occurs at excitations too high to be used in practice, 
for which the object must be situated beyond the centre of the lens. For 
k
2
 = 3 (which is the practical limit, corresponding to the condenser-objective), 

we have Cs c^0.3a. 
The chromatic aberration coefficient Cc can also be calculated; Cc is 

defined by 

ô = Οο&ΔφΙΐφΙ (38) 

and we find 
Zi 

Cc=jCdz. (39) 

«0 
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For the bell-shaped model 

2Ω* cosee (40) 

The coefficient Cc passes through a minimum value of Cc/a ^ 0.6 at k
2
 = 4. 

For k
2
 = 3, we have Cc\a = 1.8. 

If greater accuracy is required, eqs (36) and (39) are integrated numerically. 

A considerable effort has been devoted to the task of optimizing the dimensions 

of magnetic lenses, so that the smallest possible values of Cs and Cc are ob

tained. For a given convergence, it is always best to use short strongly ex

cited lenses. Thus for 100 keV electrons, a value of C s^ 0 . 5 m m can be 

attained with / = 1.5 mm. This displays clearly the great superiority of mag

netic lenses over electrostatic lenses. 

2*5. Magnetic lenses for high voltage microscopes. 

2*5.1. Normal lenses. - In a given lens, with a fixed value of Bm, the focal 

length f0 increases rapidly as φζ is increased (Fig. 20). It is then advantageous 

to increase a in order to keep k constant. The focal length f0 increases, 

since f0/a = const, but less rapidly than before, and the spherical aberration 

remains much smaller. 

If a is increased, the dimensions of the poles also increase and if Bm is 

to remain constant (Bm is made as high as possible, 20 k G for example), 

the current nl must be raised and hence the size of the coil must be increased. 

The lens eventually becomes very big and extremely heavy. As an example 

of this, we give the characteristics of the objective of the Toulouse microscope, 

φ0 = 3 MV (ψΐ ~ 12 MV). 

G a p : 12 m m ; bore: 12 m m ; cobalt iron pole pieces; outer diameter: 930 m m ; 

height: 490 mm. Number of turns in the coil, η = 34000. Weight: 2240 kg. 

Power dissipated : 4 kW. 

Table I shows how f0 and Cs vary as a function of Bm; the values have 

been computed from the measured values of B0(z). 
The chromatic aberration coefficient Cc is about 7.3 mm at maximum 

excitation. For Bm>20kG, the poles saturate and the curve B0(z) becomes 
gradually broader. Condenser-objective operation corresponds to k

2
 = 3.6, 

if k is defined in terms of the measured value of the half-width, a. This lens 
can operate in the condenser-objective mode up to φ0 = 1680 kV. 
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TABLE I . 

/ (A) Bm (G) / (mm) Cs (mm) 

0.75 19145 15.2 28.8 
1.0 22160 12.1 13.0 
1.25 24300 10.9 8.25 
1.5 26140 10.5 6.2 

2*5.2. Superconducting lenses. - Superconducting materials having very 

high critical fields, Hc, have now been known for about a decade. (The crit

ical field Hc is the value of the magnetic field beyond which the material 

reverts to normal behaviour.) Hc depends on the current / that is flowing 

in the wire, since the field of / itself is added to the ambient field. For niobium-

titanium wires, for example, which are commonly used, Hc> 100 kOe and 

for Nb3Sn, / / c> 2 0 0 k O e . It is therefore possible to design coils producing 

axial inductions of several tens of kG. The current density in the winding 

can reach 10

5
 A/cm

2
, whereas the limit is 100-i-1000 with water-cooled copper. 

The coils must operate in liquid helium (T = 4.2 °K), since the material 

is superconducting only beneath its critical temperature Tc (Tc ~ (12-f-18) °K). 

Various types of lenses are possible: 

i) iron-free lenses; 

ii) coils with an outer casing; 

iii) lenses with ferromagnetic poles. 

Iron-free lenses have the advantage that their properties can be rapidly 
and easily calculated, since the curve B(z) (which is given by analytic expres
sion) can be replaced by a Glaser bell-shaped curve to a very good approxi
mation. The field Bm is increased and the width of the fringing fields reduced 
by enclosing the coil in a thick cobalt steel casing; this saturates locally close 
to the axis, but the curves B0(z) are nevertheless narrower (Fig. 22). The 
axial extent of B0(z) can also be reduced by using a superconducting screen 
(NbTi tubes). 

The coils are wound in wire ((0.025-^0.25) mm diameter) or ribbon in 
the case of Nb3Sn (thin copper ribbon covered with (30-^-40) μτη of super
conductor). Another construction technique has been explored in Siegel's 
laboratory: the Nb3Sn is evaporated under vacuum onto thin platinum discs 
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in the form of concentric circular rings (Fig. 23); these discs are piled up 

to form the coil, and small lenses can then be assembled. 

In all these lenses, the field is essentially produced by the current flowing 

in the superconductors; the rotational symmetry can hence be disturbed by 

irregularities in the winding and by deformations arising during cooling. 

For this reason, there is a tendency to return to fully screened lenses having 

J Nb35n 
ζ ring 

Fig. 23. 

ferromagnetic pole pieces. For Bm>20 kG, the poles saturate, but the field 
in the gap is much higher than that of the coil alone: 

B
m — ^coil + ^sat 



40 A. Septier 

(Bsat ^ (24-f-25) k G for permendur) ; the curve B0(z) also remains much nar

rower than that produced by the coil alone. It is possible to increase Bm by 

using materials that have much higher saturation magnetizations, i ? s a t, than 

cobalt steel; some of the rare earth metals (dysprosium and holmium) have 

this property, with Bsat ~ 34 kG. It is then easy to obtain Bm > 60 k G in 

the gap, but the curve B0(z) are then very different from the Glaser bell-shaped 

distribution (Fig. 24) and the properties must be calculated on a computer. 

Superconducting lenses can be used in two different situations: 

i) In ordinary microscopes (9?0<200kV), with # m< 2 0 k G . The coil is 

then very small, even allowing for the cryostat. Very short focal lengths 

can be achieved ( / < 2 mm). Here, the spatial quality of the field is com

pletely determined by that of the poles. If the coil is short-circuited when 

the current necessary to produce the desired field is flowing in it, the current 

subsequently remains perfectly stable since the flux through the coil is con

stant. Any contribution to the chromatic aberration due to fluctuations in / 

is thus eliminated, and long exposures are possible. 

ii) In high voltage microscopes. With Β ^ 50 k G and a = 6 mm, we 

should have a lens with the following characteristics (for Glaser's bell-shaped 

distribution) : 

<Po (MV) φ* (MV) k

2 
fo (mm) C, (mm) 

2 6 5.8 6.3 1.5 
3 12 2.9 6.5 1.8 
5 30 1.15 7.5 3.6 

Figure 24 shows the characteristics of a lens with dysprosium pole pieces and 

a gap of 6 mm. Lenses with soft iron pole pieces have been studied in various 

laboratories. Very high voltage microscopes could be built with these lenses 

(φ0>5 MV) but the real aberrations of the lenses, in which the coil field is 

dominant, have not yet been measured. At the present time, only the new 

Toulouse HVEM has an electron source suitable for such measurements; 

for this reason, we plan to measure the aberrations with lithium ions at a 

few keV, since these are equivalent to electrons at several MeV. The lenses 

can then be excited at their nominal value. 

Another advantage of superconducting lenses is their lightness: a lens 

weighing 4 or 5 kg (including the cryostat) could replace the 2200 kg objective 

of a 3 MV microscope. 
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A série of papers surveying current research in superconducting lenses 
is to be found in the Proceedings of the European Conference on Electron 
Microscopy (Rome, 1968) and of the International Conference on Electron 
Microscopy (Grenoble, 1970). 

3. Quadrupole lenses. 

3 1 . Introduction. 

Quadrupole lenses, which are still known as « strong-focusing lenses », 
constitute highly astigmatic systems, with which it is a priori impossible to 
obtain a highly magnified image of an object. They are extensively used to 
guide and focus very high energy beams, emerging from large particle accel
erators for example. 

Nevertheless, they have two possible applications in ordinary electron 
optics. 

i) They may be used in association with octopoles, to provide correc

tion of the aperture aberration of round lenses. 
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ii) They may be combined to form objective or projector lenses, equiv

alent to round lenses, for use in very high voltage microscopy. These optical 

systems, which can be corrected for spherical aberration by the use of octo-

poles, offer an alternative to superconducting lenses. 

3 2 . Optical properties of quadrupole lenses. 

3'2.1. Field distribution. - We have seen that in round lenses, the field 
produced by the electrodes or poles is essentially longitudinal; the focusing 
action, caused by Er or by the effect of Bz on vQ (the azimuthal velocity created 
by Br), is thus a differential effect. In quadrupole lenses, the field is transverse, 
except in the fringing fields at the ends, so that the focusing force is much 
stronger than in round lenses. 

A quadrupole lens consists of four electrodes parallel to the optic axis, 
and has four radial symmetry planes (Fig. 25), xOz, yOz9 XOz and YOz. In such 
a system, which we shall first of all assume to be of infinite extent in the 
z-direction, the scalar potential has the form 

Y 

X 

Fig. 25. 

CO 
<p(r, e) = 2Anr

2n
 sinlnd, (41) 

where η = 1, 3, 5 ... (2k + 1 ) . The θ-origin is taken along OX. In a real 
lens, in which the radial force is proportional to r9 <p(r, Θ) must contain only 
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the second order term in r. Such a potential would be created by electrodes 
of hyperbolic shape, infinitely extended in the X and Y directions. In prac
tice, hyperbolic segments of finite extent would be used, and cp(r, Θ) would 
then contain higher order terms. Nevertheless, it is easy to suppress the 
term in r

6
 by a judicious choice of the electrode dimensions, so that over a 

considerable axial region we may represent 99(7, Θ) by 

<p(r, d) = A2r
2
'smie. 

If ± <Pi denotes the potentials applied to the electrodes and a the radius of 
the inscribed circle (see Fig. 25), the following expressions are obtained for the 
potential : 

φ(τ,θ) = - ρ r
2
 sin 2(9, 

φ(Χ,Υ) =
 2

^ΧΥ. 

(42) 

For a magnetic lens, we should have 

φ1 = μ0ηΙ9 (43) 

in which nl is the total number of ampere-turns flowing in the coil wound 
on the pole; the poles will be alternatively north and south. 

In a real lens, of finite length, variations in the potential at the ends can 
be taken into account by writing 

φ , y,z) = - § (x
2
 - y

2
) · k(z) or φ(Χ9 7, ζ) = ^ ΧΥ· k(z), (44) 

in which k(z) is a function equal to unity at the centre (z = 0) and zero 
outside the lens (Fig. 26). 

In studying the first-order optical properties, we replace this function by 
a rectangle of length L such that 

+00 

L=jk(z)dz. (45) 
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If the lens is very short ( L < 2 a , for example), k(z) is a bell-shaped curve, 

which can be represented by a function of the form 

^ ) = l / [ l + ( i )

2
]

2
. (46) 

>k(z) 

1 

a ) J 
0 

b) / 

:
W{z) 

ζ 

0 

Fig. 26. 

Examination of the field lines (or of the expression for the field com

ponents) in such a lens shows that there are privileged radial planes in which 

the force exerted on a particle is towards the axis. These are the planes xOz 
and yOz for an electrostatic lens and the planes XOz and YOz for a magnetic 

lens. With the conventions of Fig. 25, this force will have a convergent effect 

for an electron in xOz (or XOz) and a divergent effect myOz (or YOz). In every 

other radial plane, the force is transverse but has two components, Fr and FQy 
so that the particles will be rotated. A quadrupole lens therefore constitutes 

a doubly cylindrical system, equivalent to a convergent lens in one direction 

and to a divergent lens in the direction at right angle. 

If now we place eight identical electrodes parallel to the axis, so that 

they form a system with eight geometrical symmetry planes and four electrical 

symmetry planes, we obtain an octopole lens (Fig. 27). The potential is given, 

in the vicinity of the axis by 

cp(r, Θ) = Α^ sin 4(9 + 
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The force on a particle varies as r
3
. This explains why these lenses can be 

used to correct the spherical aberration of round lenses. Here again, how
ever, the transverse force is purely radial only in certain privileged planes, 
and is alternately convergent and divergent every 45° around the axis. 

Fig. 27. 

3*2.2. Equations of motion. 

~ (mv) = eE or ~ (mv) 
d r

v 7
 d r

v 

Applying the law 

evxB 

in the planes xOz, yOz for the electrostatic case and XOz, YOz for the mag
netic case, and assuming that the scalar potential is given by eqs (42) and that 
r '

2
 « 1, we obtain uncoupled sets of equations 

Χ"+β
2

ΜΚζ)Χ=0, 
or 

with 
γ"-βΐΚζ)γ=0, J Υ"-β

2

ΜΚζ)Υ= 0 , 

eKE{0) _ ^ ( 0 ) ( 1 + 2 ε %) 

(47) 

β% = 
2 ? ί 

^
( 0 )

^ ( 0 ) ] / : ' 
mv 2mtfp% ' 

(48) 

KE(0) and KM(0) denote the radial gradient absolute values of the electric and 
magnetic fields, respectively, in the centre of the lens : 

κΜ(0) =
 2

ψ . (49) 
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If we use the rectangular model approximation, eqs (47) are easily inte

grated since k(z) = 1. We obtain for example 

X' 
Χ = Χ0οο%βΜζ + ^ . s i n / ? Mz , 

Ρ M 
Y' 

Y = Y0 cosh βΜζ + sinh βΜζ . 
Pm 

(50) 

For a lens of length L, the quantities X89 Xs, Ys and Y's can be expressed in 

terms of the initial conditions, X0 Xq, Y0 and Yq by means of the relations 

cos/SL (l/j8)sinj8L 

— β sin jSL cos /?L 

cosh^L (l /£)sinh/?L 

+ /?sinh/?L cosh/SL 

(51) 

This matrix formalism, in which \TX\ and | Γ Γ| denote the transfer matrices 

of the lens, allows us to calculate rapidly the optical properties of complex 

systems formed by joining several lenses. The overall transfer matrix is ob

tained by multiplying the individual matrices. The matrix corresponding 

to field-free space (a drift space) of length D is given by 

\T\ = 

We recall that in a transfer matrix of the form 

we always have 

^11 ^12 

^11^22 ^12^21 — 1 ' (52) 

provided that the electrostatic potential is the same on either side of the lens. 

The convergence of the system, C, is given by 

C - j — Tn 
(53) 
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and the position of the focus with respect to the exit plane zs by 

SF=zF~zs=-T11/T21. (54) 

3*2.3. The cardinal elements of a single lens. - By considering a trajectory 

incident parallel to the axis, and setting /?L = k, we obtain (Fig. 28) 

fx\L = (k sin k)-
1
, fyjL = — (Jfc sinh k)-

1
, 

SFxjL= 
cos k 

k sin k
 9 

SFY/L = 
cosh k 

k sinh k ' 
(55) 

I 
' 0 I

 1 

I 1 
S ^ ' 0 

1
 1

 fl 

Xoz p l a n e 

"

H
y t f

H
' y ?» 1

 0 ι ! 
I I 
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S 

ι ; 
I 

Yoz p l a n e 

Fig. 28. 

The object elements are such that SFX = — OFx, SFY = — OFY, f'x = —fx, 
and f'Y=—fY. The principal planes are crossed. 

In order to obtain an optical system that is convergent in all directions, 

we combine two crossed quadrupoles, <2i and Q2 (the convergent plane C 

of Q1 coincides with the divergent plane D of Q2): this yields a quadrupole 

doublet. 

3*2.4. The cardinal elements of a doublet. - When the excitations of the 

two lenses, which we can characterize by k, are chosen arbitrarily, the object 

foci of the doublet Fx and FY, are not coincident (nor are the image foci, 

Fx and FY), and the focal lengths are unequal : (Fig. 29) 

fx^fy-

Nevertheless, fY = —fY and fx = —fx. When the lenses are identical 

(L1 = L2, a1 = a2) and equally excited (k1 = k2), we do have 

fx fy ' 
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but the X and Y foci are separated. We shall now show that a doublet con

sisting of two identical lenses, with kx = k2, can be made equivalent to a 

round lens. For this, we merely write 

SFX = SFY, 

that is 

( ϊ1ι)χ = ( Γ 1 1) Γ. (56) 

Fig. 29. 

Writing D/L = λ, we find 

Ι/λ- itk(ctgk + ctghk). (57) 

For D = 0, this equation gives : k = π 

fx . 
L L : sinh: L L 

1 — 1 

π tgh π π 
(58) 

The focal length is very short, and unfortunately the asymptotic foci 

fall well inside the lens. Examination of the trajectories (Fig. 30) shows that 

the real immersed foci O' and O" do not coincide in the X and Y planes. 

This doublet cannot therefore be used as a high magnification immersion 

objective or as a demagnifying lens for forming a real probe. It could on 
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3*3. Quadrupole systems suitable as objectives. 

An optical system equivalent to a round lens for all points on the axis 

must contain at least four lenses, combined in such a way that the quadruplet 

has a plane of geometrical symmetry (P). The two central lenses have the 

same length L2 (Fig. 31). If (P) is also a plane of electrical symmetry, the foci 

Q2 
I(P) Q3 

F 
1
C 

- k _ 2
 D 

1 
1 

k, 2
 C S

 F
' ζ 

—1 D 
S 

C !C 
D 

D 
S 

C 

L
1 

L
2 

1 
1 
1 

L
2 

L
1 

Fig. 31. 

will always be immersed. If, however, (P) is a plane of antisymmetry, it is 
possible to find pairs of excitations kx (for Q1 and g 4) and k2 (for Q2 and Q3, 
which are crossed), such that F and F

f
 lie outside the lenses. The plane XOz 

is then convergent-divergent-convergent-divergent (CDCD) and YOz is 
(DCDC). The terms in the transfer matrix can be simplified to some extent 

4 
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by setting S = 0. This type of quadruplet has been extensively studied, and 
the cardinal elements have been obtained as functions of the geometrical 
parameters L2/Ll9 D\LX and S\LX. In general, there are several regions of the 
kx—k2 plane for which SF

F
>0. The focal length of such a quadrupole may 

be very short: fjLx ~ 10~

2
 for example, but the excitations then become high. 

With L2 = 2 L 1? S = 0 and DjLx = 0.155, we find f\Lx = 4 · 10~

2
, zF = 0 . 2 6 ^ 

with kx= 1.95 and k2 = 4.5. Figure 32 shows the form of trajectories in-

D=3.1 mm (C-D-C-D) 

Fig. 32. 

cident parallel to the axis. For 3 MV electrons (99* = 12 MV), the field 

gradients in the lenses would have to be l . l - 1 0

4
G / c m and 1 .5-10

4
G/cm 

respectively, for a = 4 mm, Lx = 2 cm and L2 = 4 cm ; we then have 

/ = 0.8 mm and SF= 6.4 mm. This shows vividly how superior these lenses 

are to round lenses, so far as convergence is concerned. The aberration 

coefficients are much higher, however, and octopole correctors would be 

necessary. 

3*4. The aperture aberrations of quadrupole systems and their correction. 

When rotational symmetry is abandoned, four coefficients become neces
sary in general to describe the aperture aberration. For a beam incident 
parallel to the axis, the transverse aberration in the Gaussian image plane 
of a pseudostigmatic system (two coincident foci) will be given by 

AX=Cxot*+CXYrf
2

9 
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and in this special case, CXY = CYX. oc and β denote the semi angular aper

tures in image space, in the XOz and YOz planes respectively, In this case, 

three coefficients are adequate; expressions for them, and also for the other 

aberration coefficients (coma, distort ion, . . . ) , are to be found in articles 

published by P. W. Hawkes. 

Examination of Fig. 32 shows that the outermost trajectories of the beam 

are much farther from the axis in the C D C D plane than in the D C D C plane. 

They are hence more sensitive to the perturbations caused by the third order 

terms (and even by fifth order terms) which we have so far neglected in the 

potential and by the steep slope of the rays. Even for a « pure » quadrupole 

field (eqs (42)), the effect of the fringing fields has to be taken into account; if 

the field variation at the ends of the lens is characterized by k(z)9 the field Bz 
varies as k'(z) and term in k"(z) must be included so that the potential func

tion is indeed a solution of Laplace's equation. In the x-y co-ordinates, 

for example, we have 

φ(χ, y, ζ) = g k(z)(x
2
 - y

2
) - ^ g (x

4
 - j

4
) + terms of sixth order . (59) 

Using (59) and the relation 

^ = v[l + (x'2 + y'2)r* 

we obtain the « third-order equations of motion », the solutions of which 

are written x
is
\z) and y

{s
\z). If we regard the aberrations as a perturbation 

of the Gaussian trajectories, x
{1
\z) and y

(1)
(z), we can set 

ε(ζ) = x

( 3 )
( z ) - x

( 1 )
( z ) , 

and we obtain equations of the following form: 

e"+ k(z)s = Sx(x, y, x'9 y\ z). 

We replace the unknown functions x, y, x' and y' on the right-hand side by 
the Gaussian solutions, this enables us to solve the equations more easily, 
though only approximately. If greater precision is required, the third-order 
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equations are integrated directly on a computer. The expressions for the 
aberration coefficients given by Hawkes, which are easy to compute, can 
thus be used once trajectories have been obtained by integrating the Gaus
sian equations. 

All the calculations show that the aberration coefficients of strongly ex
cited quadrupoles, which could be used in electron microscopy, are higher 
than those of round lenses. Measurements made by Dhuicq and Septier in 
particular confirm this result. For the objective of Fig. 31, for example, we 
find that with / = 0.8 mm 

CT/f= 39 CXY/f= 72 C y / = 1.4· 10
5
 (magnetic), 

Cyff = 12 CXy/f = 550 CJf= 0.5 · 10
5
 (electrostatic). 

The three coefficients can be cancelled simultaneously by placing octopoles 
at suitable points in the quadrupole system. We describe briefly the prin
ciple of this correction technique, which can also be used with round lenses. 
In a region in which the beam is rotationally symmetric, an octopole is placed, 
excited in such a way that it corrects the terms in a/5

2
 or βα

2
 in the planes 

θ = ± 45° (which bisect the co-ordinate axes xyz)\ it worsens the aberrations 
in the plane xOz and yOz. In regions where the beam is highly elliptical, two 

Oct.3 0ct.2 OcU 

• CZI • 
Cy=0 Cx=0 Cxy=0 

Fig. 33. 

other octopoles are placed ; these correct the a
3
 terms (when y = 0, χ Φ 0 

for example: i.e. close to a line focus parallel to Ox) and the β
3
 terms (when 

y φ 0, x = 0: line focus parallel to Oy): see Fig. 33. The octopole poten
tials required for correction can be produced either by separate lenses or by 
introducing extra poles or electrodes into the quadrupoles. For the quadruplet 
of Fig. 31, Dhuicq has adopted the solution described by Deltrap, in which 



Geometrical electron optics 53 

each pole of the quadrupole is cut in two and fitted with two types of coils, 

so that both quadrupole excitations ( i φ2) and octopole excitations ( ± φ^) 
can be produced (Fig. 34). 

Many theoretical and experimental studies have been devoted to this 

problem, with a view to obtaining objectives capable of focusing ( 5 1 0 ) Me V 

electrons, or correctors for round lenses, or microprobes of high current 

density. (We recall that the last demagnifying lens of a microprobe must 

have its focus outside the lens, so that the lowest values of Cs that can be 

obtained with a strongly convergent objective cannot be attained.) 

Considerable efforts to optimize the solution are still necessary, which 

will reveal which systems have the smallest aberration coefficients and are 

least sensitive to small misalignments of the electrodes; for, if we are to take 

full advantage of the correction of spherical aberration, the new aberrations 

introduced by imperfect symmetry or misalignment must be zero or negligible. 

3 5 . Correction of chromatic aberration. 

It is possible to obtain achromatic quadrupole systems, by combining 
magnetic and electrostatic lenses. As a simple example we consider a 
mixed lens, consisting of four magnetic poles and four electrodes held at 
electrostatic potentials ± φΐ9 arranged as shown in Fig. 35. The lenses 
produce both electrostatic and magnetic field gradients, KE and KM, in the 

Y 

Fig. 34. 
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same region of length L. The equation of motion in the xOz plane is now 

Fig. 35. 

for nonrelativistic electrons. The system will be achromatic if dA(v)/dv = 0, 

or 

2eKE eKM ^ 
mv- mv 

that is 

ν 
Κ Ε — 2 ^M ' 

We thus require (see (48)): 

If we consider the y-equation we obtain the same condition. This implies 
that if the magnetic lens is convergent in the plane xOz, the electrostatic lens 
must be divergent. The overall convergence of the lens is thus less than that 
of the magnetic lens alone. 

This interesting property has been confirmed experimentally. We can show 
that the correction can also be obtained when the lenses are separated along 
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the axis. At the present time, arrangements are being sought with which both 
the chromatic aberration and the spherical aberration can be cancelled. 

Unfortunately, the need for electrostatic lenses prevents us from exploiting 

this property at very high voltages. 

4. Prisms optics. 

4 1 . Introduction. 

In particle optics, there is a whole range of situations in which we have 

to analyse the energy spectrum or the different components of a heterogeneous 

beam. We then use deflector systems with dispersive properties and, by 

analogy with glass optics, we call such systems « prisms ». We shall find 

that these prisms also possess interesting focusing properties. 

In its simplest form, a prism consists of a limited region of space con

taining a homogeneous electric or magnetic field: a plane electrostatic con

denser, or a pair of parallel magnetic poles very close together. 

Such a system is used to obtain fairly weak angular deflections: the elec

tron beam in a cathode-ray tube is deflected in this way. 

In order to obtain larger deflections and a high dispersion it is better to 

use long systems with a large radius of curvature, in which the mean trajec

tory is a segment of circle centred at 0 , and of radius R. 
Electrostatic prisms will thus consist of portions of cylindrical or spherical 

condensers and magnetic prisms of circular sector magnets. The angle at 

the centre of the prism, Φ, is then equal to the deflection imposed on the 

mean trajectory of the beam in the symmetry plane of the system. 

4'2. Simple prisms. 

4*2.1. Electrostatic deflection. - In a parallel plate condenser, supporting 
a potential difference V = Ed (see Fig. 36), the field Ε deflects a beam injected 
along the Oz axis through an angle α given by: 

1 VI _ elE 
2 op^d mi% ' 
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I is the length of the condenser and φ0 the accelerating voltage. The trajec

tory is a parabola and the emerging beam seems to come from the prism 

centre ΟInside the condenser, the origin being taken in 0 , we obtain: 

eEz*_ 
2mv\ ' 

( y 

- V / 2 

— > -

ζ 

Fig. 36. 

At a distance D from <9', the deviation is 

V Dl 
φ0 2d 

4*2.2. Magnetic deflection. - We only consider the case of a homogeneous 

magnetic field B, extending over a limited distance / along the axis Oz, (Fig. 37). 

Fig. 37. 
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The trajectory (c) is a circle of radius R, with 

mv0 V(2m e)w0 , eBz
2 

R = —η = „—— and χ ~ ^ . 

The deviation angle being small, we have 

/ IBe IB 

R mv0 V(2mle)<p0' 

4*2.3. Parallel electrostatic and magnetic fields. - Β and Ε are paralle 
to the Oy axis, and act on the incident beam O'z. The two deflections are 
superimposed independently. Taking the ratio x/y, we obtain 

χ Β 
y
 =

 E ^ 

A monochromatic beam will mark one point on a screen set up at right 
angle to the Ο ζ axis at ζ = zQ. If now the beam contains electrons spread, 
over a wide range of velocities it will be dispersed along a curve on the screenr 
The equation of this curve is derived by elimination of v0 from the above 
equations 

x
2
 eB

2 

y 2mE 
z0 . 

The inhomogeneous beam trace a parabola y = kx
2
 on the screen (o 

photographic plate). 

If the beam is made of positive ions, of different kinds corresponding to 
different values of the ratio (e/m), each kind of ion gives a parabola on a photo
graphic plate. (Parabola mass spectrometer.) 

4*2.4. Crossed electric and magnetic fields (Wien filter). - The beam 
always follows the Oz axis, but we have now EjjOx and B/jOy: both deflec
tions are in the xOz plane, and the direction of Β is chosen in order to counter
balance the electric deflection for a given value of v0 

_ eEz
2
 _ _ _ eBz

2 
XE
~2m^

2
~~

XB
~~2fnv0' 
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In this case the ratio E/B have to be fixed to a special value EjB = v0. 
Particles of velocity v0 are not deflected; by putting (Fig. 38) a narrow 

slit at the exit of the system, we obtain a velocity filter or a mass filter. By 

varying the ratio EfB, a velocity (or mass) spectrum may be recorded beyond 

the slit. This type of filter is extensively used for studying the energy spectrum 

of electron beams, which have passed through a thin film (or a gas). Its 

resolution, which depends on the width of the output slit, can attain 1 0

-1
 eV. 

Ε 
Β 
ο 

0 

Fig. 38. 

4*3. Magnetic prisms. 

4*3.1. Description-fields. - We consider a magnet consisting of two iden

tical poles in the form of circular sectors of angle Φ, centre C, and mean 

radius r0, terminated by the plane faces AB and A'B' (Fig. 39). The mag

netic field is constant along an arbitrary circle (C) of radius r lying in the 

symmetry plane (the « median » plane). On (C0), we have Β = B0. We assume 
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that Β = 0 outside the end faces, and that Β = constant along (C) for 0 < 0 < Φ 
(rectangular model approximation). 

The field Β is parallel to the axis CZ, in the median plane. Instead of the 

standard cylindrical co-ordinates r, 0, with axis CZ, it is more convenient 

to use the reduced dimensionless co-ordinates x, z, 0, defined by 

(C0) plays the role of a curved axis, which extends outside the sector as two 

straight lines T0 and Ts; ds is an element of length along (C0). 

Solving the Laplace equation in the gap between the poles, and retaining 

only the first terms in the expression giving the two components of the field, 

we obtain 

Bz = (1 - nx)B0 = B0[l-n(r-rQ)/r0], Bx = -B0nz = -B0nZ/r0, 

η is called the « index » of the field, η = 0 corresponds to a homogeneous 

field (Bx = 0 in this case, and Bz = B0). 

4*3.2. First-order trajectories (Gaussian optics). - The curve (C0) is the 

path of a particle of charge e, mass m and momentum p0 = mvQ, such that 

Particles of momentum p1 Φ p0 can then also follow circular paths (C) 

of radius Γ Χ̂ Γ 0, satisfying the equation 

We now study the trajectories of particles of momentum p0, injected near 

the curved axis (C0) = χ, ζ < 1, with small slopes (x '

2
, z '

2
 < 1). Further

more we may write νθ = υ0, and so 

x = (r — r0)/r{ 
Ζ 

vQ = rdd/dt = v{ 
or 

ω 0 is known as the « cyclotron frequency » of the particle in the field Β 
(ω0 = eB0/m). In the axis (x, 0, z), the equation of the motion takes the fol-
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lowing form 

ά
2
χ/άθ

2
 + (1~η)χ = 0, 

ά
2
ζ/άθ

2
 + ηζ = 0. 

For 0 < n< 1, the solution of (60) can be expressed in terms of circular func

tions: the prism is convergent in both the χ and ζ directions (that is in 

both the horizontal plane H, and the « vertical » plane V). If η = 0 (homo

geneous field), there is no focusing in V plane, but only focusing in Η plane. 

We observe that the two equations are identical when n = \ , so that con

vergence is the same in Η and V: the prism is equivalent to a round thick lens. 

4*3.3. Optical properties of the prism, with entry and exit faces normal 

to the mean trajectory (C0). - The solutions of (60) are of the form 

χ = AH cos ( V I — η θ) + BH sin ( γ

7
! — ηθ), 

ζ = Av cos ( Λ / Η θ) + Bv sin {y/n Θ) . 

The constants A and Β can easily be expressed as a function of the initial 

conditions at the entry face, and in the planes Η and V respectively, we 

can define the transfer matrices of the prism. We only give them in two 

special cases : η 0 and η = \ . 

Homogeneous field (n = 0). The matrices \H\ and \V\ take the simple form 

(in reduced co-ordinates χ, ζ, Θ) 

\H\ = 
cos Φ sin Φ 

- ύηΦ cos Φ 
\V\ 

1 Φ 

0 1 

In the plane V the prism is equivalent to a drift space of length L = r0 Φ and 

has no effect on the trajectories; in the plane H, it behaves like a thick lens. 

Returning to the unsealed variables, we can easily show that (see Fig. 40) 

f'n = —fn =
 r

o/sin Φ , 

% = - % = - r 0t g ( t f > / 2 ) 
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Consider now an object Ρ (Fig. 41), at a distance ρ from S, and its 

image g , distant S' Q = q from S'. In reduced co-ordinates, it is easy to 

calculate the complete transfer matrix |7Ί between Ρ and Q: 

\T\ = 
0 1 

1
 Plr0 

0 1 

For a ray emerging from Ρ (xp = 0) at slope x'p φ 0, we see that at Q, 
xQ = xPT12 = 0 so that T12 = 0 and 

t g # = 
l - (w /^o

2
) 

From this relation a very simple rule giving the position of Q (P being known), 

can be deduced: P, C and Q are collinear (Fig. 41). 

Knowing that T12 = 0 (conjugate points), we have χ0 = ΤηχΡ. 
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The linear magnification GH is given by 

Ο 

and for the symmetrical case (p = #), we have GH = — 1 

ρ = roctg(0/2). 

Second case (n = J ) . - In both Η and V planes, we have 

/
,
= - / = r0V2/sin(<P/V2), 

g'= - g = r0 V2 ctg (0/V2) · 

If Φ = n/V2 ~12T, the foci are situated at S and S', and f'=r0λ/2. 
Symmetrical operation (p = r̂) is obtained for 

p = q = r ov
/
2c tg (0 / 2v

/
2 ) and G H = G r = — 1. 

For a given angle Φ, and the same radius of curvature r0, a prism of index 
η = J is few convergent in the plane than the corresponding prism with 
« = 0, but has the advantage of convergence in the V plane. 

The field with index η will be obtained with poles having hyperbolic cross-
section; in order to simplify their mechanical construction, the hyperbola 
is usually replaced by its tangent at the point (χ — 0, ζ = h). The pole 
pieces are then portions of cones of revolution, with meridian 

ζ = — (1 + nx). 

For η = | , the slope of the tangent is (Fig. 42) 

t g a = h/2r0. 

Fig. 42. 
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4'3.4. Prism with inclined entry and exit faces. - Let us now suppose that 

the entry and exit faces are turned (about S and *S") through angles α and β 
respectively (Fig. 43). By convention, the angle of rotation is taken to be 

Fig. 43. 

positive when the normal to the tilted face is outside the mean trajectory 

TQ(C0)TS. For simplicity we only consider the prism with η = 0. The rota

tion of the faces modify the convergence in the Η plane. The whole prism 

is equivalent to a prism (P) of angle Φ, having its faces normal to T0, 7^, 

with two small thin prisms PE, Ps added in S and S
R
 and two prisms PE, 

Ps removed. In PE, Ps, the field Bz has the same amplitude and sense as the 

main field in (P); we may also consider that we add PE, P
f

s, but in these 

prisms Bz has the same amplitude as in (P) , but is in the opposite direction. 

So, each double prism (PEPE, PSPS) will be equivalent to a thin lens of 

focal length 

fEH = — r0ctgoc, fSH = — r0 ctg/3 

and the total transfer matrix of the real prism (P
r
) with inclined end faces 

is therefore given by 

1 0 1 0 1 0 

tg|9 1 t g a 1 
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In a symmetrical prism (α = β), one obtains 

cos (Φ —a) 
sin Φ 

Ι/ΓΙ 
cos a 

sin (Φ—2a) c o s ^ — a) 

cos

2
 a cos a 

When Φ = α + β , the entry and exit faces are parallel: the prism (Ρ') then 

behaves as a « parallel plate » ; in the Η plane, its convergence is zero since 

H21 = 0. If α + β < Φ the prism is convergent in the Η plane. It is more 

tedious to obtain the transfer matrix V; following the same method, one can 

show that the double prisms behave like thin lens, having focal distances 

fEv = + foc tga , fSy = + r0ctg /5 

and 

\V'\ = 
1 0 1 0 

- t g / ? 1 - t g a 1 

A tilted face has the same effect as a thin strong focusing lens: divergent in 

the Η plane, and convergent in the V plane (or conversely, depending on the 

sign of α or β). The prism (Ρ ' ) with n = 0 becomes convergent in the V 
plane, and remains convergent in the Η plane. With (Ρ ' ) we can achieve stig-

matic operation, but, unlike the case η = J , the system is stigmatic for 

only one particular pair of conjugate planes, since the cardinal elements 

( / and g) are different in 7 / a n d V. In the case of a symmetric system (α = β, 
ρ = q), the values of tg α and pfr0 for which this type of operation is possible 

are given by TH12 = 0 , Tv l2 = 0 . We obtain 

t g a = r0//> = £ t g ( 0 > / 2 ) . 

If Φ = π/2, t g a = I (or a = 26° 34'), Ρ = 2 r0. 
A device incorporating a stigmatic prism of this type (Φ = π/2) has been 

successfully used by Castaing and Slodzian to transport the image in ion 

microscopy, and to act as a mass selector simultaneously. 

4*3.5. Trajectories for particles of momentum (p0 + Δ/?). - We now con

sider a particle incident along T0, but having a momentum 

p=p0 + Ap =p0(l + Δρ/ρ0) =p0(\ + Ô). 
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It is easy to find the trajectory in (P), by the following method : the circular 

equilibrium trajectory corresponding to ρ will be a circle (C) of radius 

r = r0 + dr such that 

(r0 + dr)Bz = φ + χ ) f t = r0( l + χ) (1 - nx)B0 =
 P o (l

 +
 3)

 , 

Λ: being small, one finds 

χ ~ < ΐ / ( 1 — τ ι ) . 

With respect to the new curved axis (C), the initial values where the par

ticle trajectory T0 enters the prism are as follow: χ0 = — δ/(1—ή)9 XQ = 0; 
using the transfer matrix \H\ of the prism, and then coming back to the curved 

axis (C0), corresponding to /?0, we find at the exit of the prism 

{ ο Ί ô 

1 - [ c o s ( V T = * Φ)] j ^ j , x's = " T j ^ s i n ( V l ^ n Φ). 

Case η = 0 Gore η = i 

xs = ô(l - cos Φ) xs = 2 o [ l - c o s (Φ/Λ/2)] 
x's = δ sin Φ - 20 sin (Φ/\ /2) 

Momentum dispersion. The dispersive power of a prism is its ability to 

separate, in the image plane, particles of slightly different momenta, originating 

in the same object point on the axis (x0 = 0) by an amount xt, and is 

characterized by the quantity 

Dp = XiPo/Δρ = Xi/ô . 

Using the expressions of xs and x89 x% may be known, at the image plane 

(S
r

Q = q), and we find 

where GH is the linear magnification in the H plane. In a symmetric case 

(p = q, GB = — 1), we obtain 

Dp = 2 , for n = 0 , α=β = 0 , 

Dp = 4, for η = \ , oc = β = 0, 
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and 

Dp = 4, for τ* = Ο , <χ = βφΟ. 

The dispersion is doubled by the use of inclined faces, or of a field with 

n = \ . 

Mass dispersion. When the incident beam consists of ions of different 

masses, all carrying the same charge e, and accelerated through the same 

potential φ0, the different masses can be separated. A mass dispersion can 

be defined by the relation 

Dm = xtm0/Am, 

where Am is the difference in mass between two ions in the vicinity of the 

mass m0. If Am < m 0, the relation mv = ρ = \j2emrpQ implies 

Ap 1 Am , , ^ 1 
— = - — and hence Dm=-Dp. ρ 2 m 2 

4*3.6. Aberrations. - We have obtained the first order optical properties 

with the aid of a rectangular model; we have neglected: 

— terms of higher order in the expansions of Bz and Br, 

— transverse velocities vz and %, 

— the effect of the component BQ that is present in the stray fields, and which 

affects vz and vx, 

— the curvature of the entry and exit faces of the prism. 

The dominant aberrations terms that appear when we take all these fac
tors into account are of second order, and they have been extensively studied. 
Just as for lenses, the most important aberration, the defect that limits the 
resolving power of the prism is the aperture aberration in the H plane. 

Taking into account the momentum spread δ, Axi is given by 

Axi = Μλ1χΙ + M 12 x0 x0 + Ml3 XO

2
 + ^ I 4

z
o +

 Μ
ΐ5

ζ
ο

ζ
Ό + ^ I E

z
o

2
 + 

+ Ν ι χ Χ ο δ + N12x
r

0 δ + Λ ^ 13 δ
2
. 

The Mlk corresponds to geometrical aberrations, and NXj to chromatic aber
rations. In devices, such as mass or velocity spectrometers, in which a high 

file:///j2emrpQ
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resolving power is required in the H plane, sources (objects) that are very 

narrow in the χ direction are employed; the terms in x\ and x0x'0 can then 

be neglected. Furthermore, the optics can be designed so that z0 is also small 

and that the incident beam is parallel to the Η plane (z'0 = 0). The principal 

aperture aberration term is then given by 

Axi = M13x'Q

2
 ( M 1 3< 0 ) . 

It can be shown that 

\M13\ = i(\GH\ + llG%). 

Figure 44 shows the trajectories corresponding to x0 = 0, x'0 φ 0, in the 

vicinity of the image plane. M 13 depends on the radi of curvature P x and P 2 
of the faces of the prism; these curvatures can be selected in such a way 

that the coefficient vanishes. 

Fig. 44. 

Resolving power of the prism. In a prism free of aberrations, all particles 
of the same momentum p0, coming from a slit source of width a0 in the Η 
plane, situated at P , will be concentrated in an « image slit » of width ai 
situated at Q (the image of P ) . We have a%= \GH\a0. 

In a first approximation, the particles of momentum p% = p0 + Δρι will 
be focused over an image of the same width at at a distance χι = Dp(Api/p0) 
from the axis. 

If we have a single collector behind an analysing slit of width s placed 
on the axis, we may pass particles of different momenta across this slit by 
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varying B0. Particles of momentum p0 can be completely separated from 

particles of momentum ρ0-\-Δρι if 

r0Xi = cn + s = \GE\a0 + s. 

If now we consider the effect of the aperture aberration, this condition 

becomes 

r0Xi = cn + s + M12x'0

2
r0 = Dpr0 — . 

Po 

The resolving power, that is defined by Rp = ρ0/Δρι is then given by the 

expression (in unsealed co-ordinates) 

R = _ _ V
 \GH\a0 + s + x'0\r0l2)(\GH\ + " 

Case n = 0, symmetrical case (\GH\ = 1) 

Case n = i9 symmetrical case: Rp = 4r0/@. 
When the prism is used for mass separation, we can define a corresponding 

resolving power Rm = mjàm, and we have Rm — \RP. 

4 4 . Electrostatic prisms. 

We shall examine now very briefly this family of prisms, the methods used 
for their study being the same as those used for magnetic prisms. 

We restrict our study to nonrelativistic particles. 

4*4.1. Description. - An electrostatic prism consists of a portion of a 
condenser, with two metal electrodes having an axis of revolution Ζ and a 
plane of mechanical and electrical symmetry (called the Η plane, as before). 
The electrodes coincide with part of the surface of a torus (see Fig. 45), 
and they therefore have a double curvature: in the Η plane and in the ver
tical plane (r, Z ) . The angle of the prism is Φ and the mean radius of curva
ture in the Η plane is r0. The electrodes are held at potentials ± Vl9 
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Γ 

Fig. 45. 

symmetric with respect to earth (V = 0) ; the mean equipotential surface (V= 0) 

intersects Η along a circle of radius r0. We assume that the separation of the 

electrodes Ar = r2 — rx = R2 — Rx (see Fig. 45) is small in comparison with 

rx and Rx. So, we have r0 = (r2 + rx)j2 and R0 = (R2 + Rx)j2. 
We adopt a rectangular model for the field. (E = 0 outside the prism, 

and Ε = const within it). In the / / plane, the field is wholly radial. 

In Gaussian optics, and using reduced co-ordinates, Er may be written 

in the form 

where η = 1 + r0/R0. 
For a cylindrical condenser (RQ = oo), we have n= I, (Ez = 0), and for 

a spherical one (i?0 = r0) , η = 2. 

4*4.2. Trajectories. Optical properties. - A particle of mass m, charge e 
and kinetic energy W0 = \mv\ = ^ 0 travelling in the i7 plane along Γ 0, 
enters the prisms at S and follows the circle (C0), if the value of E0is such that 

Er = E0(l— nx), 

Ez=—E0(l — n)z, 
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The velocity of the particle will not remain equal to v0, except on (C0). Solving 

the equations of motion, we finally obtain the equation of paraxial trajec

tories in reduced co-ordinates 

d

2
x 

d P 

d

2
z 

df}

2 

+ (3 — η)χ = 2β, 

+ ( Λ - 1 ) Ζ = 0 , 

(β = Δν/ν0). 

The trajectories oscillate about the curved axis (C0) provided that (3 — ή) > 0 

and (n—1)>0. The transfer matrices can be easily obtained, for a mono-

energetic beam. Unlike the case of magnetic prisms, the mass of the par

ticles does not occur in the motion equations. Particles of different masses 

that have been accelerated through the same voltage φ0 follow the same path 

through the prism: electrostatic prisms cannot be used to separate particles 

of different masses emitted by an ion source. They can however be used as 

velocity analyzers when all the particles are of the same type. In this case, 

we have 

Δν _ \ Δφ 
v0 2 φ0 ' 

The optical elements and the energy dispersion De can be calculated. Return
ing to real co-ordinates, we obtain (see Fig. 46) 

i / -plane: 

F-plane : 

fy-
g'v 

r0/sin (ωΗθ) , 1 

— / F = r0/sin (c* 

-—gv =
 r

ol
t
g (ω; yO), J 

oH = V3 — n, 

cov = Vn- 1 . 

The electrostatic prism, like the magnetic prism is equivalent to two centred 
systems of length L = ro0. If ωΗ and ων are real, both systems are con
vergent. 

The properties of cylindrical prisms are thus similar to those of the mag
netic prism with homogeneous field, since fv = gv = oo (η — 1). The foci 
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are in the entry and exit planes (gH = 0), for Φλ = π/2 \J2. By joining two 

prisms of angle Φΐ9 we can focus particles from a point source at S at the 

point S
r
 (see Fig. 47). 

/ 
/ 

c 
Fig. 46. 

The image of S will be a segment of a straight line (in first order), since 

there is no convergence in the V plane, and the total deflection will be 

Φ = 2Φ1 = π/χ/2~12Τ. 

Fig. 47. 

The spherical prism is equivalent to a rotationally symmetric optical system, 
since ωΗ = ων = 1 (like the magnetic prism with index η = \) and we have 

g^ = r0/tg<Z>. 

Particles from S can be focused at S' if Φ = 180°, but we now have a 
point image. 
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The dispersion De is defined, in the Gaussian image plane by 

It can be shown that 

With symmetric operations, De= 1 f o r a cylindrical prism, De= 2 for a spher

ical one, and the real separation dc between particles of energies φ0 and 

φ0 + αφ in the Gaussian image is given by 

dc = r0àxi = r0Dek(pf(p0 = r0Aç>/ç>0 (cylindrical), 

or 

dc = 2r0Aq)/(p0 (spherical). 

Aberrations of electrostatic prisms are not yet known in the general case, 
as they are for the magnetic prisms. We can only give an approximate value 
of the resolution Re in a prism in which the image of S is formed at S

F
, neg

lecting all the other aberration terms in comparison with the aperture aber
ration term M13x'0

2
. 

Spherical condenser (Φ = 180°, \GH\ = 1) 

Re =

 r
<*

De
 =

 2r
o 

a0+s+Mlsr0XQ
2
 a0 + s + 2r0XQ

2
' 

for example, with r0 = 5 cm, a0 = 0.25 mm, s = 0.25 mm (circular holes as 
object and image), we have 

Re ~ 2 0 0 ( 1 - 200x
f

0

2
) . 

Cylindrical condenser (Φ = 127°, \GH\ = 1) 

Re = r0/(a0 + s + îr0x'Q

2
) . 

With the same values of r0, a0 and s (slits): 

Recn 100(1 - 1 3 3 * ;
2
) . 
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4*4.3. Vertical focusing in a cylindrical prism. - Vertical focusing may be 

present only if the mean equipotential surface V = 0 (corresponding to the 

energy φ0 of the particles has a nonzero curvature (R0 finite). It is possible 

to obtain such a curvature with the help of two supplementary electrodes, 

at the top and the bottom of the cylindrical prism (Fig. 48), held at a common 

v=o' ' 
/ 

/ 

A 
Γ 

1 

01 
\ 

c 
\ 

\ 
\ 

\ 
\ 

ν 
Fig. 48. 

potential V2, slightly different of V= 0. Measurements in an electrolytic tank 

give a value of R0, for different values of V2 (and ± 
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Problems on 
Geometrical Electron Optics 

A . SEPTIER 

Institut d'Electronique Fondamentale, Laboratoire associé au CNRS 
Faculté des Sciences - Orsay, France 

1. Electrostatic lenses. 

Γ1. Problems. 

Problem 1. Obtain by means of Laplace's equation 

3

2
ç9 1 dcp ο)

2
φ 

dr
2
 r 9r θζ

2 

• Φ ( Γ , Ζ ) 

' ^ — β τ . * 

Fig. 1. 

a series solution for the scalar potential cp(r, z) in a cylindrical region near 
the symmetry axis Oz. (Eq. (11) of p . 17.) 

Problem 2. Using for φ0(ζ) in a two-cylinder lens the simplified function 

given on the Fig. 2, solve the trajectory equation (16 bis) (see p . 18) 
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Φΐ 

_Φ_2_ 

Ο 

Fig. 2. 

α) in a short interval enclosing the field discontinuity at (— z0) or ( + % ) ; 

b) between (—z0) and ( + z0). 

Give the transfer matrix of the lens, the values of the focal distances 

and positions of the foci. 

1 2 . Solutions. 

Problem 1. Due to axial symmetry, the potential function (p(r9 z) may be 

expressed as a power series of r, in which all odd-power terms in r must be 

zero: 

00 

<p(
r
»
 z
) = ^An{z)r η = 1 ,2 , 3 . . . 

If this expression is substituted in the Laplace's equation 

we find 

CO 

J [Α"η(ζ)ή
η
 + 2n(2n- 1)Αη(ζ)^

η
-
2
 + 2nAn(z)r

2n
-
2
] = 0. 

n-0 
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By grouping like powers of r, it can be seen tha t : 

f [A^z) + 4n*An(z)]r*n-z = 0. 

The coefficients An are then related by the following recurrence relation: 

An{z) = - Al&yW = - A^zWnf. 

By applying this relation, the coefficients are found to be 

A0(z) = 9>o(z), 

1 
Ai(z)= — 4j2-<p'o(z) 

1 
Λ 2( ζ ) = -

4.2

2 
A\{z) ^ 

4

2
(1.2)

! 

^ ) = ( - 1 ) » - δ Γ (- - 2. ^ » ) ( ζ) . 

The potential distribution, around the axis, takes the following form: 

r
2
 r

4 

<p(r9 ζ) = φ0(ζ) — - φΙ(ζ) + —φ™ (ζ)—... . 

Problem 2. The true potential function <p0(z) is replaced by a sequence of 

regions of uniform field (Fig. 3). The integration of the motion equation may 

Fig. 3. 
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be divided into two par ts : 1) the integration over an infinitesimal distance 

enclosing the « break points » A (and B), from A~ to A
+
; 2 ) the integration 

from one end of the linear segment AB to the other. 

1) At the junction between the field-free region ( z < —z0) and the 

lens, φ"0(ζ) becomes infinite, whereas <p0(z), φ'0(ζ), r and r' all remain finite. 

φ and r are continuous and they may be considered as constants: the junction 

is equivalent to a thin lens (only r' varies). 

The integration across the junction 

ZA + za + 

J J \2φ 4φ J 
ζΑ' za-

reduces to 

zA

 z
a

+ 

ZA~

 Z
A 

From zA- to zA: 

φ=φΑ-, r = rA- = r A, ψΑ- =φΑ=φ1, 

and from zA to zA+: 

φ=φΑ+, r = rA+ = r A, φΑ+ = φ Α= Ψ ι. 

We obtain 

, , φΆ—φΆ* 

We know that 

^

+ =
 ^ ζ 7 " - " 2 ζ Γ

 Ψ Α
' 

Finally 
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At the junction B, one would have, (with ψΒ+ = 0, φ'Β- — (<p2 — Ψι)βζ0) 

The transfer matrices of these thin lenses are given by 

01 

\TA = 

1 

y - i 
8zft 1 + 

1 

8yz0 

where y = φ21ψι> 1. 
( T j corresponds to a converging lens, of convergence 

_ 1 _ y - l 

and |Γβ| to a diverging lens such as 

cB = I = - ^ 

B
 / b 8yz0 * 

2) Within the segment AB, φ"= 0, and the general equation becomes 

r"+l-r'=0, or w^r" + ^r'=0 , 
2 φ 2φ

2 

which is integrated by r'qfi = C. 
C is a constant determined by the values of r' and φ at the initial (or final) 

point of the segment AB 

C=

r
A+'<PA = 'Ίγ'Ψβ-

Between A and Β 

Ψο(
ζ
) = Ψα + (

z
 —

 z
a)<Pa+ = <Ρι + (

ζ
 + ζ0)φ'Α+ 

and 

Ψα^=

=
(Ψ2 — Ψι)/

2ζ
ο· 
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or 

(z + ζ0)φ'Α+]* 
τ-Γ,άζ, 

rB = rA+ + ,- Κψβ — ψΑ) — rA+ + rA+- — Τ R — , 

Ψ Α* (Ψ2 — Ψΐ) 

r - r + 1 r V

 4 ψ
^

0 
r
B —

 r
A

+
 "Γ rA+ -̂ R— Τ : 

ΨΙ+ΨΙ 
rB =rA MS)' 

The transfer matrix of the segment AB may be written 

l
AB\ 

4zn 
1 + 

The total transfer matrix of the whole lens is obtained by multiplying the 

three individual matrices: 

We recall tha t : 

\T\ = \TB\\TAS\\TA\ 

«12 * n 

b
12 

«21 «22 *21 

b
22 

We have 

|Γ| = 

or 

1 

8yz0 

(«11*11 + «12*2l) («11*12 + «12*22) 

(«21*11 + «22*21) («21*12 + 022*22) 

\T\ = 

0 

1 

3 — 7* 

4zft 
y* + l 

1 

? 

1 0 

8zn 

4zn 
2 7^ + 1 

-3(y—l)(y*—1) 3 7 * - 1 

167^0 2 7 
^21 ^22 

A further integration yields the following value for rB (to the left of B): 
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Consider (Fig. 4) an incident ray ( Γ χ) parallel to the axis ( r0 = 0). Thus 

r
s —

 r
o 2 ' 

3r0 ( y - i ) ( y * - i ) 
16z0 y 

Fig. 4. 

y 

The image focal distance is given by 

f. = =

 l 6 z
Q ^ 

Jl
 r's "3 ( y — 1 ) 

and the location of the image focal point by: 

r s 8z0y(3 — y*) 

The object focal distance / 0 is known thanks to the relations 

Then : 

_ 16z0 ./o — -> 
3 (y _ 1 ) (y » _ 1 )' 
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A trajectory T2 crossing the axis at F0, leaves the lens (at Β of Fig. 3) 

parallel to the axis (r's = 0). We may write: 

r
s ~

 r
o ^ i i +

 r
0^12> 

F
S
 = r

0^21 +

 r
0^22

 =
 0 , 

The object focal point .Ρ0 is thus located at zF 

2. Round magnetic lenses. 

2 1 . Problems. 

Problem 1. In a long solenoid the function B0(z) may be approximated 
by a rectangular model of length L (Fig. 5), with 

+ 00 

— CO 



Problems on geometrical electron optics 83 

Using the eq. (29) of p . 33 determine: 

— the asymptotic optical elements, 

— the immersed elements. 

Example : 

Bm = 2 Tesla , L = 1 c m , φ0 = 1 M V . 

Problem 2. In a short lens, B0(z) being given by the bell-shaped model 

^o(z) =

 B
m 

solve the equation of mot ion: 

1 

2'2. Solutions. 

Problem 1. We have to integrate the equation: 

From ζ = 0 to ζ = L, the field B0(z) is considered as constant: B0(z) =Bm. 
By putting 

eB
2 

Sm0(po 

the trajectory has the form: 

r(z) = A coscoz + i?sineoz 

and its slope is given by: 

r
r
(z) = — Αω sin OJZ + Bco coscoz. 

The integration constants A and Β are easily calculated, if we know the values 
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r (ζ) = r0 cos coz + sin ω ζ , 

r'(z) = — r0co sin coz + ro cos ωζ . 

The transfer matrix of a lens of length L may be written 

\T\ 
cos toL (1 /ω) sin coL τ 12 
— ω sin coL cos coL ^ 2 2 

« Asymptotic » elements are given by classical relations: 

fi = ~ l / ? 2 i ? SFX

 = Z
F 1

= z
~ Tn]T21. 

Dimension-free elements are, with k = coL: 

1 

L k sin /c ' 
SF1 = 

cos /: 

/: sin /: 

β 
m 

AB 0 ( Z ) 

S 
* 

Fig. 6. 

If the field Bm increases, 99* being fixed, SF1 decreases, vanishes for k = π/2 
and then becomes negative. For k>n/2, the asymptotic image focal point 
Fx is different from the true « immersed » focal point F0. The location of 
F0 corresponds to 

O J Z Fo = π/2 

(the origin being taken at 0 , see Fig. 6). 

At ζ = zFo, the slope of a ray entering the lens parallel to the axis, is : 

r\zF)=~cor0, 

of r and r' at ζ = 0 ( r0, Tq) 
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and we can define the « immersed » focal length : 

fo = —
 r
ol

r
Xzr)= + 

or 

Example: Bm = 20 k G = 2 Tesla, L = 10~

2
 m, e/m0 ~ 1.8· 1 0

11
 Coul /kg, 

Λ 8 j ' V S * 
3 · 1 0

5
 3-10

3 

and & = 
V ç)0 V 

For electrons accelerated under a voltage φ0 = 1 MV = 10

6
 V ( ^ ^ 2.10

6
 V) 

we obtain 

k ~ 2.1 r a d ~ 120°, 

COSÂ: ^ — 0.5 , 

sin k ~ + V3/2 ~ + 0.866, 

/ i / L ~ 0 .55 , Λ ~ 5.5 m m , 

SFJL ~ — 0.27, SF1̂~- 2.7 mm , 

or 

/ 0/ L ~ 0.475, / 0 - 4.75 m m , 

SF0~0J7, S F 0 ~ —2.3 m m . 

Problem 2. The paraxial ray equation may be written in a dimension-

free form by putt ing: 

χ - - ν - - k*-
 eB

™
a
* 

α β 8mo9?o 

(2α, is the half-value width of the field distribution B0(z) = Bmj{\ + (ζ/β)

2
)), 
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(2) 

(such as ax = — d^ /s in

2
^ , (1 + x

2
) = l / s in

2
^) brings this equation into 

the form: 

d
2
y ay 

V < ^ c t g ^ + ^ O . (3) 

Using the new variable R = r sin φ, (3) becomes, after a tedious calculation 

d
2
R 

2 , (l + k
2
)R = 0 

άφ' 

Writing Ω
2
 = 1 + k

2
, we obtain 

R = A sinQq) + BcosQcp . 

In terms of the original co-ordinate r: 

1 ζ 
r = — [A sin Ωφ + Β cos Ωφ], with φ = (arc ctg) - . 

smcp
 T r r

 * a 

When ζ varies from + oo to — o o , φ increases from 0 to π . 

(3 bis) 

(4) 

2 

Fig. 7. 

The introduction of the new independent variable 

χ — CtgÇ9 
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Consider a ray incident from the right ( z > 0 ) , parallel to the axis. 

For it, r(z) must remain finite for χ — + oo (99 = 0), so that, in (4) 

B = 0 

and 

A sin Ωφ 

r0 being the value of r at φ = 0, we obtain A=r0 Ω~\ and 

fi sm 99 

For large excitations (strong fields), the ray intersects the axis several times. 

The points of intersection are given by 

r(y) = 0, 
or 

Ωφ = ηπ = (1 + 1<?γφ, with « = 1 , 2 , 3, . . . , 

and 

Thus the lens has one focal point for k
2
< 3, two focal points for k

2
< 8, etc. 

We shall consider only the case k
2
<3. Then Ωφ^ = π, or 

φ
' = Ω = ν Τ ^ '

 ( 7) 

(φρ is the value of 99 corresponding to the immersed focal point F0; see Fig. 8). 

The slope of the ray r
r
= dr/dz, is given by 

, dr dφ dx 
dφ dx dz' 

(r« Ω sin φ cos Ωφ — sin cos φ\ , . 0 . / 1 \ 

r'= — ^ s i n 99 cos Ώ99 — sin Ωφ cos 99j . (8) 
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Fig. 8. 

At F0: 

From (9) 

r0 . ι π \ 
- SIN — 

« \Vl + k
2 rFo = -j sin <pF% = 'I sin ( T 7f = | . (9) 

R
F0 sm (πIV1 + /c

2
) V 1 + A:

2 

The immersed focus F0 is located at the centre of the lens (zFo = 0) if 

φ =π/2; this occurs for Ω = 2, or /c

2
 = 3 (condenser-objective). 

The asymptotic focal distance also may be calculated. We know that : 

ΙΛΙ r'(z = — oo) ν'(φ = π) ' 

Using (8) we obtain 

r'(œ =  π) = -1Λ sin π Ω 
αΩ 

and 

_ αΩ aVl + k
2 

Ji — ϊϊηπΩ sinnVl + k
2
' 

For k
2
 = 3, we have fx - > o o . 
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The asymptote to the trajectory takes the form 

φ ) = Az + B = Aa
C
-^+B 

with A = [r'(z)]__„ 

_ r0 |ΧΩ sin y 

sin φ 

cos Î3ç9 — sin Ωφ cos 99) cos ( 

sin 99 
+ B. 

For ζ = — oo (99 = π), we have 

r0 sin % 

and 
β sin 99 

r0 Tsin Ω99 + β sin 99 · cos 99 cos ^ 9 9 — sin Ωφ cos

2
 99I 

Ω [ sin 99 J ' 

89 

The position zF% of F± is given by r^zF) = 0, or zFi=—B/A, with 4̂ = ^ „ π ). 

Finally 

z^ =αΩ-οΧ%πΩ. 

3. Quadrupole lenses. 

3 1 . Problems. 

Problem 1. Obtain the expression for the transfer matrices Tx and TY 
of a symmetrical doublet, both lenses having same length L, and same excita

tion parameter βΣ = k. 
The distance between lenses is D/L = λ. 

A K ( z ) 

a , Q 2 

D 

Fig. 9. 
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Problem 2. Show that it is possible to find a value of k for which the 

system is equivalent to a round lens. Calculate k in the case D = 0. Give 

the values of / and SF. 

Problem 3. Calculate the values of the corresponding field gradient K0 
in a magnetic lens having L = 20 mm, a = 2 mm (#, is the distance be

tween poles and axis), for φ0 = 2 MV. 

How many ampere-turns have to be injected in the coil surrounding 

each pole-piece? 

Problem 4. In these conditions, what would be the energy of protons 

having the same trajectories in the doublet? 

Problem 5. - Calculate the value of k for which a ray entering the lens Q± 
parallel to the axis, leaves the lens Q2 at S, also parallel to the axis (in both 

planes XOz or YOz). Give a schematic representation of the trajectories in 

the doublet. The maximum amplitude X m ax or 7 m ax of the trajectories being 

limited by the condition Xmax = 7 m ax = a = 2 mm, give the values of X0max 
and F 0 m a x. 

(We suppose D = 0.) 

Problem 6. We suppose now ΌΦΟ. Give the expressions of D and k 
for which the focal points Fx and FY coincide at S (SFX = SFY = 0). Has 

the problem a solution? 

3 2. Solutions. 

Problem 1. The transfer matrices of an individual lens are, in XOz and 

YOz planes respectively: 

cosk (IIβ) sink 

— β sink cosk 
and iTVli cosh/ : (IIβ) sinhk 

β sinh k cosh k 

For the doublet, the transfer matrices may be obtained by multiplying three 

matrices 

\TT\i 
1 D 

0 1 
ITil i and I 7 V I H 7 U 

1 D 

0 1 
| 7 V l i , 
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(cos k cosh k — βΌ sin k cosh k — sin k sinh k) 

/?(sinh k cos & — βΌ sin & sinh £ — cosh k sin 

(cosh k cos &+/?Z> sinh k cos &+sinh k sin &) 

/?(sinh k cosk — βΌ sinh k sin £ — cosh/: sin k) 

—(cosh X; sin k + /?Z> cosh k cos & + sinh k cos /:) 

(sin k sinh & sinh k cos &+cosh A; cos k) 

—(sinh k cosk+βΌ cosh k cos /:+cosh & sin k) 
β 

(cosh /: cos k — βϋ sin & cosh k — sinh £ sin k) 

Comparing \TX\ and | Γ Γ| , we observe that the following relations hold: 

^ 1 2 χ — ^ 1 2 r ? ^ 2 1 x — ^ 2 1 r · 

(One matrix is therefore sufficient to describe the symmetrical doublet.) 

Applying the general relation 

( f 
or - = 

we have 

and 

/ 1 

fx=fy=f 

1 

L k (sin /: cosh k — sinh k cos k + fcA sin /: sinh k) ' 

The two focal points Fx and F F are not generally coincident, since 

SF 
L
 z 

21 

(with Τ11χΦΤ11γ, at least for weak values of k). 

Problem 2. The symmetrical doublet is equivalent to a round thick lens, 

if the two following conditions are simultaneously fulfilled: 

fx -fr, 

SFX = SFy . 

(11) 

(12) 

(11) is always true in a symmetrical doublet ( Γ 1 2ζ = T12R), 

(12) gives TLLX = T L L R, 
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so we obtain: 

cosh k cos k — βΌ sin k cosh k — sin k sinh = 

= cosh k cos A: + βΌ sinh /: cos k + sinh sin k, 
or 

2 sinh & sin /: 
/SZ> = 

sinh k cos A: + sin k cosh /: ' 

In the special case D — 0, we have 

ctgA: + c tghfc-^ c o , 

which implies that A: = π (or = nn). 
In these conditions (Z> = 0, k = π) , the focal distance and the position 

of the image focal point are given by: 

/ _ 1 _ 1 S F coshk _ 1 1 
L k sinh Α: π sinh π ' L kûrùik  π t g h π

—
 π

9 

^ 3 · 1 0 -
2

, ~ ~ - 0 . 3 2 . 
(14) 

Problem 3. The excitation parameter k = βΣ is a function of the field 
gradient K0 

* = ^ , = W â ^ r ( 1 5 ) 

In the example considered, we have L = 2 - 1 0
- 2

m , 9 ? * ^ 6 - 1 0
6
V and, for 

electrons, e/m0 ^. 1.8-10
11
 Coul/kg. 

From (15) we have 

K0 = n
2
/\L

2
1/ — ^ I ~ 200 Tesla/m = 2· 10

4
 G/cm . 

Γ 2m0<p0J 

We know that (with μ0 = 4π 10~
7
 in M K S A unit system) 

2 / / 0( / 7 / ) A
0 ~ „ 2 ' 
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prot 

( fÎU - J^o (̂ o)ei> (̂ oV ^ 3 · 10» V - ( ^ 0) H+ . 

9̂ 0 prot

 m
0 

1 

It is thus possible to simulate relativistic electrons by utilizing slow protons, 

for the study of the properties of strongly excited lenses, specially designed 

for very high tension electron microscopes. 

For XQ - Y' 
—

 1
 0 

= 0, we have 

l 

Y s — ^o^W * 
1 t g k i f\ 

1 1 ' / 
0 / jrt/2 / ! |3rx/2 „ 

tgh 

tgk 1 I tgk ι 
! 1 1 

k 

Fig. 10. 

nl being the total intensity circulating in the coil around each pole piece. 

We have 

a
2
 Κ 

(ni) = ——- ^ 320 Ampere-turns . 
2μ0 

Problem 4. We consider protons entering the doublet studied above, 

equivalent to a round lens, in which K0 = 200 Tesla/m, and k = π. 
We have 

or 
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The Figure 11 shows two trajectories in XOz  and YOz  planes respectively. 

x î 

,

 Û
2 > Y 

x î 0 \ 

A S 

a / 

(C / s 
> >< 

{ 
*s 

{ 
*s 

Fig. 11. 

They are symmetrical about the centre C  of the lens, and we have: 

X0=YS and Y 0 =  X S. 

In the first lens, | X m a x| =  X 0 =  a,  and in the second lens Y s =  \  Y mâx\ =  a. 
We have: 

%s
 =
 Τηζ'Χ0 = Τ11χα = — F 0 m a x. 

Knowing that k ~ 5π/4, we find : 

- 1 . 4 · 1 0 -

2
β = 2 .8 ·10-

2
 mm , 

^ 0 m a x =

2 m m
-

The emergent beam will be parallel to the axis, if: Τ21χ = Τ21γ = 0, or : 

sinh k cos k — cosh k sin k = 0, 

tghk = tgk. (16) 

A value of k, solution of (16) may be obtained easily (Fig. 10) 
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This system may be used to rotate of π/2 around the axis a ribbon beam of 

width X0 and thickness F 0, such as F0/ X0< 1.4· 10~

2 

Problem 6. We have now 

SFx _ _ Tiix $FX = _ Τιΐγ 
L Τ21χ L T21y 

The condition SFX = 0, SFY = 0 may be written as 

cos k cosh k — sin k sinh k — βΌ sin k cosh k = 0 , (17) 

cos / : cosh / : + s ink s inh/: + /ID cos/ : sinh k = 0 . (18) 

From (17) we obtain: 

cos / : cosh/ :— sin/ : s inh/ : , , _ , i r kX βΌ = kX= s i n r a^ = ctg * - tgh k . (19) 

Using (19) and (18) the relation giving k may be obtained: 

cos k sin k + cosh Z: sinh Ζ: = 0 , 

or 

sin 2k = — sinh 2k . 

The problem has no solution. 
Obtaining coincident foci at S (or beyond S) is only possible by making 

k ^ k 2, but the doublet is then an astigmatic system (magnifications are 

different in XOz and YOz planes). 

4. Prisms. 

4 1 . Problems. 

Problem 1. In a homogeneous field prism, with Φ = 90°, and r0 = 100 mm, 

we inject electrons accelerated under a voltage φ0. The « object » P, situated 

at p = r0/2, has a circular cross-section of diameter a 0 = 0 . 2 m m ; at this 

point, the divergence of the beam is given by x'0 = 5 · 10~

2
 rad. 
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Fig. 12. 

Problem 2. In order to increase the resolving power, and focus in the 
vertical direction, we intend to use a prism with inhomogeneous field (index 
η = J). In the case of symmetrical system (p = q)9 give the corresponding 
values of ρ and of the resolving power. 

Problem 3. In the conditions given in the Problem 1 compare the respective 
performances of the magnetic homogeneous field prism and the electrostatic 
spherical prism having the same Φ. (Φ = π/2.) 

a) Give the position q of the image Q of P , the magnification M, and 

the width (in horizontal plane) of the image, taking into account the 2nd-order 

aperture aberration. 

b) What is the width of the image in the vertical plane? 

c) A slit of width s= 0.2 mm is placed at Q. Calculate the resolving 

power Re of the prism, used as energy analyser. 

d) Give the position of the « achromatic » virtual focus. 
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Problem 1. 

a) The cardinal elements in the horizontal plane H of an homogeneous 

field prism are given by 

sin Φ ' 
SFt = tg0 

The prism has no convergence in the vertical plane V. In our case (Φ = π/2) 

we have (see Fig. 13) 

f=r0, SFi = 0. (20) 

The principal planes coincide at M. 

Fig. 13. 

The transfer matrices between Ο and S are given by : 

\H\ = 
0 1 

-1 0 
and \V\ = 

1 π/2 

0 1 

We know that P?C and Q are on a straight line, so we have: 

pq = r*9 or q = rl/p = 2r0 (p = r0/2 ) . 
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These results may also be found by using the transfer matrix \T\ between Ρ 
and a point Q located at a distance q from S: 

171 = 

|Γ| = 

1 Plr0 
0 1 0 1 

— qlr0 1--(ρφο) 
— 1 

(21) 

A ray leaving Ρ (x0 = 0, x'0 Φ 0) is given by 

and we have: xQ = 0 for all values of XQ only if 

(22) pq = r0 
(conjugation relation). 

The magnification G may be calculated by simple geometrical considerations 

or by applying Newton's law: 

/ 
/ Ρ' 

or by using taking into account the fact that Ρ and Q are conjugate 

points, and that (22) holds. 

We have 

and G = ^ = - i 
-̂ N rη v 0 

All methods give the same result: 

G = — 2 . 

The aperture aberration constant M1S is given by 

M 13 = ^ ( | G ! + l j = ^ 2 + ^ = | and AXi = M1S x£* = . 

In unsealed co-ordinates, the total width of the image becomes: 

(AX)Q = \G\a0 + r0Δχ« = 2a0 + - r0 x ;

2

m ax , (ΔΑΤχ, ~ 0.68 mm . 
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cm L=p + ro0 + q=ro(± + ^ + 2}~ 4.07r0 = 40.7 

and the length h of the image line in the V plane at Q is 

h = a0 + 2Lx'0 ~ 4.1 c m . 

c) Using the expressions for the disperion Dv and the resolving power Rv 
(relative to a variation àpQ/pQ of the momentum p0 = mv0) we find 

Α , - ( ΐ - β ) - 3 . j ^ ^ i ^ l g ^ . 

Considering now the variations in energy, related by Δφ0/φ0, we observe that 

^ l ^ o and R ' R V. 
Po 2 φ0 2 

In our system: Re ^ 170. 

d) Consider particles coming from P, entering the prism at Ο with 

x'0 = 0, and having a momentum 

ρ=ρ0 + Δρ0=ρ0(\ +ô). 

At the exit of the prism, we have (see Fig. 14): 

x 5 = ( 5 ( l — c o s 0 ) = r5, 

x
r

s = (5 sin Φ = <5. 

For each value of <5, the emergent particles seem to be issued from a virtual 

object point situated on the straight axis (Γ), at M. 

SM is independent of δ. M is a virtual chromatic image of P . 

b) In the vertical plane, no focussing occurs. The true distance from Ρ 
to Q is 
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Ρ0+Δρ 

Problem 2. We have now 

n-2 ana / Sin(0/V2) sin |>/(2V2)] 1.59r0, 

S * ~ * ~ tg(0/V2) - tg[»/(2VZ)] " 9 ° · 

In a symmetrical system (p = q), we have (see Fig. 15): 

FÎQ=-F0P=f and SQ  =-OÏ>  =f+g  =  V2r Qctg(^j , 

or 

/? = # ^ 2 . 2 8 r 0 . 

The magnification is unity, in both planes H  and V 

G =  G H =  G  v =  — 1 

In the plane H,  the image width is given by 

(AX)Q =  \G\a 0 +  M 12 XoLx = ^0 +

 r
0 *0max · 
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We have: 

4rn 
an + s' + rn xn 

400 

0 6 5

 : 
: 615 and Rw ~ 307 . 

f ^ 1 

-t-Xf 

Fig. 15. 

Problem 3. The cardinal elements of the spherical electrostatic prism are 

given by 

/ = r0/sin Φ = r0 = 100 m m , g = r0/tg Φ = 0 . 

In the same conditions as in Problem 1 of Subsect. 4*1, we have |G| = 2 and 

For Re, we obtain 

Re 
r0De 

a0 + s + Mlsr0XQ

2

M with M13= ( |G| + ^ I = 2.25 . 

Finally: 

Re 
300 300 

0.2 + 0.2 + 0.56 0.96 
' 3 1 0 . 

This value of Re has to be compared to the value of Re given in Problem lc) of 

Subsect. 4*2. 

sph. cond * 



Secondary Ion Microanalysis 
and Energy-Selecting Electron Microscopy 

R. CASTAING 

Faculté des Sciences - Orsay, France 

1. Dispersive microscopy using magnetic prisms. 

11. Introduction. 

The range of problems in which electron and particle optics are of use 

in the field of solid state physics has been extended appreciably by the in

troduction in the optical column of dispersive elements which allow extra 

information to be drawn from the images. 

The purpose of this lecture is to describe the optical properties of a magnetic 

dispersive unit, which was first studied in our laboratory by Henry and Miss 

Paras (*), then improved and applied to energy-selecting electron micro

scopy (

2
"

4
) and to secondary ion microanalysis (

5
"

7
). 

After a brief summary of the non-Gaussian optics of a simple magnetic 

prism, the properties of that dispersive unit, which uses two magnetic deflec

tions separated by a reflection at an electrostatic mirror, will be reviewed; 

the special arrangements which are convenient for energy selection of elec

trons and for mass selection of ions will be considered separately. 

The reader is expected to know the basic elements of geometrical optics, 

at an elementary level. 

1*2. First-order focussing properties of a simple magnetic prism. 

To start with, let us consider the elementary case of a simple deflection 
by a magnetic prism; to introduce the ideas, we will consider electrons, but 
the same conclusions would apply to any kind of identical charged particles. 
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Let us suppose that a magnet produces a uniform magnetic induction Β 
in a region of free space limited by a dihedron whose aperture is 4 5 ° (Fig. 1 ) ; 

the induction vector Β is perpendicular to the plane of the figure. An elec

tron, whose initial trajectory Z Q Z 0, in the field-free region outside the 

magnet, makes an angle of 4 5 ° with the entrance pole face, is deviated inside 

the gap along a circular pa th ; if the induction has the correct value, the 

total deflection is 9 0 ° and the electron leaves the magnetic gap in the direc

tion Z1Z1, along the normal to the exit pole face. 

Fig. 1. - Deflection by a magnetic prism. General case. (Courtesy of Zeitschrift fur an-
gewandte Physik.) 

If we consider now a narrow pencil of monoenergetic electrons, starting 
from a point source S located on the axis Z Q Z 0, it is easy to show that 
the electron trajectories located in the plane of the figure (radial plane) will 
converge after the deflection by the magnetic prism onto a « radial image » 
S'r, whereas the trajectories lying in the plane normal to that of the figure 
and passing through Z Q Z 0 (axial plane) will converge (because of the focussing 
effect of the fringing fields of the magnet) onto an « axial image » S^. As a 
result, the narrow beam coming from the point source S is transformed 

5 

A 

Ζ 
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Fig. 2. - Stigmatic points. (Courtesy of Zeitschrift fur angewandte Physik.) 

beam produced at S1 or S2 and whose axis is Z Q Z 0 will converge after going 
through the magnetic prism onto stigmatic image points .S^ and S2 (Fig. 3). 
(Sl9 S^) is a pair of real conjugated stigmatic points, (S29 S2) is a pair of 
virtual conjugated stigmatic points. 

Suppose now that ZQZ0 is the optical axis of an electron microscope and 
that the image-carrying beam transmitted through the objective lens is de
flected at 90° by the magnetic prism we have just considered (Fig. 4); we 
arrange things in such a way that the exit cross-over of the objective lens 
(from which the electron trajectories are originating) is located at 5Ί; further
more we adjust the excitation of the objective lens in such a way that the 
image which is carried by the beam would be formed, if the prism was absent, 
at the level of S2. If the energy of the electrons has the correct value for 
ensuring a 90° deflection of the mean trajectory, the emerging beam will 
converge onto an « image cross-over » located at S[ and it will correspond 

through the magnetic deflection into an astigmatic beam passing through 

two focal lines: a radial focal line normal to the radial plane at S'r and an 

axial focal line, lying in the radial plane and passing through S'a. 
The separation between the focal lines depends on the location of the 

point source S; in the case that we have considered, it reduces to zero for 

two different positions of the source S; in other words, the magnetic prism 

exhibits two stigmatic object points S1 and S2 (Fig. 2). A narrow electron 

Is, 
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Fig. 3. - The two pairs of conjugate stigmatic points: left, real stigmatic points; right, 
virtual stigmatic points. (Courtesy of Zeitschrift fur angewandte Physik.) 

to a stigmatic image located at the level of S'2. On the other hand, if the 

incident beam contains electrons of various energies (because of various 

velocity losses inside the sample, for example), the electrons of a given energy 
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only will converge at S[\ thus it will be possible, by means of a slit located 

at S[, to isolate (by a suitable adjustment of the magnetic induction) those 

of the electrons which have suffered, when going through the specimen, a 

given amount of energy loss (Fig. 4). By means of a subsequent set of pro

jection lenses it will be possible to project onto the fluorescent screen the 

plane of the image S2\ as a result, we will observe on the screen the image of 

the specimen which is formed by those of the electrons which have been de

celerated when going through the sample, by a given amount. Such is the 

principle of the magnetic filtering of velocities in electron microscopy; a 

similar arrangement was used by Slodzian for the purpose of mass-filtering 

in the original secondary ion microanalyzer (

5 , ?
) . 

Nevertheless, there is a serious flaw in such a simple filtering device: 

the selection slit located at S[ cannot be infinitely narrow (which would not 

be convenient anyway for obtaining images bright enough!), and the admitted 

energy band has a width <$E. Now, it is easy to see that a slight modifica

tion of the electron velocity results in a rotation of the mean emergent tra

jectory, in the radial plane, around the point Ο where the axes S1S2 and 

# ι intersect. As a result, the image which forms at the neighbourhood of 

S2 is blurred by strong chromatic effects: each image point is spread over 

a linear energy spectrum in the radial plane if the admitted energy band

width is not zero. Under such conditions, it is better to adjust the excitation 

of the objective lens in such a way that the exit image (after the magnetic 

deflection) forms at the level of 0 , so that the chromatic aberration is reduced 

to the second order (it is clear that if the exit image forms around 0 , a slight 

variation of the energy of the electrons will result in a rotation of the emerging 

trajectories around the image points themselves, so that the image is achro

matic to the first order) ; but in that case the image will be strongly astigmatic 

because Ο is not a stigmatic image point. In this simple arrangement, the 

image cannot be stigmatic and achromatic at the same time, so that the 

dispersive unit must be equipped with an auxiliary stigmator at the level of 

the exit cross-over S[. This was done in the first model of the secondary 

ion microanalyzer (

8
). 

Another drawback arises from the fact that the optic axis is bent through 

90° by the magnetic deflection, which is inconvenient in any application to 

electron microscopy; we were thus led to modifying the dispersive system 

to overcome those difficulties. The arrangement that Henry applied to energy 

filtering in electron microscopy uses a double magnetic deflection in conjunc

tion with a reflection at an electrostatic mirror ; this proved to be a convenient 

arrangement and a similar system was used for ion emission microscopy. 
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Γ 3 . The dispersive system of the energy-selecting electron microscope. 

In the energy-selecting electron microscope developed by Henry, the 

electron beam which diverges from the exit cross-over of the objective lens 

(more precisely, from the exit cross-over of a first intermediate lens) enters 

the first half of a triangular magnetic prism where the induction is uniform. 

After the first 90° deflection (the induction is adjusted to the right value) 

the beam leaves normally to the vertical face of the prism (Fig. 5). A reflec

tion at an electrostatic mirror brings the beam back into the prism where a 

second deflection, symmetric to the first one, brings its axis back into the line 

of the original beam. 

M i r r o r 

Objective Lens 

Pr ism 

Selection a p e r t u r e 

Project ion Lens 

Fig. 5. - Dispersive unit of the energy-selecting microscope. (Courtesy of Optique des 
Rayons X et Microanalyse.) 

1*3.1. First-order stigmatic conditions. - By adjusting the excitation of 
the previous lenses, it is easy to arrange things in such a way that the cross
over C0 and the initial image of the sample I0 form at the levels of the stigmatic 
object points (the real one and the virtual one, respectively) of the first mag
netic prism. After its first deflection by the magnetic prism, the beam con-
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verges towards a cross-over C± (we suppose for the moment that the electrons 

are monoenergetic), appearing to come from a stigmatic image located at the 

level of Ix. Then the beam is reflected by the field of an electrostatic mirror. 

The mirror comprises, starting from the left (Fig. 5) a reflecting electrode 

whose negative potential is higher than that of the electron source, a 

Wehnelt electrode and an anode at ground potential. The dotted line (Fig. 5) 

represents the image (produced by the field of the mirror) of the « zero » 

equipotential surface whose potential is exactly that of the electron source. 

That image surface is the « reflecting surface» of the spherical mirror ; elec

trons emitted with zero velocity from the zero equipotential surface (not 

represented) would converge at a cross-over which plays the role of the centre 

of the spherical mirror; note that in the arrangement of Fig. 5 the spherical 

mirror is a concave one. By positioning and exciting the mirror appropriately, 

its apex S is located at Cx and its centre C %X lx. As a consequence, the 

mirror transforms the cross-over Q into itself, and the image Ix into an in

verted image located at the same point. It is clear that the second magnetic 

deflection will result in an exit beam corresponding to a stigmatic image 

located at I2 and converging onto C2. The exit image I2 and the exit cross

over C2 are symmetrical with the entrance image I0 and the entrance cross

over C0 about to the axis C^. 

1*3.2 Dispersive properties. - It may easily be shown that a slight change 

in the energy of the electrons results in a rotation of the mean exit trajectory 

around 72; as a consequence, the image which forms at I2 is stigmatic and 

achromatic to the first order. 

It is worth-while to note at this point that the whole dispersive device 
is found to be stigmatic for all points along the axis C0I0 if Q and Ix (the 
stigmatic image points of the first magnetic deflection) coincide with the 
stigmatic points of the mirror; as a consequence, it is not essential to locate 
the entrance cross-over at the stigmatic point C 0 of the first magnetic deflec
t ion; on the other hand, the entrance image has to be located at I0 to obtain 
achromatism; otherwise (if the electrons were strictly monoenergetic) it could 
be located anywhere without causing astigmatism. 

If the electrons have suffered various energy losses when going through 
the object, an energy loss spectrum is formed at the level of the exit cross
over C 2, whereas all the images produced by electrons which have lost various 
amounts of energy are superimposed (to the first order) at the level of I2. 
Hence, the subsequent handling of the image carrying beam may proceed 
in two different ways: 
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a) we may adjust the subsequent projection lenses so as to project the 

plane of 72 onto a selection aperture and the plane of C2 onto the final screen; 

we will observe on the screen the energy loss spectrum of that part of the 

object which is isolated by the selection aperture: the instrument behaves as 

a velocity analyzer; 

b) alternatively, we may isolate a narrow portion of the energy loss 

spectrum by means of a slit located at the level of C2 and adjust the subsequent 

projection lenses so as to project the plane of I2 onto the final screen ; we will 

then observe on the screen the image of the object formed by those electrons 

which have suffered a definite energy loss ΔΕ (obviously, AE can be made 

equal to zero for observing the « no loss image ») : the instrument behaves 

as an energy-selecting microscope. 

It is easy to see that the resolving power of the microscope is not damaged 

by the introduction of the dispersive device. In fact both magnetic deflec

tions and the electrostatic reflection introduce second-order aberrations in 

the image, but the effect of these aberrations is negligible if the initial magnif

ication, at the level of I0, is large enough. Typically, the magnification is 

equal to 200 at the level of 70, so that the aberrations of the dispersive device 

are diminished by the same factor when reduced to the object scale; further

more the aberrations are small because of the extremely small divergence 

(about 10~

5
 rad) of the beams which form each image point at the level of I0. 

In practice the resolving power of the microscope is improved by the disper

sive device when the elastic (no loss) image is observed, because effect of 

chromatic aberration in the objective lens is eliminated. The quality of the 

inelastic image is frequently less good (but still very good); this is probably 

due to the fact that the inelastically scattered electrons fill the objective aperture 

uniformly, leading eventually to edge effects, whereas the « elastic » ones are 

passing mainly through the central part of the objective aperture. 

Let us consider now the quality of the energy filtering obtained when 

the instrument operates as an energy-selecting microscope. This quality 

depends on the energy bandwidth that we select by the slit located at C 2. 
Now, this bandwidth cannot be made equal to zero, even by making the slit 

infinitely narrow because of the second-order aberrations of the dispersive 

device at the level of C2; those aberrations may be fairly large if a wide beam 

is made to converge at C2; other things being equal, the divergence of this 

beam is proportional to the diameter of the imaged part of the sample. 

To obtain an idea of the performance we consider a typical case where 

the radius of curvature of the electron trajectories inside the magnet is 4 cm 
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for a 100 kV accelerating voltage, and where the magnification at the level 

of I0 is about 200. In such conditions, the dispersion at the level of C2 is 

about one micron per electron-volt. Let us suppose that the electrons emitted 

by the gun are perfectly monoenergetic and that the slit located at C2 is in

finitely narrow; in such conditions the energy bandwidth that we select for 

the image is a little better than 1 eV when the diameter of the imaged area 

is equal to one micron; in principle, the bandwidth would reduce to 0.01 eV 

for an imaged area whose diameter would be equal to 0.1 μτη. It should be 

emphasized at this point that what we speak about here is the total energy 

bandwidth which is admitted over the whole of the image. If the illuminating 

electrons are perfectly monoenergetic and if the selecting slit at C2 is infinitely 

narrow, each point of the image receives electrons whose energy is perfectly 

defined. However the value of the energy which is being selected is not the 

same at different points of the image as a result of the second-order chromatic 

aberrations of the dispersive device at the level of C 2. 
The situation is depicted in Fig. 6. The overall deflection of the electron 

trajectories is a little larger (for a given energy) when the trajectory is inclined 

in the radial plane with respect to the optical axis. As a consequence, the 

electrons which form the centre of the image have a lower energy than those 

which form both sides; the selected energy loss varies, on a diameter per

pendicular to the induction vector B, as the square of the distance between 

the image point and the optical axis. If we observe a large region of the 

object, say 5 μιη, and if the value of the induction is such that the centre of the 

image is formed by electrons whose energy loss is 25 eV, the two sides of the 

image are formed by elastically scattered electrons. The image field is crossed 

by isoenergetic lines; in other words, an energy spectrum is superimposed 

onto the image; an example will be given in a next lecture (

4
). The spacing 

between the isoenergetic lines becomes smaller the further away the imaged 

region is from the optical axis (this results from the second-order chromatic 

aberration); for obtaining a good homogeneity of the energies across an 

extended region, it is preferable to align the instrument perfectly so as to 

bring the optical centre in the middle of the final screen; on the other hand, 

if we are interested in looking at a wide part of the energy spectrum on a 

small region of the object, we will off-centre the instrument so as to push 

the optical centre off the screen (

4
). 

In the present experimental conditions, the electron gun (hot tungsten 

wire) emits electrons whose energy spectrum spreads over 0.5 eV, so that the 

energy bandwidth is at least 0.5 eV at each image point and 1.5 eV over the 

whole image of a region of the object whose diameter is 1 μιη (that corresponds 
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to an error of ± 0.75 eV for the value of the energy loss, for a 100 kV 

accelerating voltage). A better accuracy could be obtained by reducing the 

ι 
Fig. 6. - Energy loss selected by the slit at various points of the image. E0: initial energy 
of the electrons. The electron trajectories are drawn in the radial plane and the induction 
vector in the prism points towards the observer (contrary to Fig. 5). The straight lines 
in the image field represent isoenergetic lines (in fact those lines are curved). (Courtesy 

of Zeitschrift fur angewandte Physik.) 

diameter of the imaged region, filtering the velocities of the electrons emitted 
by the gun and compensating the loss of brightness by an image intensifying 
device. Now, an energy resolution of 1 eV is good enough for eliminating 
inelastic electrons, as will be seen in the next lecture (

4
), because the various 
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Γ4 . The dispersive system of the secondary ion microanalyzer. 

A similar arrangement may be used for filtering masses in ion emission 

microanalysis. The principle of that technique will be outlined in a later 

lecture (

7
). The polished surface of a massive sample is bombarded by a 

primary beam of ions; the secondary ions produced by the bombardment are 

focussed by an emission lens to form an image of the target surface. This 

total image is formed by all the secondary ions; it consists of the superimposi

tion of various « characteristic images », produced by the various types of 

secondary ions; isolating one of the characteristic images by means of the 

dispersive device makes it possible to obtain a map of the distribution of the 

corresponding element (or isotope) across the bombarded area. 

It would be possible to use the same optical arrangement that we used 

for energy selection of electrons (apart from the fact that the value of the 

induction is much higher in the case of ions) but some trouble would arise, 

in the case of heavy ions, from the fact that the magnetic deflection provides 

momentum filtering instead of true mass filtering. The ions are emitted from 

the object with initial energies which are not negligible (from zero to several 

tenths of electron-volts), so that the same circular path may be followed 

inside the prism by an ion of mass M emitted with zero velocity and a ion 

of mass M— 1 emitted with an appreciable initial energy. This difficulty 

cannot be overcome by using a small aperture at the image focal plane of the 

emission lens, for such an aperture eliminates from the beam the ions which 

have been emitted with a large tangential velocity only, so that fast secondary 

ions emitted normally to the object surface pass through the aperture. As a 

consequence, superimposition of neighbouring masses would occur, especially 

in the case of heavy elements. The problem may be overcome by modifying 

slightly the optical arrangement of the dispersive device so as to eliminate 

from the exit beam the ions which have been emitted with too high an 

initial energy. 

For that purpose, the position and the excitation of the electrostatic mirror 

are modified in such a way (Fig. 7) that its apex S is now located at Ix and its 

centre C at Q . Note that in this case the spherical mirror is a convex one 

8 

inelastic processes (apart from the quasi-elastic scattering by phonons) lead 

to energy losses larger than 1 eV. In such conditions, the exposure time which 

is required for registering elastic images (or images produced by a strong 

plasmon loss) is about the same as in a conventional electron microscope. 
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Fig. 7. - Dispersive unit of the secondary ion microanalyzer. (Courtesy of Optique des 
Rayons X et Microanalyse.) 

(with a virtual reflecting surface at S). Furthermore, the potential of the 
reflecting electrode Ε is adjusted just above (one or two volts for example) 
that of the analysed sample. For secondary ions emitted with a very low initial 
velocity, the situation is practically the same as that we described for the 
electrons. The entrance image I0 is transformed into a stigmatic exit image I2 
(which is now symmetric of I0 with respect to the axis parallel to the induction 
vector and passing at the intersect of C 0C 2 and C ^ ) . Momentum filtering 
is provided by an aperture located at Q . 
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But the situation is quite different for ions which have left the sample 

with a high initial velocity: they touch the reflecting electrode Ε and they 

are neutralized and eliminated from the exit beam; in other words, the mirror 

• ΙΟ "14 A 

— 182 

183 

184 

— 186 

Fig. 8. - Tungsten spectrum registered in the secondary ion microanalyzer (Rouberol). 

provides a low-pass energy filtering which combines with the momentum 
filtering of the magnet for ensuring practically that no superimposition of 
neighbouring masses will occur. This is illustrated by the tungsten spectrum 
of Fig. 8, which was obtained in the secondary ion microanalyzer by Rouberol ; 
the neighbouring masses are perfectly isolated from one another, even for 
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heavy elements. The arrangement was found to operate quite satisfactorily 

allowing energy selection with an accuracy better than one electron-volt for 

secondary ions whose energy is 4 keV. Such an energy selection could be 

obtained by means of a spherical condenser, but the same resolution would 

require a very large radius of curvature (one meter or more); that is due to 

the fact that the emitting source (the cross-over C0) is much larger (some 

tenths of a millimeter) in the secondary ion microanalyzer than in the energy-

selecting electron microscope, where the cross-over of the first intermediate 

lens has a Gaussian diameter of about one micron, so that the selecting slit 

is necessarily much wider. 

It should be noted that the ions are reflected in the immediate vicinity 

of the reflecting electrode Ε (at a distance of a few microns). It might be 

expected in such conditions that any defect at the surface of that polished 

electrode would damage the quality of the image. Such is not the case because 

an intermediate image / ' is formed at the level of the electrode E, so that 

any local defect (a scratch of a dust for example) will affect a very small part 

of the image only; the defect will in fact appear superimposed on the filtered 

image. The situation would be quite different in the arrangement of the energy 

selecting microscope, if the reflection occurred in the immediate neighbourhood 

of the reflecting electrode; any defect would disturb the trajectories at the level 

of an intermediate cross-over and injure the quality of the whole image. 

This is one of the reasons why we used this modified arrangement for the case 

of ions. 

To conclude, it is worth-while to point out that the necessity of focussing 

the image at the exact level of the achromatic point 72 is rnuch less stringent 

here than in the arrangement of Fig. 5; the first reason is that the energy 

selection provided by the mirror is much better than that which could be 

obtained from a selection slit; furthermore, the dispersion is much smaller 

in this arrangement than in the arrangement of Fig. 5, because of the fact 

that the dispersions provided by the two magnetic deflections are nearly 

compensating one another. Exact compensation could be obtained by 

locating the apex S of the mirror at the intersection of axes C 0C 2 and Q ^ ; 

the device as a whole would then be achromatic (the mass selection would 

occur anyway at the level of Q ) ; the exit image would exhibit a small amount 

of astigmatism which could be corrected easily by an auxiliary stigmator. 

Examples of application of those dispersive units will be given in the 

following lectures (

4
'

7
). 
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2. Some applications of the magnetic filtering of energies 
in electron microscopy. 

2 1 . Introduction. 

The important role of inelastic scattering in the formation of image con

trast was emphasized many years ago by electron microscopists ; as early 

as 1949, Boersch (

1 2
) succeeded in eliminating the inelastic background from 

electron micrographs and diffraction patterns by the use of a high-pass filter 

lens or a retarding grid. A more elaborate device was developed later on for 

the same purpose by Beaufils (

3
) in our laboratory at Toulouse ; by means of 

a retarding grid, it was possible to isolate, for producing the image or the 

diffraction pattern, those electrons which had been elastically or quasi-

elastically scattered by the sample. However it was clear that such high-

pass filtering was not adequate for studying the inelastic scattering itself, 

and efforts were made in various laboratories to develop a band-pass filter 

which would make it possible to select in the beam, for producing the image, 

those electrons which had suffered a definite amount of energy loss while 

travelling through the sample. 

The experimental technique considered here makes use of the dispersive 

unit, comprising two deflections at 90° and a reflection on an electrostatic 

mirror, whose optical properties are described elsewhere (

4
) ; it was investigated 
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initially in our laboratory by Hennequin (

5
) and Miss Paras (

6
) then developed 

and applied to some problems in solid state physics by Henry (

7
·

8
), El Hili (

9 1 0
) 

and H e n o c (

n
) ; it is much simpler and leads to a better resolving power 

than the technique (based on the dispersive properties of a Môllenstedt lens) 

developed independently by Watanabe and Uyeda (

1 2
) . 

After a brief survey of the various scattering processes which occur when 

the electron beam goes through a solid sample, the main course of the lecture 

deals with the experimental study of the coherency of those various interac

tion processes which was made by Henry, El Hili and Henoc; special atten

tion is given to the partial coherency of the electron-phonon interaction whose 

quantitative interpretation was given by Nat ta (

1 3
) . 

The reader is expected to understand the basic principles of the dynamical 

theory of electron diffraction. (See Howie's lectures.) 

2'2. The various scattering processes that an electron may undergo in a solid 
sample. 

Those scattering processes may be separated into three groups according 

to the magnitude of the energy change that is suffered by the electron as a 

result of the process. 

i) In the first group we find the true elastic processes (no energy loss), 

leading to Bragg scattering in crystalline samples, to diffuse elastic scattering 

in amorphous samples; some amount of elastic diffuse scattering around the 

Bragg spots may arise in crystalline samples from the presence of imperfec

tions such as dislocations, stacking faults or point defects. If the observed 

part of the sample is devoid of visible defects such as dislocations or stacking 

faults, point defects such as vacancies, interstitials or impurity atoms are 

the only source of elastic diffuse scattering around the Bragg spots. 

ii) Quasi-elastic scattering arises from electron-phonon interaction ; the 

scattering angle may be very large, but the energy change is very low : typically 

a few hundredths of an electron-volt. At very low temperatures (near the 

absolute zero), the only process is the excitation of phonons, leading to an 

energy loss; at higher temperatures, thermal scattering arises from the ex

citation or quenching of phonons and results in negative or positive energy 

changes. This part of the scattered beam cannot be isolated from the elastic 

part in our instrument by the filtering device, whose energy resolution is of 

the order of one electron-volt, 



Secondary ion microanalysis and energy-selecting etc. 119 

iii) Inelastic scattering arises mainly from: 

a) Excitation of plasma oscillations, leading to more or less discrete 

energy losses whose value is typically 10 eV. 

b) Excitation of single electrons, leading to energy losses whose spec

trum extends from a few eV (outer electrons or free electrons in metals) to 

very large values (core electrons). 

c) Bremsstrahlung leading to the continuous X-ray spectrum. 

The use of an energy selecting microscope whose energy resolution is 

1 eV makes it possible to isolate the inelastic scattering because of the happy 

circumstance that the cross-section for a true inelastic process leading to an 

energy loss in the range ( 0 1 ) eV is extremely small, as we shall see below; 

so that the « zero loss image » can be considered as arising from the true 

elastic scattering and the quasi-elastic phonon scattering only. The various 

inelastic processes can be separated from one another through the choice of 

the energy loss; furthermore, the quasi-elastic scattering can be isolated from 

the elastic one, in the case of crystalline samples, by selecting the electrons 

which have been scattered out of the Bragg spots and choosing parts of the 

sample which are devoid of visible defects; furthermore, the quasi-elastic 

thermal scattering can be disentangled from the residual elastic scattering 

arising from point defects through its temperature dependence. 

2*3. Energy selection and « colour » electron microscopy. 

We have seen in Section 1 that the energy selecting microscope makes 

it possible, either to project onto the final screen the energy spectrum of 

the electrons which have passed through a given part of the object, or 

alternatively to observe the image which is formed by those of the electrons 

which have suffered a given energy loss; the bandwidth may be better than 

1 electron-volt if the diameter of the imaged area is one micron or less. Now, 

the main part of the inelastic scattering is due to plasmon losses whose energy 

spectrum is characteristic of the local composition and structure of the sample. 

For example, Fig. 9 shows the characteristic energy loss spectrum of alu

minium ; the losses are integral multiples of an elementary loss which is about 

14.6 eV. It is thus possible by selecting the electrons which have suffered 

that energy loss which is characteristic of a given compound to form the 

image, to get the distribution of that compound over the imaged area. As an 
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example, Fig. 10 shows three images obtained by El Hili (1 0) from a sample 

consisting of an aluminium foil which had been partially oxidized by heating 

in air. On the left we see the image obtained from « elastic » electrons (no loss) ; 

in the middle the image is obtained from the characteristic loss of aluminium 

(14.6 eV): it shows a bright part which appears in dark on the elastic image 

Fig. 10. - Aluminium foil, partially oxidized. Left: no loss image; centre: 14.6 eV loss 
image; right: 21.4 eV loss image (El Hili). (Courtesy of Compt. Rend. Acad. Sci. Paris.) 
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2*4. Experimental investigation of the coherency of the interaction of fast 
electrons with a solid sample. 

Let us turn now to a series of experiments which were carried out in our 
laboratory by Henry, El Hili and Henoc in order to investigate, by means of 
the energy-selecting microscope, the degree of coherency of the various scat
tering processes which occur when a fast electron goes through a solid sample. 

and on the image on the right-hand side, which is produced by electrons which 

have suffered a characteristic loss (22 eV) of alumina ; this bright part thus 

corresponds to unoxidized, metallic aluminium. 

Obviously, energy losses are not « characteristic » enough, nor are they 

known with sufficient accuracy for establishing a true method of microanalysis, 

but this analytical procedure is the only one which can be applied at the 

moment to particles whose diameter is less than 100 Â units. In fact, for the 

present time, such a method is more a technique of « colour » microscopy 

than a true microanalytical technique; nevertheless it has been applied with 

success by El Hili (

1 0
) to the identification of very small precipitates, and 

recently Henoc (

n
) was able to identify by this method small cavities inside 

a metallic sample from the change of the plasmon energy which arises from 

size effects in such a case. 

In a bulk sample the plasmon energy is mainly governed by the electron 

concentration; in simple cases such as that of binary solid solutions the 

energy loss may be used for measuring a local concentration. Cundy, Metherell 

and Whelan (

1 4
) , using a Môllenstedt filter, were thus able to demonstrate 

the slight change in magnesium concentration which occurs in an aluminium-

magnesium alloy in the immediate vicinity of a grain boundary. Quite recently 

Colliex and Jouffrey (

1 5
) in our laboratory have used large energy losses 

produced by the excitation of X-ray levels for obtaining characteristic images 

where local brightness is controlled by the concentration of the various com

ponent elements; a similar technique, using a scanning probe, had been pro

posed by Hillier twenty five years ago, before the explanation by Bohm and 

Pines, in terms of collective excitation of plasma oscillations, of the character

istic losses first observed by Ruthemann. The technique has so far been 

applied only to metallurgical samples, but there is no doubt that there is a 

fascinating range of applications in the field of biology; for the moment, 

these possibilities are completely unexplored. 
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2*4.1. Fresnelfringes. - It was generally thought ten years ago that inelastic 

scattering is essentially incoherent, so that any diffraction phenomenon pro

duced by the sample itself and observable on the elastically scattered wave 

would be absent in the beam which has been scattered inelastically. That 

point of view seemed to be confirmed by the first experiments of Watanabe 

and Uyeda who claimed that « the inelastically scattered electrons do not 

Fig. 11. - Fresnel fringe (underfocused) around carbon black particles. Inelastic image 
(5.9 eV loss of carbon). Magnification 150000 x (Henry). (Courtesy of Compt. Rend. 

Acad. Sci. Paris.) 

produce a Fresnel fringe » at the edge of the sample; as a matter of fact, 
Henry was able to show that the Fresnel fringe is present in the image produced 
by the electrons which have been scattered inelastically by plasmons ; Fig. 11 
shows the Fresnel fringe observed at the edge of carbon black particles; it is 
very faint and its contrast is quite different from what is observed on the 
elastic image; this is probably due to the fact that the amplitude of the scat-
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tered wavelets is increasing rapidly with the distance of the scattering point 

(inside the sample) from the free edge, because of the increasing thickness 

of the specimen. 

2 '4.2. Diffraction contrast. - The energy selecting microscope was used 

extensively by El Hili and Henoc to study the influence of inelastic scattering 

on the diffraction contrast which appears on electron images of crystalline 

specimens. 

It is well known that diffraction contrast effects such as thickness or con

tour fringes, dislocation and stacking fault images, are explained quite satis

factorily by the dynamical theory of electron diffraction. They are produced 

by the interference of the various wave fields (Bloch waves) which are excited 

in the crystal by the plane wave associated with the incident electron beam. 

Those wave fields show phase relationships imposed by the boundary 

conditions at the entrance surface of the specimen. They give rise at the 

exit surface to a set of plane waves, travelling in vacuo, consisting of the 

transmitted beam and various diffracted beams; the intensity of each emerging 

beam depends essentially on the phase changes that the various Bloch waves 

undergo when passing through the sample. The phase changes themselves 

depend on the thickness of the specimen and on the orientation of the incident 

beam with respect to the crystal lattice; as a result, thickness fringes, bent 

contours and diffraction contrast produced by crystalline defects are observed 

in the image. Now, the usual dynamical theory does not take account of the 

inelastically scattered electrons, in spite of the fact that their contribution to 

the image may predominate in the case of thick specimens. 

It is clear that, if the transitions that the various Bloch waves undergo 

through a given inelastic scattering process are independent (in other words 

if the final state of the crystal after the elementary interaction is not the same 

for the various Bloch waves), the phase coherency that the Bloch waves had 

with respect to one another initially is destroyed by the interaction process, 

so that the scattered waves are no longer able to interfere and give rise to 

diffraction contrast. For example, in the case of the inelastic scattering as

sociated with plasma excitations (plasmon-electron interaction), the inelastic

ally scattered waves will give rise to diffraction contrast on the image if, and 

only if, all the Bloch waves excited in the crystal by the incident beam interact 

with the same mode of oscillation of the plasma; in other words, all the Bloch 

waves must be scattered simultaneously by the excitation of the same plasmon. 

In such a case, the interaction is said to be « coherent » since it maintains the 

coherency between the various Bloch waves. 
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Thickness contours were observed by Watanabe and Uyeda (1 2) in an 

image produced by plasmon scattering, but the quality of the image was not 

good enough to confirm that the contrast of the thickness fringes was the 

same as in the elastic image; nevertheless, it could be concluded that the 

inelastic process involved in plasmon-electron interaction was at least par

tially coherent. As a tentative explanation, Heidenreich (1 6) had suggested 

that only a part of the interaction was coherent, namely that part which 

corresponds to electrons which have lost some amount of energy « outside 

the sample » ; that amounted to saying that the Bloch waves are scattered 

independently inside the crystal, but that there is an appreciable probability 

for the occurence of an inelastic interaction before the electron penetrates 

the crystal (in such a case the interaction concerns the plane incident wave, 

before the Bloch waves are excited) or after the electron has left the crystal. 

Fig. 12. - Magnesium oxide smoke particles (bright field). Left: elastic image; right: 
90 eV loss image. Magnification 120000 χ (El Hili). (Courtesy of Compt. Rend. Acad. 

Sci. Paris.) 
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Now, Fig. 12, which is of thickness fringes produced by a crystal of 

magnesium oxide, shows that such an interpretation cannot be valid. The 

fringe contrast is the same in the image formed by electrons which have 

excited four plasmons (90 eV energy loss, Fig. 12 right) as in the elastic image 

(Fig. 12 left). It is clear that the relative importance of a process where the 

energy loss would occur in a region of a finite width located outside the crystal 

would become proportionally less significant for thick specimens and mul

tiple losses. 

As a matter of fact, it was observed that whatever the crystal thickness 

and the number of elementary losses suffered by the electrons, the dark 

fringes remain perfectly dark on the inelastic images, so that electron-plasmon 

interaction may be considered as fully coherent. The similarity of the dif

fraction contrast observed in elastic images and inelastic images arising from 

Fig. 13. - Aluminium foil (dark field). Left: elastic image; right: 14.6 eV loss image. 
Magnification 50000 χ (El Hili). (Courtesy of Journ. de Microscopie.) 



Fig. 14. - Moiré patterns (graphite), Left elastic image; right: 28 eV loss image. Magnification 130000χ (Henry). (Courtesy of 
Compt. Rend Acad. Sci. Paris.) 
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plasmon excitation is not limited to thickness contours. It is observed on 
bend contours as is shown in Fig. 13 (aluminium specimen, dark field images), 
on moiré patterns as is shown in Fig. 14 (graphite flakes). The contrast 
produced by a stacking fault, which is characterized by a symmetrical array 
of fringes in the bright field image and an asymmetrical one in the dark field 
image, is exactly the same on the elastic image and on the inelastic image 
arising from plasma excitation (Fig. 15). The same is true for the contrast 
arising from dislocations or for complicated patterns produced by the inter
action of many wave fields. 

All those results are in perfect agreement with the theoretical predictions 

a) b) 

c) d) 
Fig. 15. - Stacking faults in a cobalt-chromium alloy, a) Bright field elastic image; b) Bright 
field inelastic (21 eV loss) image; c) Dark field elastic image; i/)Dark field inelastic (21 eV 

loss) image (El Hili). (Courtesy of Journ. de Microscopie.) 



128 R. Castaing 

of Howie (1 7) ; in the case of plasmon scattering, the interaction potential is 

a long range one ; as a consequence, a very large proportion of the transitions 

of the fast electrons are intraband transitions which maintain the phase rela

tionships between the Bloch waves, so that the fringe contrast is not modified. 

Let us consider now the case of the energy losses which belong to the 

continuous part of the spectrum, between the characteristic losses. Those 

losses are very faint and we found it more convenient to use a different method 

for studying them. We have seen in the previous lecture (4) that, because 

of the aberrations of the magnetic filtering device, the value of the energy 

loss which is being selected by the slit depends on the inclination of the elec

tron trajectory with respect to the optical axis. As a consequence, if a wide 

beam is used, which corresponds to an observation at low magnification of 

a large region of the sample, or alternatively if the instrument is off-centred 

so that the optical centre is outside the image, the selected energy loss may 

be well defined at each image point, but it decreases as the image point moves 

Fig. 16. - Extinction contours (aluminium) with superimposition of the energy loss spec
trum. Magnification 30000 χ (El Hili). (Courtesy of the Journ. de Microscopie.) 
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Fig. 17. - Location of the aperture at the image focal plane of the objective lens. 

on the central spot or on the Bragg spot, one obtains a bright field or a dark 
field image, respectively; when positioning it in the vicinity of the central 
spot or of a Bragg spot, the image is produced by diffusely scattered electrons. 
This result was used by Kamiya and Uyeda for roughly separating the elastic 
electrons from the inelastic ones in a conventional electron microscope; 
we have combined that technique with the use of the filtering device, so that 
it is possible in each case to separate all the component images of various 
energies; for example, the image produced by electrons diffusely scattered 
near a Bragg spot may be separated into a quasi-elastically scattered image 
(energy loss less than 1 eV) and an inelastically scattered image produced by 

9 

away from the optical centre, so that an energy spectrum is superimposed 

onto the micrograph. Figure 16 was obtained from an aluminium specimen 

by using this technique and opening the energy selecting slit slightly to lower 

the exposure t ime: the extinction fringes are clearly visible in the parts of the 

image which are produced by the continuous part of the energy loss spec

trum. This is probably due to the fact that these losses are arising essentially 

from the excitation of single electrons, giving rise to electron-hole transitions. 

The scattering potential which is involved in such an interaction is a screened 

Coulomb potential of long range nature and it gives rise mainly to intraband 

transitions. 

2*4.3. The special case of thermal scattering. - Quite interesting results are 

obtained (

10 n
) when studying the coherency of the waves which have been 

scattered diffusely in the vicinity of the Bragg spots. An aperture is located 

at the image focal plane as is shown in Fig. 17. By positioning the aperture 
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the plasmon loss. It is observed that the inelastically scattered image shows 

the same fringe contrast as the elastic or the inelastic image which is observed 

when the aperture is positioned at the neighbouring Bragg spot; that results 

from the fact that electron-plasmon interaction maintains the coherency 

between the waves. But a most interesting point is that we found some amount 

of fringe contrast in the quasi-elastic image produced by electrons which had 

been diffusely scattered around the Bragg spot. 

Now, if we consider the quasi-elastic processes only, the main part of the 

scattering out of the Bragg spots is due to the thermal diffuse scattering, in 

other words to electron-phonon interactions, at least in the case of pure 

samples reasonably devoid of surface imperfections or impurities. Plasmon 

scattering and core electron excitation do not contribute to the quasi-elastic 

image because they give rise to large energy losses; for the same reason, 

the major part of the single electron excitation processes in the conduction 

band do not need to be taken into account; we shall return to this point a 

little later. Thus we were led to the conclusion that some degree of coherence 

remains in the phonon scattered electron waves. 

More precisely, we concluded that some amount of phase relationship 

was retained after the quasi-elastic scattering process for the various Bloch 

waves scattered in a given direction near the Bragg spots. 

Now it is often considered that in the case of phonon scattering, the various 

processes which give rise to intraband and interband transitions are associated 

with different modes of vibration of the lattice (in other words that they cor

respond to the excitation or quenching of different thermal vibrations), so 

that they are incoherent and cannot give rise to diffraction contrast; and 

some experimenters proposed an alternative explanation for the observed 

contrast: the diffraction contrast, in the image produced by electrons scat

tered quasi-elastically near the Bragg spots, would arise from spurious scat

tering processes in amorphous oxide or contamination surface films, whereas 

phonon scattering would contribute to the background and result in a general 

lowering of the observed contrast. Obviously, scattering in the top contam

ination layer for instance would have the same effect as tilting the gun: 

a small part of the direct beam would be in such a case directed towards the 

aperture, giving rise to the classical extinction contrast observed on the Bragg 
spots. 

A further series of experiments (

η
·

1 9
) has made clear that the objection 

was not valid. 

As a matter of fact, similar effects appeared in MgO samples which 

obviously are devoid of oxide layers, but some spurious scattering by a 
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Fig. 18. - Electropolished gold foil. Top: Elastic bright field image; bottom: quasi-
elastic image (diffuse scattering near the central spot). Magnification 60000 χ (Henoc). 

(Courtesy of Compt. Rend. Acad. Sci. Paris.) 

contamination film was still possible. For eliminating this possibility, the 

energy-selecting microscope was provided with an anticontamination device; 

this device operated quite satisfactorily since the image of a metallic sample 

remained unchanged after 20 min of electron bombardment. We observed 

in such conditions electropolished gold layers prepared from gold foils of 

high purity (better than 99.99%); it was found again ( n) that noticeable 

diffraction contrast appears in the images produced by quasi-elastic scat-
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tering near the Bragg spots, at least in the case where low-index reflections 

are excited. Figure 18 (bottom) shows bend contours so obtained on a gold 

sample by Henoc. The image obtained from electrons diffusely scattered in the 

direction ^-(111) shows the same type of diffraction contrast as does the 

bright field elastic image (Fig. 18 (top)) but the contrast is much weaker. In 

such a case the observed contrast cannot be considered as arising from 

spurious scattering in amorphous surface films. 

On the other hand, Henoc was able to verify that the temperature depend

ence of the diffuse scattering agreed with what would be expected from pure 

thermal scattering (

n
) . Furthermore a specific criterion, based on the splitting 

of the fringes which occurs, if the scattering is due to a surface layer, when 

tilting the gun or moving the objective aperture, has confirmed directly that 

the observed diffuse scattering was due to the lattice itself and did not arise 

from spurious layers (

1 9
) . 

As a result, there is strong experimental evidence that a noticeable amount 

of coherency is retained in the quasi-elastic scattering processes near the 

Bragg spots. Let us discuss now the origin of this partial coherency. 

We suppose that the incident beam is at the exact Bragg conditions for 

a low index reflection (say (111) for instance); the scattered beam is observed 

very near to the Bragg spot (say at rb - ( l l l ) ) , so that the two-wave approx

imation is valid for the primary wave and approximately valid for the scat

tered wave. The situation is depicted in Fig. 19. The primary wave is repre

sented by a combination of two Bloch waves whose wave vectors originate 

from A
1
 and A

2
; the scattered wave which is selected for producing the image 

is represented by two Bloch waves originating from A'
1
 and A'

2
. In the case 

of the excitation of a phonon, A'
1
 and A'

2
 lie on the dispersion surface cor

responding to an energy E0— SE; SE is typically equal to 0.01 eV for 

phonon scattering. In any case, 8E is limited to about 1 eV by the filtering 

device, so that the dispersion surfaces are very near to one another. 

The transitions we have to consider are : two intraband transitions, A
1
 A'

1 

and A
2
A'

2
, and two interband transitions, A

1
 A'

2
 and A

2
A'

1
. Now, as Fuj-

imoto and Kainuma (

2 0
) pointed out in 1963, some lack of conservation of 

momentum is possible, in the case of thin samples, in the ζ direction per

pendicular to the sample surface; the extra momentum is given up to the 

sample as a whole. In terms of wave vectors, the permitted error is of the 

order of Ιπ/d, d being the specimen thickness. On the other hand, exact 

momentum conservation must prevail in the χ and y directions lying in the 

plane of the surface. If d is of the order of the extinction distance ξρ for 

instance, the permitted error 8kz is of the order of %(A
1
A

2
) so that it is 
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0
 1

 G 

Fig. 19. - Dispersion surfaces and wave vectors. 

seen easily that, if A
1
 A'

1
 is about g/10, both intraband transitions may be 

associated with the excitation of the same phonon — q, whereas the inter-
band transition A

1
 A'

2
 for example cannot be produced with a noticeable 

probability amplitude by the excitation of the phonon —q2i = — A
2
A'

1
. 

As a result, in the case of thin samples (for gold and 80 kV electrons, the 
required thickness is d < 5 μιη for the (111) reflection and d< 0.5 μιη for the 
(220) reflection) the intraband transitions must be taken as coherent whereas 
the interband transitions are generally incoherent. 

This now allows the fringe contrast produced by phonon scattering to 
be estimated ; the calculation was made by Nat ta (

1 3
) in our laboratory, 

using the Born approximation, a rigid ion model for the scattering potential 
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and the Debye approximation for the phonons, considering one-phonon 

processes only. 

The theoretical values of the relative intensity of the thermal scattering 

is found to agree with the observed value within the limit of experimental 

error; but the calculated contrast of the fringes is generally lower than what 

is observed. It should be pointed out that multiphonon processes, which 

make the treatment considerably more complicated, were neglected. More 

detailed calculations and careful experiments are necessary in order to under

stand the cause of the remaining discrepancies. 

The observed contrast could be reinforced by some amount of scattering 

due to single electron excitations (we have seen that such an interation 

involves a long-range potential) ; but it may be shown (

1 3
) that the excitation 

of conduction electrons does not play any important role in such quasi-

elastic processes. Rough calculations indicate that these interactions, which 

result in complete coherency of the scattered electron waves, give rise to a 

negligible intensity for the scattered waves when the energy loss lies in the 

range ( 0 ^ 1 ) eV; it is to be noted that the efficiency of the process is much 

higher if the selected energy loss lies in a range of the same width situated at 

a higher value (say between 3 and 4 e V ) ; this explains the strong contrast 

we have observed in the images produced by energy losses located in the con

tinuous spectrum, between the plasmon losses. 

To end with, I would like to point out that we have considered the inter-

band transitions as incoherent, which is correct in the present case when 

the q12 and q21 vibration modes are independent of one another. Now, if it 

were possible to realize conditions such that the mean free path of the phonons 

is much larger than the specimen thickness, and if the specimen surfaces were 

atomically flat and parallel, the vibration modes q12 and q21 would be coupled 

together; in other words the quantization of the phonons would involve 

standing waves in the ζ direction, leading to a high degree of coherency in 

the interband processes. For a clean specimen the standing waves would 

exhibit antinodes at the free surfaces. The calculation shows that in this 

case the phonon scattered image would exhibit strong diffraction contrast; 

but the contrast would be reversed, so that scattering near the central spot 

for example would give rise to the contrast of a dark field image. Further

more the contrast would be very sensitive to the presence of surface layers 

modifying the vibrational modes. Such experiments would require perfect 

crystals with very smooth surfaces, and which would be non metallic for 

increasing the mean free path of the phonons; they would be observed at 

low temperature for reducing the phonon-phonon interactions, and the 
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exposure time, which is typically one or two minutes, would be increased 

to about one hour in the absence of an image-intensifying device; never

theless, we believe that it would be worthwhile to try to overcome the exper

imental difficulties. 
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3. Ion emission microanalysis. 

3' 1. Introduction. 

The secondary ion microanalyzer which was developed ten years ago in 

our laboratory gives local chemical and isotopic analysis by using the secondary 

ion emission that accompanies the phenomenon of cathodic sputtering of a 

target to form the image of the surface of a sample (

1 3
) . 
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The principle of such an analytical procedure is essentially different from 

that of the well-known technique of electron probe microanalysis since the 

particles which are used for detecting the various chemical species are ions 

instead of X-ray photons. But another difference lies in the operation of the 

instrument itself. In the original electron probe microanalyzer (

4
), point by 

point analysis was obtained by directing a finely focussed electron beam onto 

any desired point of the sample; then scanning facilities were introduced (

5
) 

which made it possible to get, on the fluorescent screen of an oscilloscope, 

an image with intensity proportional to the local concentration of the element 

being detected. The same mode of operation may be used in secondary ion 

microanalysis; the possibilities of such an « ion microprobe » will be discussed 

briefly in the course of this lecture. However, the mode of operation of the 

initial ion microanalyzer is quite different, since the distribution image of 

any element or isotope is obtained directly, without having to resort to a 

scanning procedure. The instrument is essentially a « mass-selecting » sec

ondary ion microscope, which makes possible to « see » separately the various 

component elements (or isotopes) of a solid sample. 

After a brief description of the instrumental arrangement, which makes 

use of the dispersive optical system we have described elsewhere (

6
), the 

main part of the lecture deals with the experimental and theoretical work 

carried out by Slodzian, Hennequin, Joyes, Blaise and Brochard in our 

laboratory for disentangling the physical processes involved in the production 

of the secondary ions. To end with, some examples of applications are given. 

The reader is assumed to possess a basic knowledge of atomic and solid 

state physics, at an elementary level. 

3 2 . General description of the secondary ion microanalyzer. 

The instrument is essentially a mass-selecting secondary ion microscope, 
which operates as follows. 

The surface of the solid sample, which is flat and optically polished, is 
bombarded over an extended area (whose diameter is a little less than half 
a millimeter) by a primary beam of ions (generally A

+
 ions whose energy 

is about 10 keV); the primary ion density is of the order of 100 μΑ per square 
millimeter. The sample is progressively etched down and a significant pro
portion of the particles which are extracted from it by the bombardment 
leave the surface as ions. Those « characteristic » secondary ions are for
med from the atoms which were present in the first atomic layers ; they leave 
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the bombarded surface with low energies, between zero and some tenths 

of electron-volts; it is therefore possible, by focusing them with an emission 

lens, to obtain an image of the sample surface which is produced by using 

all the secondary ions. This « material image » can then be separated by 

mass spectrography into its component « characteristic images » ; each of 

the characteristic images is carried by a given type of ion and it brings with 

it a map of the distribution of the corresponding element, or isotope, across 

the specimen surface. 

The diagram of the first experimental apparatus, which was achieved in 

1962, is shown in Fig. 20. The beam which carries the total image produced 

y— FOCALE AXIALE 

ACCELERATION FOCALISATION IMAGE IONIQUE INITIALE J 

Fig. 20. - Diagram of the original microanalyzer (Slodzian). (Courtesy of Compt. Rend. 
Acad. Sci. Paris.) 
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by the emission lens goes through a magnetic sector where the value of the 

induction is chosen in such a way that the desired characteristic ions are 

deviated by 90°. For a convenient value of the angle of incidence of the beam 

relative to the pole faces, the beam originating at the cross-over of the emission 

lens converges towards an exit cross-over where the ions are selected by a 

slit. The characteristic image carried by these ions is transformed by the 

magnetic prism into a virtual image whose (strong) astigmatism is corrected 

by a stigmator. A set of lenses projects this image as a real one onto the 

cathode of an ion-electron converter, so that the final electron image observed 

on the fluorescent screen reproduces the surface distribution of the element 

which has been selected for analysis. 

100 M 

Fig. 21. - Copper grid on an aluminium block. Al+ image (Slodzian). (Courtesy of Ann. 
de Phys.) 
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The strong chromatic aberration which could result from the fact that 

the secondary ions are emitted with various energies, and pass subsequently 

through a highly dispersive system, can be eliminated to the first order by 

positioning the image at the level of an achromatic point which is located, 

in this simple arrangement, inside the magnetic prism, at a distance from 

the pole face equal to § of the radius of curvature. 

The behaviour of this first experimental apparatus was quite satisfactory. 

The distortions of the various lenses could be made to compensate one another 

by a suitable choice of the excitation of the projection stage. One of the 

first pictures we obtained is shown on Fig. 21. It represents the image, pro

duced by A l

+
 ions, of a composite sample prepared by pressing a copper grid 

(25 μιη) onto an aluminium block. The distortion is negligible and the resol

ving power is one micron. 

In this first experimental arrangement, the images were obtained by simply 

photographing the fluorescent screen from outside with a conventional camera. 

Such a procedure led to a serious reduction of the detection sensitivity; now, 

it is easy to show that the attainable resolving power is proportional to the 

sensitivity of detection of the characteristic images. This is due to the fact 

that the image is produced from the material of the sample itself, so that some 

minimum volume of material must be destroyed for producing an image point. 

IMAGE C O N V E R T ER 

P H O T O G R A P H IC 

Fig. 22. - Detail of the image converter (Cameca). (Courtesy of Proceedings 5th Interna
tional Congress on X-Ray Optics and Microanalysis.) 



Fig. 23. - General diagram of the commercial model (Cameca) of the secondary ion microanalyzer. (Courtesy of Proceedings 5th 
International Congress on X-Ray Optics and Microanalysis.) 
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The minimum diameter of the analysed region may be estimated theoretically; 

for instance, in the case of an aluminium base sample or of an ionic compound, 

where secondary ion emissions are especially high, it is of the order of 500 Â 

units. Such a resolving power requires a direct registering of the resulting 

images on a camera located inside the vacuum; furthermore, the initial mag

nification produced by the emission lens must be large enough to ensure that 

the image quality will not be destroyed by the aberrations of the dispersive 

system. Such an increase in the initial magnification results in a reduction 

of the diameter of the imaged part of the sample. 

However, a serious drawback of this first experimental instrument was 

that the magnetic sector gave momentum-discrimination, instead of the mass-

discrimination which is really what is required. As a result, the separation 

of neighbouring masses was imperfect, especially for heavy elements. This 

difficulty was overcome in a more elaborate instrument, which has been com

mercially developed in France, which uses the more sophisticated dispersive 

device, including two deflections at 90° separated by a reflection at an elec

trostatic mirror, which is described in another lecture (

6
). As a result, neigh

bouring masses are perfectly separated, even for heavy elements. 

Another improvement in the industrial model is the possibility of registering 

the characteristic images directly on a photographic film, inside the apparatus. 

By means of a rotating magnet (Fig. 22), the electron beam which carries 

the final image may be directed, during the operation, either towards the 

photographic film, or towards a fluorescent screen for visual observation of 

the images. A pinhole in the center of the fluorescent screen makes possible to 

isolate the emission from a very small area of the sample (2 μπι for example) ; 

this area is easily chosen on the image. The corresponding electrons are 

received by a scintillator followed by a photomultiplier. A diagram of the 

instrument is shown on Fig. 23. 

3*3. Possibilities and limitations of secondary ion microanalysis. 

The range of application of this technique is extremely wide, in various 
fields such as metallurgy, mineralogy or even biology. It has some important 
advantages over the classical technique of electron probe microanalysis: 

— First of all, the number of image-forming particles (secondary ions) is 

much higher, all things being equal, than the number of X-ray photons in 

a scanning microprobe. As a result, the images are devoid of statistical 

noise and the sensitivity to extremely low concentrations is much greater. 



142 R. Castaing 

— Isotopic analysis is possible on a micron scale. 

— The lighter elements such as hydrogen are easily detected. 

— Spatial resolution in the plane of the sample surface is better and it is not 

limited by the diffuse penetration of the primary particles (the penetra

tion of the primary ions is much less than that of the electrons of a 

microprobe). 

— And, last but not least, the depth resolving power is extremely good: 

the analysis may be restricted to the first atomic layers if one does without 

a high resolving power in the plane of the surface. 

In addition to all these advantages, there is a serious drawback: the rela

tion between the intensity of emission of a characteristic ion and the local 

concentration of the corresponding element is complicated (except in the 

case of isotopic mixtures) and very sensitive to chemical bonds. As an ex

ample, Fig. 24 shows inclusions of cuprous oxide C u 20 embedded in a matrix 

of pure copper. The image is produced by the ions 6 3C u +; it is seen that 

the oxide emits many more copper ions than does the pure copper matrix; 

this is due to the ionic character of the compound C u 20 . 

Fig. 24. - C u 20 inclusions in copper. 6 3C u + image (Slodzian). Magn.: 400 x. (Courtesy 
of Ann. de Phys.) 
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3*4. The various processes involved in secondary ion emission. 

One of the reasons why this phenomenon of secondary emission is so 

complex lies in the fact that various physical processes may be involved in 

the production of the secondary ions. In this respect, we were able to distin

guish two essential processes; we shall denote them as the « kinetic » process 

and the « chemical » process. 

The kinetic process occurs in a metallic sample when an ion core suffers 

a collision strong enough to eject one or more of the core electrons. The 

increase in ionization so produced is screened by the conduction electrons, 

but the metastable state (constituted by this screened ionization) may, if its 

lifetime is long enough, be preserved until the knocked-on particle leaves 

the lattice, having meanwhile suffered many collisions which result in a 

lowering of its velocity. The particle leaves the sample in a neutral metastable 

state, whose Auger de-excitation, as we shall see below, may give rise to the 

production in vacuo, very near from the sample surface, of a positive ion. 

The phenomenon essentially depends upon the electronic structure of the 

free atom and the band structure of the metal. 

The chemical process depends upon the chemical bonds in the sample. 

In the oxides, for instance, the breaking of ionic bonds gives rise essentially 

to negative oxygen ions and positive metallic ions. The ionization ratio, 

that is the ratio between the number of secondary ions and the number of 

corresponding neutrals, is generally much higher in the chemical than in the 

kinetic process. 

This is the reason why the C u 20 compound (Fig. 24) emits much more C u

+ 

ions than the pure copper, other things being equal. 

It is clear, under such conditions, that it is not possible to deduce the 

concentration of a metallic element M from the general emission of M
+ 

Even in the case of metallic alloys, strong matrix effects are commonly 

observed when the component metals are very dissimilar. In the course of 

our first experiments, we observed that the emission of C u

+
 ions from a copper-

beryllium alloy containing 2 % beryllium was 50 times larger than that of 

pure copper, in the same conditions of primary bombardment. As a matter 

of fact, we discovered later that such matrix effects are due to surface phe

nomena; they are very much reduced if the vacuum is good enough and if the 

etching speed of the sample is high enough to keep the surface permanently 

clean. 
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secondary ions, if the sample contains for example inclusions of oxide whose 

diameter is less than the limit of resolution of the image. On the other hand, 

if the inclusions are large enough to be visible on the image, they will be 

identified easily from the spectrum of their secondary ions. 

It may be noted at this point that negative secondary ions can be used 

as well for producing the image, by simply changing the potentials on the 

lenses and the sign of the magnetizing current in the prism. Figures 25 

shows images obtained by Rouberol et al, by using VCT ions (top) and 

Q" ions (bottom), on a sample of pig iron containing vanadium ; the light 

areas correspond to inclusions of vanadium carbide and of graphite in the 

pig iron. 

Let us return now to the case of a pure metallic sample; the only process 

which can be involved is the kinetic one, if the sample is located in a perfect 

vacuum and bombarded with noble gas ions which do not interact chemically 

with it. 

Now, such an ideal case cannot be found in practice. The sample is sur

rounded by a gaseous phase (the residual gas inside the instrument), some 

components of which may be chemically active; furthermore, the primary 

beam may contain chemically active impurities if it is not filtered carefully. 

Under such conditions, a contaminated layer is present on the target surface; 

it is produced by the reactions of the sample with chemically active species 

(such as oxygen or water) present in the gaseous phase or in the primary 

ion beam. If the primary beam is carefully filtered, the only source of con

tamination is the gaseous phase; as a consequence the thickness of the con

taminated layer is an increasing function of the partial pressure of the active 

component in the surrounding atmosphere, and a decreasing function of the 

sputtering speed, which is itself proportional to the density of the primary 

ion beam (for a given accelerating voltage). This surface layer may lead to 

a « chemical » emission which is superimposed to the general kinetic emission 

of the metallic sample. 

This phenomenon appeared with striking evidence in the series of experi

ments made some years ago in our laboratory by Miss Guénot (

7
), who 

measured the secondary ion emission of an aluminium sample as a function 

of the partial pressure of oxygen in the residual atmosphere of the apparatus. 

It is seen in Fig. 26 that the emission of the A l

+
 ions shows a lower plateau 

at low pressures and an upper plateau at high pressures. The density of the 

primary beam ( A

+
 ions, 10 keV) was about ΙΟμΑ/mm

2
; for such a primary 

density the sputtering speed is of the order of 10 atomic layers per second; 

as a result, when the oxygen partial pressure is lower than 10~

6
 torr (which 
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Fig. 26. - Emission of slow secondary ions as a functions of oxygen pressure. Primary 
beam: A

+
, 10 keV (Guénot). (Courtesy of Journ. de Phys.) 

corresponds to the deposition of one atomic layer per second), the surface 
is continuously cleaned off by sputtering, whereas a continuous oxidized 
layer is present at the free surface if the oxygen pressure is 10~

4
 torr or more, 

leading to an intensification of the A l

+
 emission (through chemical processes) 

by a factor of 100. The intensification is much lower for molecular AlJ ions, 
and the emission of the doubly ionized A l

++
 ions (which is essentially related 

to a kinetic process) is decreased by the presence of oxygen. The emission of 
the negative ions CT, A l O " and A10~ saturates at high pressures; it disap
pears at very low pressures. 

The experiments of Miss Guénot were carried out with the ionic micro
analyzer, so that the measurements were restricted to the low energy component 
of the secondary ion emission only. More significant results were obtained 
a little later by Hennequin (

8
) in the course of an experimental investigation 

of the energetic and spatial distributions of the secondary ions; by integrating 
the distribution curves, Hennequin was able to plot the total ionic yield (that 
is, the ratio between the total emission of the secondary ions of a given type 



Secondary ion microanalysis and energy-selecting etc. 147 

Α Ι2θ 3 

Al 

— M g O 

STU2" 

M g 

Si (100) 

and the number of primary ions impinging on the target sample in the same 

time) as a function of the residual oxygen pressure, for targets of Al, Mg, 

Si, Ti, Ni , and Cu. The curves so obtained for Al, Mg and Si are shown in 

Fig. 27; they show saturation values (on the high pressure side), which are 
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Fig. 27. - Ionic yields of Al, Mg and Si. Primary beam: A

+
, 8 keV (Hennequin). (Courtesy 

of Compt. Rend. Acad. Sci. Paris.) 

quite similar, in the case of Al and Mg, to the ionic yields of the pure oxides 

(A1203 and MgO). In the case of Si, the saturation yield is higher than the ionic 

yield of S iOa, which might be due to the fact that the composition of the surface 

layer is similar to that of the monoxide SiO. The comparative measurements 

on the oxides were carried out on samples prepared by pressing together the 

powdered oxide and copper powder. 

It is observed in general, when the residual pressure in the instrument is 

lowered below a limiting value which depends on the sputtering rate (all 

things being equal, this limiting value is proportional to the current density 

of the primary beam) that the emission of the various types of secondary ions 

is independent of the residual pressure; one can be sure in such a case that 

the ionic emission which is being measured is the pure « kinetic » emission 

of the bare metal ; the parasitic ions are practically eliminated, at least after 

the very short time which is necessary for sputtering out any contaminated 

layer which could be present at the surface of the sample. 

It may be noted at this point that some advantage can be taken from 

the high efficiency of the chemical process, by using chemically active ions, 

such as 0

+
 ions, for bombarding a metallic sample. The images so obtained 

are generally much brighter, and the sensitivity is higher for trace analysis; 

but the spectra are more complicated and strong matrix effects make the 
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quantitative interpretation more difficult, except in the case of low concen

trations where calibration from standards is quite easy (e.g. doping elements 

in semiconductors) or isotope analysis. 

3*5. The alternative procedure using an ion microprobe. 

It is interesting to comment at this point on the alternative procedure 

which was developed later on by Long (

9
) and Liebl (

1 0
) for secondary ion 

microanalysis. These authors use a scanning technique: an ion microprobe 

is scanned across the specimen surface and the secondary ions are collected 

and mass-analysed to control the beam of an oscilloscope. The advantages 

lie in the simplification of the optics, a little better sensitivity due to the fact 

that a larger part of the energy spectrum of the secondary ions may be used 

for analysis, and a lower amount of redeposition on the sample of sputtered 

material reflected from the neighbouring surfaces. Now, the time for getting 

a distribution image is much larger, because the total ionic current which 

can be brought to focus on a one micron probe is less than 10~

4
μΑ in the 

present state of the technique; so that, even if the efficiency of collection of 

the ions was 100 times higher, the time required for producing the same 

image as our instrument, where the primary intensity impinging on the imaged 

area is about 10 μΑ, would be 1000 times larger. 

But a major disadvantage results from the contamination of the surface 

by the residual atmosphere. The mean sputtering speed of the sample is 

10

5
 times lower, so that the same amount of elimination of surface impurities 

would require vacua 10

5
 times better! As a rule the specimen surface would 

be saturated permanently in surface impurities, and various types of composite 

ions would be emitted whose presence would be related more to the gaseous 

phase than to the sample itself. 

This drawback would be reduced in the case of point analysis using a 

fixed probe, for the ionic primary density could then be made high enough 

to ensure cleaning of the surface in a good vacuum. But, even in this case, 

such a cleaning would occur in the central part of the probe only. The marginal 

parts would be contaminated and their strong chemical emission would falsify 

the interpretation of the analysis. 

For all those reasons, we believe that, except perhaps in the case of an 

ionic compound analysed with a fixed probe, the technique based on a general 

bombardment of the sample, using a selection on the image of the spot to 

be analysed is much more suitable for quantitative work and much less sen-
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sitive to artefacts arising from parasitic elements present in the residual 

atmosphere. 

The redeposition of sputtered material onto the sample, which is disturbing 

only if a very low concentration must be measured at a given point while the 

analysed element is highly concentrated in the vicinity of that point, can be 

lowered at will by reducing the bombarded area, say to a diameter of 10 μιη, 

and selecting the analysed spot by means of the pinhole in the fluorescent 

screen. 

3*6. The main features of the « kinetic » process. 

An extensive study of the « kinetic » emission has been carried out in 

our laboratory by Slodzian, Hennequin, Joyes, Blaise and Brochard; we 

will discuss briefly the results of that work, which has made it possible to 

understand the main features of the intricate phenomena involved in the 

kinetic process. 

In the experimental arrangement used by Hennequin (

8
) for studying the 

energetic and spatial distributions of the secondary ions, the secondary beam 

emitted in any chosen direction goes through a grid which makes it possible 

to determine its energy spectrum by a counter-field method ; it is then focussed 

into a convergent beam, filtered in mass (roughly) by a permanent magnet, 

and measured in a Faraday cylinder. The whole of the analysing device 

(exit aperture, counter-field grid, mass spectrometer) may rotate around an 

axis lying in the target surface ; the target itself may rotate around the primary 

beam, so that the secondary emission may be analysed in any direction. 

The energy distributions so obtained for the secondary ion emission of 

polycrystalline samples of copper and aluminium are shown on Fig. 28; the 

primary ions are impinging normally on the surface and the secondary emis

sion is observed at 30° to the normal. It is seen that the mean energy of the 

C u

+
 ions is larger than that of the A l

+
 ions. On the other hand, it was observed 

that, in the case of a normal bombardment by A

+
 ions (8 keV), the mean 

energies of the secondaries are larger at angles close to the bombarded surface, 

when the direction of emergence is further from the direction of the bombard

ment. The same result is obtained for oblique directions of bombardment ; 

it shows that the secondary ions are not produced by a thermal process and 

that a particle, when it is ejected from the surface, has suffered a small number 

of collisions only, insufficient for ensuring thermal equilibrium. 

We are led to the same conclusion if we consider the spatial distribution 

of the secondary particles (ions or neutral atoms) ejected from single crystals. 
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Fig. 28. - Energy distribution (arbitrary units) of secondary ions A1+ and Cu+ (Hen
nequin). (Courtesy of Journ. de Phys.) 

Neutral atoms emitted from the sample can be collected in the same 

experimental instrument, either on a plastic film (in this case the distribution 

of the density of the deposit is measured by optical densitometry) or on a 

plate of pure graphite ; in this last case the thickness of the deposit is measured 

by electron probe microanalysis. The curves represented on Fig. 29 were 

obtained by the second method; they show the spatial distribution of the 

neutral atoms ejected from the (100) face of a single crystal of Al ; the strong 

I ι ι ι ι ι 
0 30° 60° 90° 

Fig. 29. - Spatial distribution (arbitrary units) of Al neutrals (Hennequin). 
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peak in the [110] close packed direction disappears gradually when the residual 

pressure of oxygen in the specimen chamber is increased (curves 1, 2, 3, 4 

correspond to partial pressures of oxygen equal to 4 ·10~

7
, 5 - 1 0

- 6
, 5 · 1 0

-5 

and I O

-4
 torr, respectively). Figure 30 shows the spatial distribution (determined 

[0Î1] 
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OX / 
λ [011] 

-90° -60° -30° ( ) 30° 60° 90° 

Fig. 30. - Spatial distribution of Cu neutrals (Hennequin). (Courtesy of Compt. Rend. 
Acad. Sci. Paris.) 

by optical densitometry) of the neutrals ejected from a single crystal of cop

per ((100) orientation) bombarded at normal incidence. Curve 1) corresponds 

to a very low oxygen partial pressure (the presence of argon at a pressure 

of 2 - 1 0

- 4
t o r r does not change the result); curve 2) shows the moderate 

weakening of the peaks which occurs when oxygen is introduced at a partial 

pressure of 2-10~

4
tor r . 

Let us return to the pure kinetic emission observed in good vacua. The 

angular distributions of the secondary ions and of the neutrals ejected from 

a copper target (single crystal or polycrystal) bombarded at normal incidence 

are shown in Fig. 31. The main result is that the maximum in the emission 

which is observed for the neutral atoms in the close packed directions of the 

crystal lattice does not appear at all for the ion emission. 

All those results are consistent with the mechanism of kinetic emission 

we proposed some years ago (

u
) and whose quantitative theory was developed 

by Joyes (

1 2
) : the origin of the secondary ion emission lies in the so-called 

« erratic emission » which occurs in all directions of space, whereas a large 

part of the sputtering arises from chains of focussed collisions ejecting neutral 

atoms in the close packed directions of the lattice only. When an ion core, 

in the metal lattice, is knocked on by a fast particle (primary ion or high 

energy displaced atom) an inner electron may be removed ; the ion core moves 

inside the lattice and it may leave the surface as a sputtered particle (erratic 
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Fig. 31. - Spatial distributions of Cu° (neutrals) and Cu

+
 (secondary ions) in the (100) and 

(110) planes (arbitrary units). Normal bombardment [001] (Hennequin). (Courtesy of 
Journ. de Phys.) 

In that case, the Auger de-excitation occurs in vacuo and leads to the ejec
tion of one electron (or more) and the production of a secondary positive ion. 
This occurs, generally, for light elements whose Auger lifetimes (of the order 
of 10~

14
 s for the 2p hole) are similar to the time which the atom needs to 

escape from the lattice. 

Let us consider now the atoms which are sputtered in close packed direc
tions by a mechanism of focussed collisions; the energy which is transferred 
along a focussed sequence of collisions is much lower than the energy which 
would be necessary for producing an empty inner level and the ejected atoms 
(the end of the chains) will be devoid of such empty levels and unable there
fore to give rise to ions by Auger de-excitation. 

Such a mechanism is supported by a series of experiments carried out 
by Hennequin (

1 3
-

1 4
) three years ago ; the purpose of those experiments was 

to identify, in the general background of secondary electrons emitted from 
a sample when bombarded with primary ions, the presence of electrons 
produced by Auger de-excitations. In the experimental arrangement used by 

[ m ] 

plan (110) plan (100) 

emission) ; as the ejection speed is much lower than the speed of the conduction 

electrons, the particle leaves the lattice as a neutral atom because electrons 

follow it easily to neutralize its charge. The empty level in the inner shell 

which had been produced initially is generally destroyed by Auger de-exci

tation before the atom leaves; but if the Auger lifetime is long enough, the 

empty level may still be present on the free atom after it has left the lattice. 
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Fig. 32. - Auger peak in the secondary electron emission from Al (Hennequin). (Courtesy 
of Compt. Rend. Acad. Sci. Paris.) 

On the other hand, no Auger peak is visible in the case of transition 
elements. Furthermore, it should be noted that the Auger peaks disappear 
progressively when the oxygen partial pressure in the vicinity of the sample 
is increased. 

It is thus clear that, at least in the case of light elements, ionization of 
inner shells is produced in the ion cores, and that Auger de-excitation follows ; 
but it has not been possible till now to distinguish, among the Auger electrons, 
those which have been produced by an Auger de-excitation in vacuo, leading 
to a secondary ion, and those which were produced by an Auger de-excitation 

Hennequin, the secondary electrons were accelerated and their energy spectrum 

was recorded by a small spectrometer which consisted of an electromagnet 

and an electron multiplier. The spectra represented on Fig. 32 show, in the 

case of aluminium, a well-pronounced Auger peak (de-excitation of a 2p hole) 

whose energy and width are in perfect agreement with the band structure of 

aluminium, and quite independent of the nature and energy of the primary 

ions used for the bombardment. Similar Auger peaks were obtained with 

samples of magnesium, silicon and beryllium. 
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inside the metal, at the immediate neighbourhood of the free surface. We hope 

that new experiments using a spectrometer whose energy resolution is much 

better will make it possible to identify the Auger electrons produced in vacuo: 

the corresponding peaks are sharper since the transitions occur between atomic 

levels, but the sharpness will be limited, due to the fact that the lifetime of the 

free atom, before the Auger process occurs, is very short. 

This type of process, involving the initial production of an empty inner 

level (2p for the light elements) seems to be the only one leading to multiply 

charged ions such as A l

++
 or A l

+ + +
; but other processes, involving the ex

citation of outer electrons only, may occur in the production of singly charged 

ions. If the ionization energy of the atom is low enough, those processes, 

which will be considered a little later in the case of the transition elements, 

may be the most effective for producing singly charged ions; that explains 

why aluminium, whose ionization energy is especially low, leads to a secondary 

emission of A l

+
 ions much larger (about 10 times) than the M g

+
 and S i

+ 

emissions of the neighbouring elements, whereas the emissions of the doubly 

charged ions A l

+ +
, M g

++
 and S i

++
 are nearly the same. 

Quite interesting results were obtained recently, in this respect, by Slodzian 

and Brochard (*), in the course of a study of the emission of singly charged 

and multiply charged aluminium ions from pure aluminium and copper-

aluminium samples. 

First of all, the ratio of A l

++
 and A l

+ ++
 emissions was found to be equal 

to 200, whatever the aluminium content of the sample and the energy of 

the primary ions. This is due to the fact that this ratio is controlled by the 

probabilities of the two types of de-excitation of an aluminium atom leaving 

the sample with a 2p level. The de-excitation occurs in vacuo; it leads partly 

to doubly ionized, partly to trebly ionized ions, the relative amounts being 

independent of the original metal. 

Furthermore, the ratio A 1

+
/ A 1

++
 between singly and doubly ionized ions, 

when measured on Cu-Al alloys at various concentrations (namely 1.4%, 

4.8 % and 8.3 % in mass) is found to be proportional (with a very good ac

curacy) to the ratio of the atomic concentrations of Cu and Al in the alloy! 

A tentative explanation of this curious effect is as follows: A l

++
 ions can be 

produced by the de-excitation of an inner shell only, such an excited level 

cannot be produced in a Cu-Al collision inside the sample (for reasons of 

electronic structure and of mass difference); the only effective collisions are 

the Al-Al ones, which implies that A l

++
 emission is proportional to the square 

(*) Private communication. 
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of the aluminium concentration. On the other hand, processes involving 

no 2p level, but excitation of outer electrons only, have been seen to be the 

most effective for producing singly charged aluminium ions; if it is assumed 

that such processes are produced mainly in Cu-Al interactions (for reasons 

of electronic structure) we find that the A l

+
 emission is proportional to the 

product of the copper concentration with the aluminium concentration, 

which explains exactly the experimental results. Note that if both types of 

collisions were effective for the second process, the result would not be very 

different since the copper concentration is close to unity in the alloys which 

have been studied so far; but the first process (production of a 2p hole) is 

necessarily related to the Al-Al collisions only. 

A theoretical and experimental study of the special case of the transition 

elements was undertaken two years ago, in our laboratory, by Blaise and 

Slodzian (

1 5
) . The experiments of Hennequin had shown no Auger peak in 

the secondary electron spectrum emitted by such elements. That is due to 

the fact that the 3d electrons protect the lower levels from the collisions quite 

effectively. The initial process may be shown to be the excitation of a 3d elec

t ron; the corresponding Auger electrons have rather low energies (a few elec

tron-volts) so that the peak is masked by the general secondary electron 

emission. 

In the theory developed by Blaise, the secondary ion emission is related 

to the de-excitation in vacuo of atoms which have been ejected in a super-

excited, self-ionizing state. 

The calculation is based on the determination of all the self-ionizing states 

which can be populated by electrons from the conduction band. 

The theory may be checked by assuming that the excitation of a 3d elec

tron occurs in the same way for all the elements of the series, from titanium 

to copper. The ion yields would be proportional , under such conditions, 

to the probability of populating a self-ionizing state, when the particle leaves 

the free surface. 

Calculated and measured values are seen to agree in the limit of theo

retical and experimental uncertainties (about 30 %) . Furthermore, the case of 

dilute alloys may be treated in the same way. For example, the emission 

of N i

+
 ions in a Cu-Ni alloy where nickel concentration is less than 3 0 % 

may be estimated from the band structure of the alloy, which is assumed to 

be the same as that of pure copper (rigid band model) and the electronic 

structure of the nickel atom. It is then compared with the emission of N i

+ 

ions from a pure nickel target, where the calculation involves the same struc

ture for the atom, but a different band structure for the metal (pure nickel). 
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If C Ni is the atomic concentration of nickel, the emitted intensity of N i

+
 ions 

from the alloy will be denoted N i

+
 (all) and that from pure nickel, for the 

same primary bombardment, Ni

+
(Ni ) . 

Let us write 

N i

+
 (all) _ 

N i

+
 ( N i ) ~ ^

C u N i C N i
' 

£ c u N i *

s t ne
 coefficient of enhancement of the nickel emission by the copper 

matrix, which is calculable from the band structures of copper and nickel. 

Calculations give the value 1.14 for this enhancement coefficient. Measure

ments made on a 3 0 % Cu-Ni alloy lead to the value 1.16 for fast secondary 

ions and to the value 1.1 for slow secondary ions. Such an agreement is very 

good indeed; it shows that our understanding of the intricate physical pro

cesses involved in kinetic ion emission has reached the point where quanti

tative interpretation of secondary ion microanalysis may be established on 

a firm base. 

3*7. Some applications of secondary ion microanalysis. 

The applications may be classified roughly into two essential groups: 
those where a strict localisation of the analysis is required in the three dimen
sions of space, and those where advantage may be taken from the extreme 
resolving power in depth which can be obtained if one does away with the 
optimum localisation in the plane of the sample surface. 

In the first group, we find all the identifications of precipitates, segrega
tions or inclusions in metallurgical or mineralogical samples. Figure 33 
shows three pictures that Slodzian obtained many years ago from a cast 
Al-Mg-Si specimen. A quick examination of the three distribution images 
of aluminium, magnesium and silicon shows the presence of pure silicon 
inclusions and Mg2Si precipitates in the aluminium matrix. Fig. 34 is due 
to Rouberol et al. : it represents the distribution of aluminium in an eutectic 
mixture of aluminium and calcium; the resolving power (one micron) is 
better than that obtainable from electron probe microanalysis. 

Ion emission microanalysis is especially valuable in the field of mineralogy, 
for the rock samples are made essentially from ionic compounds, the secondary 
ion emission of which is very strong and roughly proportional to the con
centration of the corresponding element. The difficulties which could arise 
from electrically insulating samples are overcome quite satisfactorily by 
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Fig. 34. - Al-Ca eutectic. A1+ image (Rouberol). Magn.: 400 x. (Courtesy of Proceedings 
5th Congress on X-Ray Optics and Microanalysis.) 

vacuum depositing onto the sample surface a metallic grid which ensures 
elimination of superficial charges. One of the first applications in this field 
is illustrated by Fig. 35, which shows the respective distributions of Li, Na, 
Al, Si, Κ and Ca in a specimen of granite containing inclusions of lepidolite 
(a variety of mica where sodium is partly replaced by lithium) embedded 
in a quartz matrix. For such semiquantitative estimations of the various 
components of a mineralogical sample, ion emission microanalysis is a most 
valuable tool, for it enables a rapid identification of the various elements or 
isotopes to be made; very low concentrations, of the order of the ppm, may 
be detected; on the other hand, the specimen may be moved as rapidly as in 
a conventional microscope for looking at the distribution of any element 
across an extended area. 

The other group of applications covers all the situations where the chemical 
or isotopical constitution of the sample is varying essentially in one direction 
of space; such is the case in surface analysis (e.g. chemical reactions) and 
for diffusion studies. In this respect, secondary ion microanalysis is especially 
valuable for semiconductor analysis. 
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Na Si Ca 

Li Al Κ 
Fig. 35. - Granite specimen. Distribution images of Li, Na, Al, Si, Κ and Ca (Slodzian). 

As a matter of fact, single crystals are sputtered quite uniformly by the 
primary ion beam, so that deeper and deeper layers are progressively laid 
bare in the course of the operation; a simple recording of the ion emission 
from the doping element as a function of time is sufficient to give the diffusion 
profile. The etching speed may be calibrated at a later stage by interferometry ; 
the emitted ion intensities are measured with the multiplier (Fig. 22) and 
known standards are used for calibration. 

The uniformity of the etching speed, in the whole of the analysed area, 
may be made still better if the bombarding beam is scanned a little across 
the sample surface so as to ensure perfect homogeneity of the ion primary 
density. This technique was applied in our laboratory by Slodzian and 
Bernheim for measuring implantation profiles: the resolving power in depth 
may be estimated to some tenths of Angstrom units and it could be made 
much better by using primary ions of low energy. 

Isotopic analysis opens the way to self-diffusion studies. The diffusion 
of 1 80 in uranium oxide has been examined recently by Contamin and 
Slodzian (1 6). Natural oxide was plated with a layer of oxide enriched in l gO . 
After the heat treatment, cuts were made by mechanical polishing at various 
depths. From the measurement of 1 60 ~ and l gO ~ emissions at the various 

(Courtesy of Ann. de Phys.) 
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depths, a general diffusion profile was easily obtained; the results are shown 

on Fig. 36. The logarithm of the excess concentration in l sO (over the natural 

concentration) is plotted as a function of the square of the depth. Further

more, the time variation of the emitted ion intensity was recorded for each 

sample during the course of its sputtering by the ion beam ; as a result, local 

1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 χ

2
( 1 0 "

8
^

2
) 

Fig. 36. - Diffusion of l gO in uranium oxide (Contamin and Slodzian). (Courtesy of Compt. 
Rend. Acad. Sci. Paris.) 

diffusion profiles were obtained (Fig. 36) which are seen to agree with the 

general profile satisfactorily, in spite of the fact that the etching speed is less 

uniform in such polycrystalline samples. 

The few examples we have considered here were in the field of solid state 

physics; however there is no doubt that an enormous range of applications 

is open to this technique in other fields such as chemistry, mineralogy and 

biology. 
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1. Field emission and an electron gun. 

11. Introduction. 

Field emission, as its name implies, is the process whereby electrons 

are emitted from a material by the influence of a large electric field. The 

process has been known for some time, and the basic equations were written 

down by Fowler and Nordheim in 1928 Q-). The development of the tech

nology and experimental understanding was begun by Millier in 1937 (

2
) and 

he has been the most outstanding contributor in the field since that time. 

This process has found its principal use in the elucidation of the prop

erties of metal surfaces and their interaction with other materials such as 

gases. Very few devices have been developed which use this effect. Apart 

from our own microscopes, the only other use appears to be as a source 

of high peak currents in pulsed electron beam generators. 

For those not familiar with the field emission we will give a brief expla

nation. A much more complete discussion is given by Gomer (

3
). 

A much simplified picture of a metal is that of a large number of unbound 

electrons which are free to move among the relatively stationary positive 

charge centers. The number of these electrons is very large, there being 

perhaps one free electron for every positive charge center. 

Electrons are fermions so that there can be only two electrons in each 

(*) Work reported here was supported by the U.S. Atomic Energy Commission. 
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defined level. This means that all levels are filled successively and the highest 

level (the Fermi level) may be several volts above the lowest level. Such an 

energy corresponds to a temperature of 10

4
 °K. This remains true almost 

independently of the actual temperature of the metal. A metal can be con

sidered to be a material where the available band for electrons is only par

tially full. 

Figure la) illustrates the various parameters that are used. The diagram 

A Potential V 

} 
Ψ/////// :/W///////// 
iff//// ///'////////// if//// //////////////, 

(a ) 

V 

(c) 
Fig. 1. - Illustration of the variation of the potential as a function of distance from the 
surface of a metal: a) with no applied field; b) with an applied field E; c) the metal is 

covered with a layer of gas and the field Ε is applied. 



High intensity electron sources etc. 1 6 5 

is a representation of the electrical potentials which exist close to the surface 

of a metal. Inside the metal, electrons fill the available bands up to a level μ. 
There remains a gap φ to reach the vacuum level, φ is the work function. 

That is, if we can give an energy > ecp to an electron it can escape the metal 

(thermionic- or photo-emission, for example). 

Now consider Fig. lb) which shows the same example except that an elec

tric field Ε is applied to the metal. This causes the potential to fall linearly 

in the region outside the metal. Under these conditions it is possible for 

a completely new process to occur. It can be seen that an electron does not 

require any energy at all to escape from the metal because it can « tunnel » 

through the potential barrier along the line OP. 
The phenomenon of tunneling was first described by Gamow (

4
) who 

used it successfully to explain α-emission from radioactive nuclei. Briefly, 

the probability for tunneling to take place can be calculated using the Schro-

dinger equation and matching boundary conditions inside and outside the 

barrier. The probability depends strongly upon the height φ of the barrier 

and upon the width φ/Ε (the distance OP in Fig. lb)). 
The calculation was performed by Fowler and Nordheim who obtained 

a value for the emission current density * 

We can consider the Fowler-Nordheim equation to be an accurate rep

resentation of an ideal condition, namely an atomically flat metal with no 

other materials (such as gas molecules) present. 

The real world is considerably different from this, however, and we should 

now consider some perturbing effects. 

Consider, for example, a monomolecular layer of gas molecules on the 

surface of the metal. Then these molecules will behave like a dielectric. 

Assuming the same potential on the metal as before and maintaining the same 

field Ε as before, we see that the field in the dielectric is reduced to Ejk and 

so the point Ρ moves to P' and the tunneling diagram is similar to the previous 

one except that the work function has apparently increased from ψ to φ'. 
We can estimate this change because 

/ = 6 . 2 · 1 0

6
· 

(μ/φ)* 
(μ + φ) (1) 

φ'— φ~d'E , 

where d is the thickness of the monolayer. 

Assuming a rare-gas layer, d~2Â. Field emission usually occurs with 
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values of Ε of about 0.5 V/Â and therefore 

φ'— φ~1 Υ~φ/4. 

This is a small change, but it can cause a profound reduction of emission 

current in view of the exponential dependence of / on φ. 
We can also see that the width of the barrier φ/Ε is of the order of a few 

Angstroms, φ is usually about 4 V and Ε is about 0.5 V/Â. Consequently 

the barrier width is only 8 Â. In view of this, we can appreciate that the 

diagrams in Fig. 1 are very much idealized. The actual edge of the metal will 

be of the order of 1 Â thick and will vary considerably from point to point 

and should depend upon the crystal orientation of the surface atoms. We 

would therefore not be surprised if the current density / depends upon the 

crystal orientation. 

1*2. Field emission as an electron source. 

One cannot conveniently achieve electric fields of the order of 1 Y/Â 

using a flat surface. It is possible to do so, however, if the surface is small 

and hemispherical. Under these conditions 

and if F ~ 1 0

3
V and r ~ 1 0

3
Â , one can achieve E~l V/Â. 

Under normal circumstances one does not have an isolated sphere but 

rather a hemispherical boss on the end of a cylindrical shank. Under these 

conditions one has 

where k is a constant and k~5. Higher voltages are therefore required. 
The current density of a high field emission tip is a complicated func

tion of angle off the axis. Dyke and Trolan (

5
) have used an average tech

nique to define the current density in terms of the emission current (1). 
Using this approach, they have measured continuous current densities up 
to 10

6
 A/cm

2
 compared to approximately 10 A/cm

2
 for a hot filament tip (

6
). 

This feature alone is interesting, but there is also the fact the apparent source 
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size is much smaller than the actual tip size. If we consider a tip with a 

hemispherical end and also assume that electrons will be emitted within a 

finite voltage range 0 to F T, then one can show that the apparent source 

radius r is approximately (

7
) 

r = R(VTIVJ*, 

where R is the radius of the tip and V1 is the potential applied to the tip. 

This approximation is good for a spherical source only. The effect of the 

shank will be to change this value, but not by an order of magnitude. 

Reasonable values to insert in this equation are R=500Â, VT = 0.5 V, and 

V±= 1 kV, which lead to r = 11 Â. 

Most high field emission work has been done using tungsten as the tip 

material. The reasons for this selection are its suitable properties, such as 

a high melting point, a low vapor pressure, relatively high electrical and 

thermal conductivity, and high mechanical strength. 

We fabricated our tips using the techniques outlined by Dyke et al. (
8
). 

A piece of 0.125 mm diameter tungsten wire (1-1-3) mm long is spot-welded 

onto a preformed 0.2 mm diameter tungsten filament which is hairpin shaped. 

The assembly is electropolished, and the tip is etched by immersing it in 

a one normal sodium hydroxide (NaOH) solution and by applying 12 V dc 

between the tip and a remote electrode in the solution (Fig. 2). 

The etched tip is mounted in an enclosure which is evacuated to about 

10~

9
 torr. The tip is « formed » (rounded off) by sending a brief pulse of 

current through the filament. As the magnitude of the current pulse is in

creased, the filament begins to glow red. By this time the heat has usually 

driven off the contaminants so that the pressure no longer rises during the 

flash. The tip is then tested to see whether cold field emission is occurring. 

After emission is detected, a check is made to determine if the tip is properly 

formed by comparing an experimental voltage-current curve with that pre

dicted by the Fowler-Nordheim equation. A typical Fowler-Nordheim plot 

for a tungsten tip having the plane with Miller indices (310) perpendicular 

to the axis is shown in Section Γ 4. This crystal orientation was selected 

because it produces intense emission along the axis (

9
). 

The subsequent performance of the tip appears to be more dependent 

on the local gas pressure than on any other parameter. In general, the emis

sion current at constant voltage appears to be a curve similar to that of 

Fig. 3 (

1 0
) . At first there is a small decline in emission current as the surface 

of the tip becomes coated with contaminants which increase the work func-



Fig. 2. - Tip etching arrangement. (Courtesy of Rev. Sci. Instr.) 

TIME 

Fig. 3. - Typical dependence of emission current with time. As the tip becomes coated 
with contaminants, the emission first of all drops, and then begins a steady rise until the 
emission becomes erratic and the tip will eventually destroy itself with a vacuum arc. 

(Courtesy of Rev. Sci. Instr.) 
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tion. Thereafter the current rises until it becomes erratic, and the tip eventually 

destroys itself by a vacuum arc (

1 1 1 3
) . The time scale for this process can 

vary from seconds to thousands of hours depending on the pressure (

1 0
) . 

When the emission current becomes erratic, the performance of the tip 

can easily be restored to its original condition by providing a pulse of current 

through the filament to evaporate the contaminants. 

Γ 3 . The electron gun. 

The type of electron gun used in conventional microscopes has been 

developed to satisfy the needs of that instrument. Rather than attempting 

to modify such a gun for use with a field emission source, we decided to 

design a gun for this application alone. 

We require a potential of a few kilovolts to provide the emission current 

from the tip and we would like to operate the microscope using an electron 

beam of a few tens of kilovolts. We must therefore use a system with at 

least three electrodes. 

The electrons from the field emission source will be attracted towards 

a first anode which is held at a few kilovolts. Some of these electrons must 

be allowed to pass through an aperture in this anode so that they can be 

accelerated towards a second anode which is held at a potential of a few 

tens of kilovolts. A fraction of these electrons must be allowed to pass through 

a second aperture to form the usable electron beam. 

We therefore have a requirement for two anodes, each with an aperture. 

It is well known that apertures in anodes such as this can act as lenses. Such 

lenses have large aberrations which can easily degrade the quality of the 

electron beam. This lens effect is produced whenever the electric field strength 

on the two sides of the aperture is different. 

We decided that it would be better to design an electron gun in such a 

way that these aperture lenses were as weak as possible. In this way, any 

lens effect would be produced by the accelerating field itself and this field 

can be shaped to reduce aberrations. 

The way in which this was accomplished is shown in Fig. 4 . The electric 

potential rises sharply in the neighborhood of the tip and levels off at a 

distance of several tip radii. Thereafter the electric field is almost zero. 

Assuming that an anode must be placed at position A, we now insist that 

the field remains zero through the aperture in this anode. The potential must 

then be allowed to rise towards the second anode (at position B), but imme-
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diately before the aperture in this anode we must reduce the slope to zero 

so that the electric field on this side of the aperture will be zero. On the 

other side of the aperture in the second anode the electric field is automatically 

zero because this anode is kept at ground potential. 

V 

t 
T i p 1st Anode 2 n d Anode 

Fig. 4. - Schematic drawing of the required axial potential distribution for an electron 
gun. The principal requirement is that the slope of the curve be zero when passing through 

the anode apertures. (Courtesy of Quart. Rev. Biophys.) 

It can be seen that we need some kind of S-shaped curve for the varia
tion of potential between the two anodes. The particular shape of curve can 
be selected to reduce aberrations as much as possible and the required field 
shape can be produced by a suitable shaping of the electrodes. 

The shape of the potential curve is such that there are two zeros in the 
slope. We therefore require at least a cubic term, and the simplest possible 
expression for the variation of potential with axial distance would be 

V=az
2
 + bz*. 

We will take z = 0 at the first anode, z = l at the second anode, Vz==0 = 0 
and Vz=1=l. We can therefore rewrite the expression as 

V=az* + (l— a)z*. 

Differentiating, we obtain 

^ =2az + 3(1 — a)z
2
. 
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dV/dz is zero when z = 0, and if we put a = 3, then dV/dz = 0 when z= 1, 

which is the required condition. We now have 

V=3z
2
—2z

z
. 

V must also be a function of r, the radial distance from the beam axis. This 

dependence can be determined by inserting the above expression for V into 

Laplace's equation. We then obtain the complete expression for V. 

The shape of the electrodes can now be obtained by putting V=0 or 1. 

For V = 0 , we have 

, 2 = 2 ζ 2 Γ3-2Ζ1 
3 U-2zJ 

The electrode shape for V= 1 is a mirror image of that for V= 0 about 

the ζ = \ plane. Figure 5 shows the shape of the electrodes calculated from 

this expression. 

u L/yi J 
Fig. 5. - Scale drawing of the anode slopes which produce the required accelerating field. 

(Courtesy of Quart. Rev. Biophys.) 
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The particular potential distribution given above is not, of course, the 

only .S-shaped curve which can be drawn to satisfy the prescribed condition. 

It is, however, the one with the greatest mathematical simplicity. 

Butler investigated many such curves in an attempt to find the one which 

gives the smallest spherical aberrations when used as an accelerating sys

tem (

1 4
) . He computed the first and third order optical properties of families 

of such curves, but concluded that the simplest solution given above was 

among the best. This is the basis of all the electron guns which we have 

used (

1 5 1 7
) . 

In spite of the simplicity of the electric field distribution, it is easier to 

compute the optical properties of the gun rather than attempt an analytical 

solution. In particular, both Butler and Thomson (

1 8
) have written programs 

which can compute all the essential optical properties. 

1 4 . Optical properties of the electron gun. 

In order to use this electron gun in an electron microscope we need to 

know a few of the more important characteristics of the gun. In particular, 

we need 

a) the position and magnification of the image of an electron source; 

b) the chromatic aberration coefficient; 

c) the spherical aberration coefficient. 

Each of these quantities is a function of the position of the electron source 
and the voltages on the two electrodes. 

This information is given in Fig. 6a), b) and c) for a 2 cm gun, that 
is, for a gun where the distance between the two anode apertures is 2 cm. 
Together with the characteristics of the field emission sources, such as effec
tive source size and the energy spread of the electrons, these Figures give the 
information necessary to calculate all the relevant properties of the gun. 

As an example of the characteristics of this gun, we can calculate the 
properties of the real image of the tip which can be produced at various 
distances from the second anode. In order to produce a good image we must 
include a small defining aperture. Experimentally we have concluded that 
the best location for this defining aperture is at the second anode. The reason 
for this choice is that small amounts of contamination on such an aperture 
tend to become electrically charged and introduce astigmatism into the beam. 
This effect is most pronounced when this charging process occurs in a region 
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Fig. 6. - Calculated gun characteristics for three different positions of the image distance: 
a) image of the tip at 1 cm from the gun; b) image of the tip at 4 cm from the gun; c) image 
of the tip at 8 cm from the gun. m is the geometrical magnification, Cs the spherical aber
ration constant and Cc the chromatic aberration constant divided by the voltage V1 of 

the first anode. (Courtesy of Quart. Rev. Biophys.) 
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J_ 
0 5 10 15 20 25 30 

Fig. 7. - Graph of the dependence of the optimum probe diameter WR M S) upon the ratio 
V0/V1 for various fixed image distances. (Courtesy of Quart. Rev. Biophys.) 

where the electron beam energy is the lowest and least pronounced when 

the beam energy is high and the electron beam current available to charge 

the contamination is low. 

(xl0

5
)vs V0/V, (V,=3KV) 

EMISSION 

5 10 15 20 25 30 
V 0/ V , 

Fig. 8. - Beam intensity in the focused spot for the conditions given in Fig. 7. (Courtesy 
of Quart. Rev. Biophys.) 
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We therefore include an aperture at the second anode and can now cal

culate the following properties of a real image of the tip. 

a) The beam current in the focused spot. 

b) The Gaussian image size. 

c) The contribution to image size from spherical aberration. 

d) The contribution to image size from chromatic aberration. 

e) The effects of diffraction at the aperture. 

The various terms b)-e) can be combined quadratically to give an estimate 

of the final image size. 

All these factors can be readily calculated from the information we have 

given previously and in Fig. 7 and 8 we present the results for image distances 

of 1, 4 and 8 cm. 

It can be seen from these Figures that a very small image of the tip can be 

produced, and furthermore, the beam current available in this image is more 

than adequate for scanning microscopy. It is interesting to note that the 

spherical aberration of the gun is not a significant contributing factor to the 

spot size when the aperture is optimised for the smallest spot size. Chromatic 

aberration effects are much larger and probably cannot be reduced because 

such effects are inherent in any electrostatic focusing system. 
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2. Microscope design using field emission gun. 

21. Simple scanning microscope. 

It is clear from the previous Section that a field emission source together 

with an electron gun can produce a focused spot of electrons about 100 Â 

in diameter a few centimeter away from the electron gun. The addition of some 

other components can convert the electron gun into an electron microscope 

with a resolution of 100 Â. Such a microscope can be used either in trans

mission or can be used with secondary electrons. 

2*1.1. Description of microscope. - A photograph of the microscope is 

shown in Fig. 9. The field emission electron gun has been described in detail 

in the previous lecture. 

The focused spot produced by the gun is scanned across a specimen in 
a television type raster by means of an electrostatic deflection system (

x
). 

Eight Inconel plates are mounted on a Mycalex insulator, in such a way 
as to shield completely the insulator from the beam (see Fig. 10). The deflec
tion voltages are placed on four of the plates, while two quadrupole fields, 
one rotated by 45° with respect to the other, are superimposed on the deflec
tion fields using all eight plates. The two quadrupoles are excited through 
a sine-cosine potentiometer which results in a quadrupole field of arbitrary 
angle and magnitude for the correction of astigmatism (

2
). 

Information about the specimen is obtained by detecting transmitted 
electrons using a solid-state detector. The photomultiplier signal is amplified 
and used to modulate the intensity of a synchronously scanned display tube 
to form an image of the specimen. 



Fig. 9. - The gun microscope. The field emission tip sits approximately at the level of the top row of ports and the specimen sits 
slightly above the level of the bottom row of ports. Two micrometer motions on the lower ports are used to move the specimen. The 
photomultiplier-scintillator combination used to detect the transmitted electrons is below the bottom flange (not visible in this picture). 
It is similar to the device used for detecting secondaries which is seen coming out of a side port in the lower left part of the picture. 

(Courtesy of Rev. Sci. Instr.) 
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Fig. 10. - Diagram of the electrostatic stigmator and deflection system. The Inconel plates 
are mounted on a Mycalex insulator so that the insulator is completely shielded from the 
beam. The deflection voltages are placed on four of the plates, while two quadrupole fields, 
one rotated by 45° with respect to the other, are superimposed on the deflection fields 
using all eight plates. The two quadrupoles are excited through a sine-cosine potentiometer 
which results in a quadrupole field of arbitrary magnitude and angle for the correction 

of astigmatism. (Courtesy of Rev. Sci. Instr.) 

The magnification is determined by the size of the display tube raster 

compared to the beam scan raster. The useful range varies from 400 to 

400 000 X . 

To obtain stable field emission, the microscope chamber is kept at 

~ 10~

9
 torr by a 400 liter/s Varian Vacion pump. The accelerating voltage, 

the field emission voltage, and a current supply for periodic heating and 

cleaning the tip are provided by a stable (4 ppm/h) 30 kV supply (

3
). 

2Ί.2 . Operation of microscope. 

a) Field emission tips. We generally use (310) and (111) oriented tung
sten wires for our field emission tips because they produce intense emission 
along the wire axis (

4
). All these tips are checked in an auxiliary tip testing 

system before they are put into the microscope. Using this auxiliary system 
we can determine the value of V1 for a given emission current and whether 
or not the intense emission is centered on the axis of the tip holder (

5
). 

Once in the microscope the tips are first cleaned by sending a brief pulse 
of current through the filament (« flashing ») so that the tip reaches about 
1900 °K (white hot) . After that , the tips are only periodically flashed at about 
1000 °K (red hot) . Because the ambient pressure is only about 1 0

-9
 torr, 
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this means that we run the microscope with the surface of the tip covered 

almost uniformly by a monolayer of adsorbed gases and the emission current 

gradually rises over a period of time until the current becomes erratic (

6
). 

When this happens the V± supply is turned off, the tip is « flashed » and the 

microscope is ready for operation again. The running period between flashes 

is usually of the order of 30 minutes to several hours depending upon the 

local pressure in the vicinity of the tip. 

Using field emission tips in the above fashion we have experimentally 

measured 10~

10
 A of beam current in a 100 Â spot for 10 μΑ of tip current. 

According to the calculations of Oatley et al. (

7
), a probe current of 10~

10
 A 

should be sufficient to record a 600 line picture in ~ 10 s using secondary 

electrons. Using transmitted electrons and assuming only 10% transmission, 

we expect that a 600 line picture taken in 10 s will provide 3 % statistics per 

resolution point in the image. 

b) Alignment. Alignment consists only of placing the field emission 

source on the electron optical axis of the gun, since the gun is prealigned 

This is done by moving the source so that there is no image movement as F 0 
is varied. The calculated and experimental aligment tolerance for a 100 Â 

probe size is ~ 25 μιη. Movement of the tip is accomplished through a 

bellows on the top of the microscope. 

2 Ί . 3 . Description of secondary electron detector. - A silicon surface bar
rier detector (

8
) was chosen for the secondary electron detection system. 

For this application, a semiconductor detector has definite advantages over 
the photomultiplier-scintillator combination generally used in conventional 
scanning microscopes (

9
). Ultra high vacuum problems are alleviated by 

eliminating unbakeable scintillators and the need for optical coupling. In 
addition, standard ultra high vacuum feedthroughs can be used. Finally, 
construction is considerably simplified because the use of a semiconductor 
detector obviates the need for careful polishing and optical coupling of a 
light pipe and scintillator (

9
). The detector was constructed with a lavite 

insulator and a minimum of epoxy to reduce vacuum problems. Also, the 
gold contact layer on the front surface of the detector, through which the 
electrons must pass in order to be detected, was made as thin as possible 
( < 2 0 0 Â ) . The detector was placed at the end of a beryllium-copper tube, 
the front of which is covered with a copper screen (see Fig. 11). The insula
tors holding the detector and tube are made of Mycalex. 

A voltage of ~ + 2 0 0 V is placed on the tube and screen while the entire 
detector is raised to a potential of ~ + 1 0 k V . Secondary electrons p ro-
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Fig. 11. - A schematic diagram of the microscope and the secondary electron detector. 
Between the anodes, the lens action of the electrostatic field focuses the electron beam and 
forms a real image of the field emission tip at the specimen level. The plane of the spec
imen is usually at an angle of 30° with respect to the incident beam. The secondary elec
tron detection system is mounted at the specimen level with its axis perpendicular to the 

incident beam direction. (Courtesy of Rev. Sci. Instr.) 

duced at the specimen are drawn through the screen and accelerated down 
the tube where they strike the detector. 

The charge generated in the detector by the accelerated secondary electrons 
absorbed in the detector gives rise to a current which flows across a load 
resistor and the resulting voltage is amplified by a three-transistor amplifier (

1 0
) . 

The battery powered amplifier operates at the + 1 0 kV of the detector 
with its output capacitively coupled to a video amplifier at ground. While 
it is possible to obtain a d.c. output (

u
) , capacitive coupling was chosen 

mainly for its simplicity and because d.c. levels of the secondary electron 
signal were not required. Circuit components were chosen to give a band
pass of 20 Hz to 150 kHz which is more than sufficient to record a 500 line 
picture in 10 s. With an estimated detector gain of 2 -10

3
 (an 8 kV electron 

creates about 2-10

3
 electron-hole pairs in silicon), a load resistor of 100 k Q , 



Fig. 12. - Micrograph of 10-day-old embryonic chick retinal cells. The cells were grown 
on small glass cover slips, fixed with gluteraldehyde and freeze-dried. The cover slips were 
coated with ~ 100 Â of gold. Full horizontal scale is 30 [xm. (Courtesy of Rev. Sci. Instr.) 
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and an amplifier gain of 500, the system gives a 10 V output signal for a 

detected secondary electron current of 1 0 _ 1 0A . 

a) Performance. Resolution of (100+200) Â has consistently been 
obtained on a variety of different specimens using this secondary electron 
detector, and is shown in the high magnification micrographs in Fig. 12 

Fig. 13. - Micrograph of the surface of a thin (~500Â) evaporated aluminum specimen 
showing the topographical structure of the crystal islands. Full horizontal scale is 1 μιη. 

(Courtesy of Rev. Sci. Instr.) 

through 15. All micrographs were taken with primary beam currents of 

(10- i i^-10-1 0) A and scan times of (10^-100) s. The accelerating voltage which 

was used varied between 12 and 27 kV. 



Fig. 14. - Micrographs of human blood flukes (the cercaria form of Schistosoma Mansoni). Left shows the body of one blood fluke 
where the tail has become detached revealing the tail plate. Full horizontal scale is 70 μηι. Right is a higher magnification of left 

showing the spiny surface just above the tail plate region. Full horizontal scale is 1 μηι. (Courtesy of Quart. Rev. Biophys.) 
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Fig. 15. - Micrograph of the surface of a piece of volcanic rock. Cleavage steps with heights 
less than 200 Â are discernible. Full horizontal scale is 3.0 μηι. (Courtesy of Rev. ScL 

Instr.) 

2 2 . High resolution microscope. 

2*2.1. Formation of the focused spot. - To compete with conventional 
electron microscopes it would be necessary to obtain a focused spot of elec
trons a few Â in diameter. It does not appear possible to accomplish this 
in one stage using the electron gun alone. We must therefore consider a 
system which uses the electron gun followed by a lens of small focal length 
which will demagnify the image of the tip which is produced by the electron 
gun (Fig. 16). 
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If we consider such a system, we can make a list of all possible contributions 

to the size of the final focused spot. They are 

a) The Gaussian image of the t ip. 

b) The effect of spherical aberration in the gun. 

c) The effect of chromatic aberration in the gun. 

d) The effect of spherical aberration in the lens. 

e) The effect of chromatic aberration in the lens. 

/ ) Diffraction. 

The contributions a), b), c)9 are all subject to the demagnification of the 

magnetic lens, and we can see immediately that their total effect is small. 

Fig . 16. - Schematic drawing of the high resolution scanning microscope. The gun is fol

lowed by a magnetic lens with 1.1 m m focal length. The specimen is placed in the center 

of the lens field. 

Suppose the magnetic lens has a focal length of 1 m m and is 5 cm from the 
image of the source. Then all these effects will be demagnified by a factor 
of 50. Assuming a 100 Â image then this will become 2 Â. (In practice it 
will be smaller than this because the 100 Â estimate includes the effect of 
diffraction.) 

Contribution e) will be small in a well-designed lens, particularly since the 
energy spread of electrons from a field emission source is small (about 1/4 V)* 
We will neglect it here. 

Contributions d) and f) are exactly the same elements which occur in the 
calculation of the resolving power of a conventional microscope. Combining 

TIP 
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them leads to a resolving power 

3 = 0 . 7 C * A * . 

Fig. 17. - Bacteriophage Γ4 negatively stained with Uranyl Acetate. 3 000Â full hori
zontal scale. (Courtesy of Quart. Rev. Biophys.) 

In our particular system we designed a microscope lens with a focal length 

of 1 mm and C ŝ 0 . 3 m m . This gives a minimum resolving power 
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Fig. 18. - Tobacco mosaic virus negatively stained with Uranyl Acetate. Short segment 
is the stacked disc form with 20 Â spacing. Specimen was provided by A. Klug. 2200Â 

full scale. (Courtesy of Quart. Rev. Biophys.) 

It is perhaps not clear how the effects of the gun and the lens should 

be combined to allow us to estimate the final resolution. We assume here 

that they should be added in quadrature. In that case we would have 

à = V4A2 + 2 2 = 4.85 Λ 
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Fig. 19. - Catalase crystal negatively stained with Uranyl Acetate, showing 90 Â spacing. 
Specimen was provided by A. Klug. 3 000 Â full scale. (Courtesy of Quart. Rev. Biophys.) 

The effect of the gun then appears to be a small effect (10%). In that respect 
it is similar to the effect of lenses other than the objective in a conventional 
microscope. 

The design of our microscope is shown in Fig. 16. The best resolution 
obtained to date is 5 Â, confirming the estimate for the resolving power given 
above. 

Some representative micrographs are shown in Figs 17, 18, 19, and 20. 
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Fig. 20. - Ferritin, air dried on carbon film, showing (5-i-lO) Â structure in background. 
1500 Â full scale. 

2*2.2. Detection system. - In order to exploit the possibilities of a high 
resolution scanning microscope it is necessary to use the transmitted electrons 
rather than secondaries for the reasons given previously. However, the 
absence of optical elements below the specimen provides considerable lati
tude in the choice of the kind of electrons to detect. In particular it was 
thought that energy loss electrons might be capable of providing additional 
information about the specimen. Therefore a spectrometer was installed in 
the microscope below the specimen. In this way one can choose to display 
all transmitted electrons, only those electrons which have lost no energy, 
or electrons which have lost a specific amount of energy. 
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A spherical electrostatic spectrometer was chosen although other kinds 

could be used. This spectrometer has a resolution of 0.3 V at 25 kV and 

the slits can be opened up to allow a band of electrons 200 V wide into the 

detector. 

An aperture can be placed between the specimen and the spectrometer 

to select a small angular range of electrons. 

2*2.3. Contrast. 

a) Energy loss. It has been well established that the spectrum of energy 

loss electrons which emerge from a specimen illuminated by a monochromatic 

source of electrons is directly related to the optical absorption character

istics of the specimen. 

Specifically the optical absorption is given by Im (ε) where ε is the dielec

tric constant and the energy loss spectrum is given by I m ( l / e ) . There is, 

in general, no significant difference between these two unless the real part 

of the dielectric constant approaches zero. 

Most materials exhibit significant optical absorption properties in the 

range from zero to 20 or 50 V and this information can often be used to 

identify the material. It is apparent, then, that the energy loss electrons 

can also convey such characteristic information and could be used at least 

as a partial identification method. 

There is a wide range of energy loss phenomena which all have their 

counterparts in optical absorption, and we mention a few. 

1) C h a r a c t e r i s t i c X - r a y l i n e s : The incident beam of electrons 

can eject an electron from the fc-shell (or other shells) producing an energy 

loss spectrum which consists of a sharp leading edge at the energy cor

responding to the X-ray line and a long trailing edge as the electrons are 

ejected further into the continuum. 

Fig. 21. - Thin evaporated aluminum specimen, a) is a micrograph taken with zero-energy 
loss electrons while b), c), d) and e) are micrographs taken with an energy loss of 12, 22, 
30, and 35 V, respectively. Figure 21 d) corresponds to the kind of picture which would 
be obtained in a conventional electron microscope. / ) and g) show energy-loss data taken 
while the electron probe was stationary. Figure 21/) was taken on a black area of the 
specimen and the curve indicates substantially pure aluminum. The peaks are the plasma-
loss peaks which occur at 15, 30, 45, and 60 V. Figure 21 g) was taken with the electron 
probe stationary on a white area and indicates that this is probably aluminum oxide. 

(Courtesy of Journ. Appl. Phys.) 
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The intensity of such losses is small, but may be useful in specific appli

cations. Using a spectrometer of high enough resolution it should be possible 

to detect shifts in the position of the edge corresponding to the chemical 

binding energy. 

Such electrons (and all other energy loss phenomena) can either be used 

as a method of identification on selected areas or as a signal to be displayed 

on the screen. 

2) P l a s m a l o s s e s : The most pronounced plasma losses occur in 

metals and appear when the real par t of the dielectric constant goes through 

zero. The effect can be considered as the resonance excitation of the free 

electron gas. Multiple plasma losses occur and their intensities depend on 

the thickness of the specimen. 

The most pronounced plasma losses are seen in aluminum where they 

occur at multiples of 15 V. This is shown in Fig. 21 where we also show some 

micrographs obtained at various values of energy loss. 

Broad plasma losses occur even in non-conductors and are generally 

responsible for the gross appearance of an energy loss spectrum such as that 

seen in carbon. 

3) O t h e r e f f e c t s : There is a large variety of energy loss phenomena 

which can be obtained from the literature on optical absorption; for example, 

exciton product ion in solids, particularly ionic crystals and the U.V. spectra 

of biological molecules. So far, very little work has appeared on the electron 

energy loss phenomena corresponding to these effects. 
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3. Contrast mechanisms in a high resolution scanning microscope. 

3 1 . Mechanisms identical to the conventional microscope. 

Figure 22 is a composite diagram of a conventional microscope (reading 

from left to right) and a scanning microscope (reading right to left). 

It is clear from this diagram that the essential electron optics of the two 

types of microscope are identical except for the direction of motion of the 

electrons. This is an important concept because optical effects are independent 

of the direction of the waves. 

For example, a detector on the axis of the scanning microscope would 

correspond to the illumination aperture of the conventional microscope. 

DETECTOR 
DETECTOR 
APERTURE 

LENS 

SOURCE ILLUMINATION SPECIMEN 
APERTURE 

SCANNING 
Γ SYSTEM 

SOURCE 

^OBJECTIVE 
APERTURE 

SCREEN 

Fig. 22. - Schematic diagram of conventional and scanning electron microscopes. For the 
conventional microscope, read the diagram from left to right. We have an electron source 
providing illumination through an aperture onto the specimen. The specimen is then 
imaged by a lens through the objective aperture onto the screen. For the scanning micro
scope, we read the diagram from right to left. The electron source is imaged by a lens 
through an aperture onto the specimen. This image is scanned across the specimen by 
a scanning system. Electrons transmitted through the specimen pass through an aperture 

onto a detector. (Courtesy of Quart. Rev. Biophys.) 

13 
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The use of a very small detector would correspond to a conventional micro
scope with a highly collimated illumination system. 

It will be appreciated that these statements are qualitative ones which 
remain to be verified quantitatively. Indeed, we had not pursued this con
cept further until it became clear that some of the effects we were observing 
in the microscope were due to diffraction and interference effects which were 
exactly analogous to the effects observed in a conventional microscope. 
We will now examine this concept of the identity of the two types of micro
scope (except for the reversal of the beam direction) for the various types 
of conventional microscope images to determine whether or not they should 
be observed in a scanning microscope (

1 > 2
). 

3*1.1. Scattering contrast. - We consider the specimen to consist of a 
number of electron scattering centers and also that the lens is focused 
exactly on the specimen. 

Looking at the conventional microscope we see that contrast is obtained 
when scattered electrons are removed by the defining aperture. 

If we consider the illuminating beam to be an axial plane wave, then the 
intensity recorded on the photographic plate will be 

where / (a) is the angular distribution of the scattered electrons and a0 i& 
the half-angle of the defining aperture. 

Taking the case of the scanning microscope we consider the analogous 
case of a very small detector. Then electrons from various positions of the 
illuminating cone can be scattered into the detector and the intensity recorded 
by the detector is 

The normalization factor (OCJOCQ)

2
 is the ratio of the solid angle subtended 

by the detector (half-angle ax) to the solid angle of the illumination. 
The expressions for the intensities are identical except for the normaliza

tion factor. This same factor occurs when one considers the intensity in the 
image with no specimen in the microscope. Therefore the contrast in the two 
microscopes is identical. 

I ~2n\ 1(a) sin α doc, 

ο 

ο 
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Fig. 23. - Illustration of the formation of Fresnel fringes. For a conventional micro
scope, read the diagram from left to right. Electrons scattered or diffracted by the opaque 
edge interfere with the primary beam giving an interference pattern which is placed in the 
focal plane of the lens so that an image appears on the screen. For a scanning microscope, 
read the diagram from right to left, where it is clear that if all the path differences are 
the same we will again observe fringes as we scan the electron beam across the focal plane. 

(Courtesy of Quart. Rev. Biophys.) 

Ideally a plane wave is incident on the specimen which we take to be 
an opaque edge. The edge acts as a secondary source of radiation and inter
ference takes place in the region close to the edge forming fringes. If the ob
jective lens is focused onto a plane in this region the interference fringes can 
be observed. These fringes are well known to conventional microscopists and 
are used as a test of the instrumental resolving power and as a way to test 
for astigmatism. Experimentally one observes a dark fringe close to the edge 
when the lens is over-focused, no fringes when the lens is focused on the 
edge and a bright fringe when the lens is under-focused. The number of 
fringes which are observed depends on the degree of collimation of the illu
mination. 

For the case of a scanning microscope we simply view the diagram from 
right to left instead of from left to right. Providing we duplicate the ray 
diagram exactly, those interference effects should be exactly the same because 
their existence depends only upon path differences in the various rays. 

Such fringes can be observed in a scanning microscope and are shown 
in Fig. 24. They have exactly the same character as in a conventional micro
scope and appear identical in all respects. 

In order to observe such fringes it is necessary to use a very small aperture 

3*1.2. Interference and diffraction contrast. 

a) Fresnel fringes. In Fig. 23 we show schematically the formation of 

Fresnel fringes in a conventional microscope. 
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above the detector in order to duplicate the highly collimated illumination 

of a conventional microscope. One therefore sacrifices intensity and if one 

wanted to obtain a large number of fringes the intensity would be very small. 

Fig. 24. - Fresnel fringes obtained in a scanning microscope. The fringes were observed 
around a hole in an aluminum film. Top, left: over-focus fringe. Top, right: in focus. 
Bottom: under-focus fringe. Scale: the micrographs show an area which is 3100Â in 

the horizontal direction. (Courtesy of Quart. Rev. Biophys.) 

b) Phase contrast of lattice images. Again we refer to the explanation 
for the observation of these effects in a conventional microscope. The ray 
diagram is given in Fig. 25. 
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A highly collimated beam of electrons is incident on the specimen which 

consists of a periodic phase structure such as a crystal lattice. We consider 

three beams which emerge from the specimen, the undisturbed beam and 

Fig. 25. - Illustration of the formation of phase contrast images of periodic lattice. For 
a conventional microscope, read the diagram from left to right. The first order diffracted 
beam interferes with the zero order beam in the focal plane of the lens so that an image 
is formed of the interference pattern on the screen. For the scanning microscope, read 
the diagram from right to left. As all the path differences are the same, we should observe 
interference fringes as we scan the electron beam across the focal plane. (Courtesy of 

the two first order diffracted beams. These interfere in a region close to the 
specimen to produce interference fringes which form an intensity distribution 
with the same period as the original phase lattice. If the lens is focused on 
this region we can obtain an image of this intensity distribution. 

Experimentally it is better to under-focus the lens rather than over-focus 
because the aberration defect produced by the defocus error tends to com
pensate the aberration defect produced by the spherical aberration of the lens. 

In order to observe small spacings it is generally necessary to increase 
the size of the lens aperture. This tends to decrease the point (scattering) 
resolution but increase the lattice resolution. For this reason it is generally 
possible to observe lattice spacings which are smaller than the point resolu
tion of the instrument. 

These effects can be duplicated in a scanning microscope, and again we 
simply reverse the diagram. In this case we provide the zero order and two 
first order beams in the illumination systems (other beams are present but 
can be ignored). The zero order beam passes through the specimen and 
proceeds along the axis to the detector. The first order beams can be dif
fracted so that they also proceed along the axis and interfere with the zero 
order beam. The analysis of this situation is precisely the same as in the case 

L E NS 

F O C AL 
P L A NE 

Quart. Rev. Biophys.) 
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of the conventional microscope because again, the interference depends only 

upon path differences, not the direction. 

Such fringes have been observed and are shown in Fig. 26. As in the 

case of the conventional microscope we can increase the lens aperture to obtain 

increased lattice resolution. We show a 3.4 Â spacing in graphite, whereas 

Fig. 26. - Phase contrast micrograph showing the 3.4 Â spacing in partially graphitized 
carbon. This picture was taken with a small aperture above the detector, a wide illumi
nation angle and with the lens in an under-focus condition. (Courtesy of Quart. Rev. Biophys). 
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the point resolution of the instrument appears to be about 5 Â when operated 

at the same voltage (25 kV). 

c) Other interference and diffraction effects. It is clear now that the 

scanning microscope produces an image identical to the conventional mi

croscope when the ray diagrams are equivalent. 

Any imaging condition for the conventional microscope can be duplicated 

for the scanning microscope by reversing the direction of the rays (as we 

shall see later the inverse of this statement is not true). 

We therefore conclude that all the various types of image of which the 

conventional microscope is capable can be duplicated by the scanning micro

scope. So far we have observed diffraction contrast from lattice dislocations 

and extinction contours in addition to those previously described. There 

is no reason to doubt that other effects such as Kikuchi patterns could be 

obtained. 

3*2. Mechanisms peculiar to the scanning microscope. 

We will examine the fate of electrons which pass through a very thin spec

imen. These electrons can be divided into three categories. 

a) Elastically scattered electrons. These electrons have almost the same 

energy as the incoming electrons. The difference in energy is undetectable. 

The number of such electrons can be calculated from the value for the 

atomic elastic cross-section 

This elastic scattering is characterized by a very wide scattering distribution 

which is proport ional to 

where Θ is the scattering angle and 0O a constant (the screening angle) which 
in our case is of the order of (50-i-100) mrad. 

Most of these electrons, therefore, are scattered outside the cone of the 
incident illumination ((10-^20) mrad). These electrons can be most readily 
detected by means of an annular detector of such a size that the unscattered 
electrons just pass through the hole in the detector. 

(A2). 

(θ

2
 + 0

2
)

! 
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b) Inelastically scattered electrons. These are the electrons which lose 
energy in the specimen. They can lose any amount of energy, but the vast 
majority of them fall into a group such that 1 e V < ΔΕ< 100 eV. 

The total cross-section for this process is 

σ ί = 8 6 8 | * (λη 

and the angular distribution is characterized by a narrow angular distribution 

1 

where 

0'~~2y~1 mrad . 

Most of these electrons, therefore, will be within the cone of incident illumina

tion and will pass through the hole in an annular detector. 

c) No-loss electrons. By this we mean electrons which pass through 
the specimen without any interaction. Therefore 

N = Ne + Nt + N0, 

where Ν is the number of incident electrons, 

Ne is the number of elastically scattered electrons, 

Nt is the number of inelastically scattered electrons, 

N0 is the number of no-loss electrons. 

The no-loss electrons can easily be separated from the inelastically scattered 
electrons with the aid of the energy analyzing spectrometer. It is therefore 
a simple matter to arrange the scanning microscope to give three simultaneous 
signals as the beam scans across a specimen. These three signals correspond 
to the three groups of electrons. This is shown in Fig. 27. These three signals 
can be used in a variety of ways, but two illustrations will suffice here. 

i) Ne/N0. This is a normalized elastic scattering signal which is for
mally equivalent to the use of dark-field illumination in a conventional micro
scope with the important exception that the detector can subtend an angle 
of 250mrad or more, thereby providing a large signal. 



High intensity electron sources etc. 201 

ii) Ν elNt. We call this our « Z » contrast signal because it can be 
easily verified that Ne/Ni~Z/19. In other words this ratio provides a signal 
which is proport ional to Z , the atomic number. In turn this means that a 
micrograph can be obtained where the intensity is proportional to Z . 

Fig. 27. - Electrons emerging from the specimen can be sorted into three separate groups 
by means of an annular detector which detects the elastically scattered electrons and a 
spectrometer which separates no-loss electrons from the inelastically scattered electrons. 
By this mechanism three simultaneous electrical signals can be obtained from the microscope. 

This mode of contrast cannot be achieved in a conventional microscope. 
Very few high resolution microscopes have been fitted with energy analyzing 
equipment. Even where this has been done the resolution deteriorates because 
of the electron-optical problems. 

While it may be possible to extract the two pieces of information N0 
and Ni with difficulty from a conventional microscope, it does not appear 
feasible to extract them simultaneously. 

We show some examples of micrographs obtained with these signals in 
Figs 28, 29, 30. 



Fig. 28. - Γ4 DNA stained with 1 0 ~ 3 M CsCl. 3 000 À full scale. Picture on the left is 
formed by elastically scattered electrons ; the one on the right by the ratio of elastic to inelastic. 
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Fig. 29. - 74 DNA in ΙΟ-3 M sodium. Both pictures are formed by elastically scattered 
electrons. Left: 3 μπι full scale; right: 1 μιτι full scale. 



Fig. 30. - Γ4 DNA in 10"3M sodium, 3 000 À full scale. The picture on the left is for
med by elastically scattered electrons ; the one on the right by the ratio of elastic to inelastic. 
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3*2.1. Single atom contrast. - As a specific case let us consider the visi

bility of a single heavy atom which is placed on a substrate of carbon. This 

is a typical biological problem involving the visibility of specific stains. Single 

atom visibility has not yet been achieved, but we calculate it here as an 

example. 

The signals from the annular detector and the energy-loss detector are 

Ob 

Ob 

where aa and ac are the scattering cross-sections for the atom and carbon 
(the prime indicates the inelastic process), nc is the number of carbon atoms 
intercepted by the beam, ab is the cross-section of the beam and Ν is the 
number of incident electrons. 

Then 

Ne Ο a + ncOc 

But 

â'=Y9 and 
Oa_ / Z \ * 
Oc~\6J ' 

We therefore obtain 

Ne Z/19 + (6/Z)*-(6/19)-/fc 
Ni l + (6/Z)*-/fc 

We can proceed one step further by noting that 

«C = <V*-0.11 , 

where t is the thickness of the carbon film in Â (there are 0.11 atoms per 
cubic Â in carbon). 

This gives 

Ne _ Ζ119 + 0.063 (t-ab)IZ* 
Ni ~~ 1 + 0.2(f-<ra)/Z* ' 

This function is plotted in Fig. 31 for various values of ab and assuming 

/ = 20 A. 

It appears from this figure that single atoms should be visible using a 
signal corresponding to NJNi. However, we should investigate the statis
tical properties of the signal. 
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Fig. 31. - The value of the ratio of elastic to inelastic signal obtained for a single atom 
of the atomic number Ζ resting on top of a carbon film 20 Â thick. The three curves show 
the expected visibility of the atom as a function of the cross-sectional area of the focused 

beam. The cross-sectional areas are given in square Angstroms. 

We therefore need numerical values for NJN and NJN. These can be 
obtained from Subsect. 3*2, a) and b). We will assume here a value ab = 
= 20 À

2
 (approximately our current value). Then we can plot NJN and 

NJN as a function of Z. The values of NJNt can be obtained from these 
curves, but we are interested in statistical variations about the mean. We take 

Ne±VNe==Ne 

Ni ± VN~i ~ Ni 

VNe VNi 
Ne Nj 

Ne 
Ni ' ± 1 ^ + 7 = 

The statistical variations can therefore be represented by 

Ne VNe + VN; 
VNe~Ni Ni\r m 

\ 
• VNe + VNt 
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Fig. 32. - Visibility of single atoms as a function of atomic number taking into account 
statistical variations. 

We now only need a value of N. A representative value for our present 

instrument is N= 1500 electrons per resolution element. Using this value 

we can calculate the probable errors in the curves of Fig. 31. We show the 

results in Fig. 32. 

We conclude from these calculations that it may be possible to « see » 

single atoms with the present machine, but the task would be easier with an 

intrument with higher resolving power. 

It should be noted that the assumptions made here mean that a uranium 

atom, for example, provides about 60 elastically scattered electrons and about 

12 inelastically scattered electrons. It remains to be seen whether or not 

such an atom will remain in place on the specimen during this process. 

R E F E R E N C E S (Section 3) 

1) Α . V. CREWE and J. WALL: Optik, 30, 461 (1970). 

2) Α . V. CREWE and J. WALL: Proc. 27th Annual EMSA Meeting, St. Paul 1969, p. 172. 
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1. Introduction. 

We shall define a specimen stage as any device by means of which it is 

possible to act on the specimen or to perform some treatment of the specimen. 

The treatment may be geometrical (e.g. displacement, orientation, etc.) or 

mechanical (e.g. straining, scratching), chemical, physical (e.g. evaporation, 

deposition, bombardment) , thermal, electrical, etc. All those accessories 

which enable us to collect, record and analyse the signal produced by a treated 

specimen are not considered here as specimen stages (e.g. X-ray or light 

spectrometers, secondary electron detectors, probe forming lenses, scanning 

systems) and therefore will not be described. 

In addition, as this course is devoted to the application of electron micro

scopy to material science, where the materials are essentially crystalline 

objects showing predominantly diffraction contrast, we shall deal here with 

those stages which allow, at the least, performance of diffraction contrast 

experiments. It is obviously not possible and also not really profitable, even 

with these restrictions, to cover the whole range of designs of specimen stages 

for any given application; therefore a full description will only be given for 

some selected stages although, where possible, comparison with others and 

technical comments will be made. Further selection criteria used are that no 

detailed description will be given of stages commercially available from 

electron microscope manufacturers and that, in the main, only recently 

published work will be presented. 

14 
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2. Generalities and definitions. 

In the early days of electron microscopy when the lack of knowledge of 

the effect of possible mechanical instabilities on the resolution worried the 

designers, the specimen was rigidly clamped to the objective pole piece. 

Later, specimen stages allowing traverse (x,  y)  movement of the specimen 

were introduced, followed by the adoption of specimen air locks. It is fair 

to say that these represent the first specimen stages and the first specimen 

treatments inside the microscope. 

However, the advent of transmission electron microscopy of thin crystals, 

where the image contrast is essentially diffraction contrast and therefore 

orientation dependent (see for instance Howie, this volume), called for the 

development of special stages, the inclination  stages,  capable of tilting the 

specimen in any direction. For any meaningful experiment on crystals, in

clination stages are indispensable. 

While the stages for traverse movement have reached a very high degree 

of perfection, inclination stages are still not entirely satisfactory. This is 

because of the obvious complications arising when combining tilting and 

traverse and because of the limited space available inside the objective pole 

piece where the specimen is usually located for high resolution work. 

In the following, general principles will be outlined and only a few relevant 

examples will be given, selected from the large number of practical inclina

tion stages. 

We shall define (following an arbitrary, unofficial but widely used practice) : 

Tilting stage  a device which performs tilting of the specimen and does 

not usually provide a direct and accurate measurement of the angular co-or

dinates of the specimen (see Sect. 4). 
Goniometer stage  a device for performing tilting where the specimen 

orientation (or more correctly, the orientation of the specimen holder) is 

directly measured, with an accuracy better than ± 0 . 1 °. Very few gonio

meter stages exist (

1 _ 3
) ; their maximum tilting angle (typically 10°) is usually 

smaller than for tilting stages; they replace the whole specimen chamber 

including the air lock, and, of course, their cost is much higher (at least 

10 times). They are used for very specialized work (e.g.  where the relative 

orientation of various regions of the specimen has to be determined and 

Kikuchi lines cannot be used or are too difficult to interpret) and will not 

be treated here. 
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Fig. 1. - Schematic drawing of a device for testing inclination stages and for tracing 
their polar diagrams. 

The specimen is replaced by a mirror M on which impinges a collimated 

beam of light coming from a source S through a hole H in P. The beam is 

normal to Ρ and represents, for the stage / , the axis of the electron microscope. 

The light, reflected by the mirror, produces a spot on Ρ corresponding to 

each inclination θ of the mirror. On plane Ρ concentric circles of centre Η 
can be drawn, each one corresponding to a given specimen inclination Θ. 
By means of this simple device it is therefore possible t o : 

1) measure the maximum angle of tilt in the various directions, i.e. to 

determine the shape of the polar diagram; 

2) calibrate the stage by recording the correspondence between the 
reading of the tilt controllers and the angles of tilt (latitude and azimuth, 
see Sect. 4); 

3) check the performance of the stage (reproducibility, inertia, hys-

terysis, continuous smooth or jerking movement, etc.). 

Ideal inclination stage. An ideal inclination stage should fulfill the fol

lowing requirements which one must keep in mind when selecting a stage: 

Polar diagram a two dimensional calibration of the inclination stage. 

The polar diagram for a given stage can easily be obtained optically in the 

following way, which is also a good macroscopic test of its performance (

4
). 

Referring to Fig. 1, / is the inclination stage which is placed above a plane P . 
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a) Highest tilting angle in all directions. Medium tilting is now con

sidered to be in the range of ± 20° to ± 30°, low and high tilt below 20° 

and above 30° respectively. 

b) High resolution. The inclination stage should not reduce the ulti

mate resolution of the instrument. 

c) High accuracy. The tilting of the specimen should be smooth, con

tinuous, reproducible and free from backlash and inertia over the whole 

range of tilting angles. In addition there should be no interference between 

tilting motion and other possible motions {e.g.  traverse). 

d) N o specimen shift and no change of level of the observed area during 

tilting. 

e) Constant image orientation; i.e.  the image of the specimen should 

preserve its orientation during tilting with respect to a given fixed reference 

frame (such as the photographic plates). While requirement c)  depends on 

the accuracy of the construction, d)  and e)  are related to the working principle 

of the device. 

/ ) N o restriction of the traverse movement with respect to that of 

standard stages. 

g) Air lock for changing specimens and anticontamination device 

available. 

h) A wide range of specimen sizes and thicknesses should be accepted 

by the device. 

/) There should be a linear relationship between the tilting angles and 

the reading of the tilt controllers. Indication of the tilt angles should also 

be given. 

j) Robust, low maintenance, low cost. 

k) Electrically foot-operated in order to be able to carry out traverse 

and tilting simultaneously. 

Such a stage does not exist; we will see later which items feature in the 

performance of practical stages. 

Categories of  inclination  stages.  As traverse movement is an essential 

feature of any specimen stage which has to be retained in the inclination 

stages, it turns out that inclination stages may be divided in mainly three 

categories : 
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Fig. 2. - Schematic representation of tilting stages, a) The tilting device is built inside the 
traverse stage; b) the specimen traverse stage is inside the tilting stage. 

coincident with the point C of intersection of the tilt axes) will keep its level 

constant during tilting and therefore maintain focusing condition under 

observation. For all other areas changes of level and side movements usually 

occur during tilting. Refocusing of the specimen changes the magnification of 

the image and the diffraction camera length. This change can be accounted 

for if the microscope is provided with an objective current meter by noting 

the deviation of the current reading from normal operating conditions. Nearly 

all practical stages belong to this category. 

ii) Stages where the traverse action is carried out inside the inclination 
stage (Fig. 2b)). In this case, once the point C of intersection of the tilt axes 
aa, bb is made to coincide with the electron beam axis and once the specimen 
plane is made to coincide with the plane defined by the tilt axes, every region 
of a flat specimen, when it is observed, will be at the same level as C and the 
device operates at constant focus (and magnification) condition. 

iii) Stages which combine (for one tilting and one traverse axis each) 
the features of categories i) and ii) ; in particular stages where one of the tilt 
shafts is physically coincident with one of the traverse shafts. 

i) Stages where the tilt action is accomplished inside the specimen 

(traverse) stage (Fig. 2a)). In this case the tilt axes aa and bb follow the 

traverse of the specimen and therefore only one point of the specimen (that 
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As for the location  of the specimen stage, two solutions can be adopted: 

the stages may rest on the top plate of the objective lens (« top » stages) or 

may be built in the objective pole piece gap and rest practically on the top 

of the lower pole piece (« gap » stages). The first solution has the advantage 

of leaving more room in the proximity of the specimen holder for special 

treatments (e.g.  for magnetization, liquid helium, evaporation stages. See 

Sects 5, 6, 7) than the second solution. Conversely the latter is useful when 

narrow but ample room is required at the specimen level (e.g.  for specimen 

straining. See Sects 5, 6, 7). 

The specimen  holder,  in the form of a short cartridge or a long rod, can 

be inserted in the specimen stage from above the objective lens (« top » 

stages) or from its side (« gap » stages). In the first case it has become com

mon to name the holders cartridges,  in the second case they are referred 

to as specimen rods,  side entry rods or injectors. 

Stages belonging to category ii) are definitely to be preferred to the others 

because, in principle, no shift and no change of focus is suffered by the area 

under observation during tilting. However, they require a complete redesign 

of the specimen section of the microscope and it seems that it will be extremely 

difficult to obtain a high degree of tilt in all directions. 

The most popular stages belong to category i) because they use the existing 

traverse facilities of the instrument and only relatively minor alteration and 

additional work is required for fitting the tilting mechanism. They are nor

mally used in connection with top entry cartridges. 

Solution iii) is straightforward for those electron microscopes where the 

specimen holder is of the side entry rod type. 

Two basic  principles  may be used to obtain a predetermined inclination 

of the specimen: 

a) Rotation of the specimen around an axis normal  to the specimen 

followed by tilting around a fixed axis; i.e.,  combination of one axis of rota

tion with one axis of tilt; 

b) tilting around two mutually perpendicular axes. 

In case a)  it is very simple to obtain a given specimen tilt when the rota
tion axis is parallel to the beam, but a complicated calculation is required 
before a second predetermined tilt is obtained. In such circumstances it is 
advisable to bring the specimen back to the horizontal position. This way 
of getting tilt is not ideal for stereo pictures because the images of the stereo 
pair are usually rotated with respect to each other. Also the different orienta-
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tions of the images with respect to the operator at various tilts is sometimes 

confusing and it is difficult to recognize the same area for work involving 

the use of various reciprocal lattice vectors. The polar diagrams obtainable 

using this principle are always circular and the linearity condition can often 

be satisfied. 

It is possible in theory to avoid rotation of the specimen for cartridges of 

this category if, following an idea developed for a goniometer stage (*), the 

tilting device can be disengaged from the specimen holder, rotated by the 

required amount and then recoupled for tilting. 

When principle b) is used, direct measurement of the tilt angles is not 

generally possible and use should be made of relatively simple formulae 

(see Sect. 4). b) does not suffer the inconvenience of a) noted above and it is 

ideal at least for qualitative work. Various types of polar diagrams (circular, 

elliptic, square, etc.) may be obtained, according to the amount of tilt avail

able for the two axes and to the working principle of the practical device. 

Only in special cases is linearity obtainable. 

3. Examples of practical tilting stages. 

In practice the two basic principles of operation, a) and b) of Sect. 2, 
can be applied in many different ways according to the mechanism or the 

working principle devised for the operation of the tilting device. We shall 

present below only a few examples of tilting stages; they have been selected 

according to their popularity, simplicity or outstanding features. 

1) Double tilting stages of category iii). Practical examples exist only 

for side entry rods. As already mentioned, in a side entry stage the rod car

rying the specimen may easily be animated by two motions: a traverse mo

tion along the axis of the rod and a rotation (tilting) motion around the same 

axis. 

τ 
Fig. 3. - Combination of a single axis of tilt aa and rotation in a side entry type of 

tilting stage. 
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Fig. 4. - Two mutually perpendicular axes of tilt aa  and bb  in a rod type tilting stage. 

Alternatively and better, a second, orthogonal tilt axis bb,  may be added 

by simply mounting the specimen on a platform which can pivot around an 

axis perpendicular to the rod axis (

6
) (Fig. 4). Suitable means (levers, 

strings, etc.) passing through the hollow centre of the rod produce the required 

motion. 

One special version of this category of stages has the two traverse move

ments (x,  y)  built inside the rod used for tilting (

6
), as schematically shown 

in Fig. 5. Sliding rod R  inside shaft S  provides the χ traverse movement, 

rotation of S around point C produces the y traverse. One axis of tilt (aa) 
is provided by external tube T; the second axis has to be incorporated in 

rod R, as described for the case of Fig. 4. When the axis aa is made to inter

sect the axis of the microscope (at O) and the plane formed by the axes aa 

b 

τ 

a 

c 

Fig. 5. - Schematic example of a practical stage having the specimen traverse movements 
built inside one tilt axis. 

A tilting stage based on principle a) can be made by holding the specimen 

in a turret Τ which can rotate around an axis normal to the specimen plane 

(Fig. 3) and passing through the first tilt axis aa. Rotation may be produced 

by the action, for instance, of a string S and of a counterspring (

5
). 
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a) 

Fig. 6. - Practical example of a cartridge type tilting stage with two mutually perpendicular 
axes of tilt, b) is a section of a) through XX. 

and cc is normal to the axis of the microscope, then the observed area of a 

flat specimen whose plane is coincident with the above-mentioned plane 

will coincide with Ο and tilting around aa will not alter the specimen level. 

The focus therefore remains unchanged and consequently the magnification 

of the micrographs and the effective camera length for diffraction work are 

not altered. This property does not apply however for the second axis of tilt. 

2) Double tilting stages of category i). This system has been extensively 

utilised for top entry cartridges. The specimen is usually mounted either on 

the central portion of a universal suspension (

7
'

8
) or in a ball-like holder which 

seats in a spherical bearing (

9 _ n
) . The spherical bearing is very easy and 

quick to build, it can be spring loaded in order to eliminate possible plays 

and has a good thermal stability. It may however introduce an additional, 

unwanted movement to the specimen {e.g. a small, uncontrolled, rotation). 

The universal suspension does not suffer this inconvenience but the plays 

are difficult to eliminate, it is more delicate and requires painstaking and 
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skilled workmanship. The various designs differ in the way the specimen 

holder is controlled. 

A typical example is shown in Fig. 6 (

I 0
) . Two micrometers operated 

from outside the microscope act on plungers Ρ which in turn tilt the tubular 

lever L. L engages with the spherically shaped tail of ball Β carrying the 

specimen and tilts Β in its sprung support. Tilting angles up to 30° may be 

obtained in this way without loss of resolution. For a smooth and reproducible 

movement all sliding surfaces should be highly polished and friction minimized. 

An alternative solution is to replace ball Β and its bearing by a set of gimbals. 

The rotational symmetry of this solution allows easy and accurate machining 

and the achievement of high mechanical and thermal stability. It is also easy 

to adapt this cartridge for use in special pole pieces or in work which requires 

a different specimen level (e.g. study of magnetic and lattice properties of 

magnetic materials outside the objective lens field). 

A different approach to the problem of producing double tilting is to 

use translational movements in push-pull (

1 2
) . Two pairs of strips or rods 

RR, SS, at the end of which is mounted a platform Ρ (Fig. 7) carrying the 

R 
Fig. 7. - Working principle of 

R 

a push-pull type of tilting cartridge. 

specimen, are independently driven in push-pull. Actually the system can 

be simplified by using one push-pull pair of strips to provide one tilt and 

a third strip for operating directly the orthogonal tilt (

1 3
) . Apart from the 

slight complexity of the system, lack of rotational symmetry, difficulty in 

obtaining control of the spring action of the strips, this device has the ad

vantage of producing high angles of tilt (up to 40°) and a large clear solid 

angle to the specimen, which may be very useful, for instance in the study 

of X-rays or light emission from the specimen. In fact the specimen is screened 

only by the three or four strips of the push-pull system which can be made 

very thin. 
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4. Specimen orientation determination. 

The determination of the orientation of thin crystals is usually very con

veniently performed by analysing their diffraction patterns and, for thick 

and fairly perfect crystals, very accurate measurements can be made by using 

Kikuchi lines (

1 4
) . However this method cannot always be used, and in any 

case, for polycristalline, amorphous, or biological materials such information 

cannot be derived from diffraction patterns and therefore it is necessary to 

provide the tilting stage with suitable meters. This specimen-independent 

determination of the specimen orientation in space is particularly useful in 

stereo microscopy (

1 5 j 1 6
) where, for quantitative work, it is necessary to know 

the tilt angle between stereo images accurately and, for best three-dimensional 

contrast, the pair of stereo photographs should be taken at a predetermined 

stereo angle depending on specimen thickness and magnification (

1 7
) . We shall 

consider here the case of flat specimens and of tilting stages working on the 

principle b) of two mutually perpendicular axes. 

As the determination of the specimen orientation is based on the knowledge 

of its position normal to the electron beam (« horizontal » position) we shall 

first examine some of the simplest and straightforward methods that can be 

used for checking the specimen horizontality. 

At very low magnification (only the intermediate of the magnifying lenses 

excited) use can be made of a reference specimen (e.g. a square mesh grid) 

whose image will appear undistorted only when horizontal. 

At low magnification (only objective lens on) the use of two, small, con

centric apertures placed at a certain distance one above the other allows the 

horizontality of the specimen seating to be set within 0.5° by tilting the stage 

until a circular shape for the image (shadow) of the apertures is obtained. 

At high magnification horizontality may be checked by using a flat specimen 

and by finding the conditions under which no change of focus occurs on trav

ersing the specimen stage. 

The operation of calibration for horizontality is usually required only 

once for a given tilting stage and records should be made of the readings of 

the meters connected to the tilt controllers. Let us call α and β the angular 

co-ordinates indicated by the tilt meters and suppose α = β = 0 when hori

zontality is satisfied. 

The specimen orientation in space may be determined by means of lati

tude φ and azimuth θ of its normal η taken from point Ο of intersection of 
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the tilt axes aa  and bb  (Fig. 8). φ and θ can be expressed in terms of the tilt 

angles α and β. 
Starting from the horizontal position let us tilt the specimen until unit 

vector η joins point Ο with point P. This orientation may be obtained by an 

amount α of tilt around axis aa followed by tilting around axis bb by a quan

tity β. It follows to a first approximation, by considering the spherical triangle 

shown dashed in Fig. 8 as a plane triangle: 

latitude φ ^ (α

2
 + β

2
γ , azimuth θ ^ arctg^/α . (1) 

The accuracy of these formulae decreases with increasing angle, but is 
still better than 7 % ( ~ 1.5°) when φ = 25°. The sign of α and β are refer
red to the clock or anticlockwise rotation of the tilting controllers (micro
meters). 

If the specimen is not flat, formulae (1) are in error, usually by a small 
amount ; however no additional error is introduced when they are used for 
calculating the relative tilt angle between two specimen orientations. 

5 . Combined double tilting stages. 

Under this heading we refer to special specimen holders which combine 
the basic double tilting operation with one additional specimen treat
ment (such as, for instance, rotation, heating, straining, etc.) and therefore 
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allow the use of diffraction contrast during the performance of a physical, 

mechanical, chemical, etc. experiment. 

The increased manufacturing difficulties with respect to the straightforward 

double tilting stages have so far restricted their development. 

5 1 . Double tilting and rotation. 

Two types of specimen rotation should be distinguished: 

i) Rotation of the specimen around the electron beam (or, more 

precisely, in practice, around the microscope axis). During this rotation 

the specimen normal acquires a precession motion, while the diffraction 

pattern remains unchanged as well as the focusing condition of the imaged 

area of the specimen. The image of the observed area rotates around the 

microscope axis at a fixed distance. 

ii) Rotation around an axis normal to the specimen (usually passing 

through the crossing point of the tilt axes). The image of the specimen rotates 

usually along an elliptic orbit around the point of intersection of the rotation 

axis with the specimen. This type of motion may be sometimes useful for 

bringing into the field of view areas of the specimen otherwise inaccessible. 

Focus and diffraction conditions change during rotation. Type ii) rotation 

is easier to achieve inside a holder than type i) and it is more conveniently 

obtained by rotating the seating of the specimen holder (usually a cartridge). 

Rotation should perform continuously in both directions through 360° with 

no end stops. 

These special holders are useful when it is necessary to align specimen 
details or diffraction spots with respect to specific directions, for instance, 
given by electrical or magnetic fields, slits (in the case of velocity analysers), 
plates, serial of sections, etc. 

They are very difficult to devise for a side entry rod and the practical ex
amples refer therefore to top entry cartridges. 

Rotation around the beam may be obtained by rotating the conical seating 
of the cartridge and by designing the tilt independent from rotation (

1 8
'

1 9
) . 

In this case the cartridge is made up of two main par ts : one par t which is 
stationary, during rotat ion, with respect to the traverse stage and meets the 
tilt controllers, and one par t which seats in the female cone of the stage and 
rotates rigidly with the cone. The tilting action is transferred from the top 
part to the low part through levers, the coupling being made via plane surfaces 
(sliding during rotation) which remain constantly perpendicular to the axis 
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of the microscope and whose level is controlled by the amount of tilt given 

to the specimen. In this way no unwanted tilting force is applied to the spec

imen holder during its rotation. (See Sect. 7, Fig. 12.) 

In a similar stage, provided with rotation of the cartridge seating cone, 

rotation may also be performed around a specimen normal (

2 0
) . The tilt 

controllers operate two rings which are pivoted independently of each other 

in the top part of the cartridge. These rings transmit their tilting motion by 

means of short rods and sliding contact, to the inner ring of a set of gimbals 

which is mounted in the top of the rotatable part of the cartridge. This inner 

ring is spring loaded so that it maintains contact with the short rods (and 

therefore maintains its inclination) during rotation. The inner ring could 

be the specimen holder in itself for work at long focal distance; however for 

high resolution work the specimen is held at the centre of a second set 

Fig. 9. - Example of double tilting cartridge with rotation around a specimen normal. 
a) and b)  are sections through YY  and XX  respectively. (Courtesy of Nuovo  Cimento.) 
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of gimbals which is operated, through long push rods, by the first one. 

Another and much simpler way of achieving rotation around a specimen 

normal is shown in Fig. 9. Here the specimen is mounted at the centre of 

a universal suspension U and tilt is obtained by means of tubular lever L. 
The rotation controller is used for rotating the outer supports S of the gimbals 

(the cartridge body Β remains fixed to the stage) and therefore the specimen. 

The constancy of the specimen normal is guaranteed by the position of tubular 

lever L which changes only when the tilt pushers Ρ are operated. Due to the 

kinematical properties of the universal suspensions the rotation speed is not 

uniform during a 360° turn. 

5*2. Double tilting and lifting. 

In these stages the specimen level can be varied continuously with a mo

tion in the direction of the axis of the microscope by means of a controller 

b) 

Fig. 10. - Double tilting and lifting cartridge provided with electric contacts, a) and b) are 
sections through YY and XX respectively. 
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5*3. Double tilting and deformation. 

Tensile straining is the type of deformation which has been so far almost 
exclusively applied to thin foils and to it we shall refer in the following. 

A straining device can be hard  or soft  depending on whether a given strain 
rate or a constant load are applied respectively. Nearly all the straining 
stages available belong to the hard type. 

The straining is symmetrical  if both the specimen clamping jaws move 
apart at the same rate. The observed strained area should therefore remain 
in the field of view during deformation. With asymmetrical straining large 
shifts of the image occur. 

A straining device should be able to perform coarse strain (up to a rate 
say of 10~

2
 s

_ 1
) and fine strain (down to 10~

6
 s

- 1
) independently applicable 

and a maximum total strain of the order of a few hundreds per cent (for the 
study of fracture and of super-plastic materials). 

It is also essential to incorporate means for quantitative studies, i.e.  strain 
gauges for the measurement of stress and strain. The local strain can be very 
accurately measured from the separation of stationary details present in or 
on the specimen; the applied load (from which the stress can be derived) 
can be measured by means of strain gauges (based on changes of resistance 
or capacity), calibrated springs, or pressures. 

The specimen may be glued or, preferably, clamped to the mounting jaws. 
In the latter case high temperature experiments are possible. It is important 
to shape the specimen properly in order to concentrate the strain in a very 

external to the microscope. Typical applications are in the study of lattice 

defects of the specimens requiring high resolution microscopy and their cor

relations with low angle electron diffraction (for the study, for instance, of 

dispersed phases or of p-n junctions in semiconductors) or in connection with 

out of focus techniques or when the specimen has to be taken out of the 

magnetic field of the lens or to be given a particular treatment which cannot 

be carried out inside the objective lens. 

Figure 10 shows a cartridge performing double tilting ( ± 25°) and lifting 

of the specimen by 7 mm (

2 1
). The lifting is obtained by making use of the 

same facilities as for rotation, through gears / , G  and the threaded tube T. 
The maximum tilt angle is constant at every level of the specimen, but dif

ferent excursions of pushers Ρ are required. The cartridge is also provided 

with electric contacts C. 
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5 ' 4 . Double tilting and heating. 

The performance of a heating stage may be characterized by the following 

factors: maximum temperature obtainable; accuracy of the temperature 

15 

localised area. Suitable dishing, polishing and transferring techniques have 

been developed (

1 9
'

2 2
) . 

Straining has been obtained mechanically (by means of levers, screws 

or cams), elastically (springs or elastics), hydraulically, by thermal expansion 

of wires or rods, by thermal deformation of bimetallic strips and by gravity. 

It is amazing that despite the large variety of stages designed and con

structed, comparatively little applied work has been done and very few results 

obtained. The reasons for this deficiency are primarily to be found in the 

lack of double tilting straining stages capable of quantitative measurements, 

and only secondarily in the fact that electron microscope specimens do not 

always represent the properties of the bulk material. 

Straining devices to be used in goniometer stages are relatively 

simple (

2 3
"

2 6
) ; the tilt angle is however restricted to less than 10°. Only one (

2 4
) 

allows measurement of the applied stress. 

Usually the measured load contains a systematic error in the sense that 

it is the sum of at least two terms : the load applied to the specimen and the 

load applied to overcome frictional forces acting on the moveable parts of 

the straining device. 

A good example for quantitative tensile device is that designed by Saka 

et al. (

2 4
) . The specimen is glued at the ends of two parallel jaws, one being 

thin and flexible and the other (the driving jaw) rigid. The moveable jaw 

is held by a flat spring, preloaded by means of a wire. On heating the wire 

the driving jaw moves, pulls the specimen and bends the flexible jaw, on the 

side of which a semiconductor strain gauge is glued. Load measurements 

in the range 0.05 to 50 g are possible with a linear response. In the present 

version this quantitative straining device is expected to suffer from large 

specimen drift. 

The construction of double tilting straining stages is more difficult and 

very few practical examples exist (

1 9 , 2 7
) ; one of these will be described in 

Sect. 7 as a multipurpose stage. 

Side entry holders seem to be more suitable than top entry cartridges in 

the construction of accurate straining devices, although more limited in the 

second tilt. 
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measurement; temperature stability, specimen displacement and drift; rate 

of heating and cooling; heat input ; further specimen treatment (e.g.  oxida

tion, reduction, etc.). 

The highest range of working temperature obviously satisfies the require

ments for the study of the largest variety of phenomena and materials; 

however attention should be drawn to the fact that even at moderate tem

peratures (for instance 400 °C for Cu) thermal diffuse scattering reduces the 

number of electrons which pass through the objective aperture with the result 

of a drastic decrease in the image transparency. In addition, surface migra

tion takes place from the thin edges of the specimen towards thicker areas 

and, unless suitable precautions are taken (e.g.  reducent atmosphere), ox

idation of the specimen may occur. Finally damage to delicate parts of the 

microscope (e.g.  the objective pole piece) may result at high power inputs. 

Two systems have so far been used for a controlled heating of the specimen: 

furnace heating and direct heating, although other forms of heating have 

been used (for instance beam heating) or can be conceived (e.g.  electron guns). 

In the first case the specimen is clamped by a screw inside a small furnace; 

the specimen temperature is easily controlled and fairly accurately known 

(within a few degrees without taking into account the heating from the beam 

and if the open solid angle for radiation losses from the specimen is small). 

If the furnace and the furnace winding are properly designed (circular sym

metry along the microscope axis and use of bifilar or spiralized wire), the 

specimen drift as well as the beam displacement are negligible and the 

resolution is not marred. Typical heating and cooling rates are 10 °C/s. 

These devices are ideal for experiments in stationary conditions. In the case 

of double tilting stages a slight change of temperature (of the order of 10 °C) 

may occur during tilting as a result of altered thermal losses. 

In the direct heating type, electric current is passed through the specimen 

itself and heat is produced by Joule effect proportionally to the electrical 

resistance of the specimen (or mounting grids). The calibration of devices 

of this type is therefore very difficult and unreliable; the specimen temperature 

can therefore be only guessed. Fast heating and cooling times are possible 

which may be particularly useful for experiments on structural changes of the 

specimen with temperature (i.e.  annealing and quenching). The temperature 

stability is not good and large image displacements and drift occur. The 

heat input is, of course, much lower than for the furnace heating type. 

In practice, a small furnace is built in the central portion of a universal 

suspension (

7
'

1 9
) , or in the holder of two push-pull rods (

2 8
) , or the terminals 

of two electrical contacts are brought in the specimen holder where the spec-
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imen establishes a resistive contact (

1 3
) . A thermocouple is usually placed 

on the seating of the specimen and may be calibrated by observing the occur

rence of phase transformations on selected specimens. (See Sect. 7, Fig. 12.) 

5 5 . Double tilting and cooling. 

It is commonly understood that the term cooling stage refers to devices 

capable of cooling the specimen down to liquid nitrogen temperatures, whereas 

the expression liquid helium stage means a microscope attachment covering 

the temperature range from about room temperature down to about 4 °K. 

Liquid helium stages usually require the replacement of the entire object 

section of the microscope. 

Cooling may be produced mainly in two ways : a) by thermal conduction 

from a reservoir (or cooling device) placed either outside or inside the micro

scope and b) by direct flow of a coolant close to the specimen. 

A small heater is usually incorporated in the cooling devices in order to 

cover the entire range of temperatures from the minimum obtainable to slightly 

above room temperature. Temperature control may also be achieved by 

acting on the temperature and/or the rate of flow of the coolant or by in

troducing a thermal resistance along the heat path. 

The highest cooling and warming rates are obtained by means of system &), 

which may suffer from mechanical vibrations; on the other hand large drifts 

are experienced when the system a) is adopted. 

The requirements listed before for the heating stages apply to cold stages 

except for the last one which is replaced by specimen contamination due to 

condensation of residual vapours in the microscope. In addition, specimen 

vibrations may occur if the system operates by a coolant flow. 

i) Liquid nitrogen stages. In one practical version (

8
) the nose of the 

cartridge described in Fig. 6 is thermally isolated from the cartridge body 
and cooled either by a cold finger or by an elastically retained cold ring 
pressed against the nose, the ring being placed in the objective pole piece 
gap. The ball carrying the specimen is cooled by conduction down to — 130 °C. 

One interesting solution has been recently proposed (

2 9
) for side entry 

rods. The specimen is mounted mid-way along the axis of a small cylinder 
which seats on two F-shaped grooves machined at the end of the side entry 
rod. Rotation of the cylinder by means of elastically loaded wires provides 
the second tilt and cooling is obtained by conduction through the rod itself 
which is cooled by liquid nitrogen. A system for compensating the thermal 
contraction is employed. 
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In order to prevent the condensation of residual vapours on the specimen, 

use should be made of anticontamination devices with this category of cooling 

stages. 

ii) Liquid  helium  stages.  The development of double tilting liquid 

helium stages has been very intense in recent years and was stimulated by 

the hope of observing superconductivity phenomena and to increase specimen 

transparency, for studying solidified gases, delicate specimens (ionic crystals 

and plastics), phase transformations, etc. Certainly more liquid helium stages 

are now available than double tilting liquid nitrogen cooled cartridges or rods. 

Before using a liquid helium stage the microscope must be carefully checked 

for vacuum leaks (always present in a large number in instruments used for 

routine work) ; once this has been done, the cryogenic pumping action of the 

coolest parts of the stage (the He inlet pipe or the He reservoir) will produce 

a high degree of vacuum around the specimen which usually prevents con

tamination effects. 

Usually the tilting angles are of the order of ± 10°, the resolution 25 

to 30 Â and the minimum temperature of the illuminated area about 8 °K. 

The specimen temperature is derived from the observation of the condensa

tion in equilibrium condition on the specimen of suitable gases introduced 

into the microscope (

3 0
) or by the occurrence of phase transformations. Some 

stages have air lock facilities (

3 1 _ 3 5
) which is an enormous advantage for 

increasing the efficiency of the observations, especially when liquid nitrogen 

shielding and liquid helium reservoirs are used (

3 1
'

3 4
'

3 6
) . Stages using the 

principle of the coolant flow can cool the specimen down to a few degrees Κ 

in a few minutes. Typical helium consumption is of the order of a few litres 

per hour for maintaining the lowest temperatures. The specimens are com

monly dish polished until a small hole is produced in order to present a thick 

rim for safe handling and clamping, and for good heat transfer. 

iii) Liquid helium and magnetization stages. In the study of super
conducting specimens or ferromagnetic materials at low temperatures it is 
necessary to apply a suitable magnetic field to the specimen. In the early 
work on superconductors use was made of the magnetic field provided by 
the objective lens of the microscope, the specimen being placed at an angle 
with a horizontal plane and/or positioned at different levels by means of a 
lifting stage (

3 2
'

3 7
) . 

Figure 11 shows an example of liquid-helium lifting stage. Liquid helium 
from a dewar and an ordinary transfer line circulates through flexible tubings Τ 
very close (a few tenths of mm) to the specimen which is mounted inside 



Fig. 11. - d) Schematic cross-section of a double tilting, lifting, liquid helium stage for 
a high voltage electron microscope, b) Plan view showing the actual position of the various 

components. 
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6. Ultra-high vacuum stages. 

They have been primarily designed for in  situ  chemical reactions and vacuum 

deposition studies in controlled surroundings. 
Ultra-high vacuum electron microscopy may be achieved: 

i) by converting the all microscope in an ultra-high vacuum system (

4 1
) ; 

3, holder at the centre of a spherical bearing B.  By rotating knob Κ the 

specimen level can be changed and therefore different values of the objective 

magnetic field can be applied to the specimen. Flexible tubings and bellows 

Τ allow x, y, ζ displacements of the specimen and double tilting, the latter 

being produced by externally operated pushers acting against two counter-

springs. The specimen holder can be picked up from or loaded in the spherical 

bearing Β by means of rod R operated from outside the microscope through 

the air lock A. The specimen exchange time is only of a few minutes. It is 

also very easy to change cooling agent (liquid nitrogen, water, etc.). 

Much greater flexibility is obtained with the use of an auxiliary magnetic 

field (

3 6
'

3 8
'

3 9
) applied to the specimen independently from the lens field. How

ever the problem of satisfying simultaneously the various requirements of a 

high resolution, high magnification and versatile magnetization stages is still 

far from being solved. 

iv) Liquid helium stage with pressure cell. This accessory has been 

developed in order to study lattice defects in condensed gases (

4 0
) . This 

study is only possible if large crystals can be produced. By annealing in a 

pressure cell the small crystals (0.1 to 0.5 ^m) present in gases condensed 

on various substrates, crystals up to several microns in size can be obtained 

which are suitable for observation. The pressure cell is in the form of a cartridge 

which is mounted in the tiltable holder of the liquid helium stage. The car

tridge has two thin windows (made of formvar, carbon or sapphire) to allow 

the electron beam to pass through the cell and one pipe for the introduction 

of the gas. The plastic windows can stand pressures up to (10^-20) torr 

and the beam path through the gas is about 20 mm. A small heater is used 

for annealing the condensed gas. Provisions for ion bombardment or specimen 

evaporation are also incorporated. 
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7. Multipurpose stages. 

A microscope should ideally be equipped with a universal specimen stage 
capable of performing all the desired specimen treatments, if necessary, 
simultaneously. Such a stage would obviously be very complicated and 
extremely difficult (if not impossible) to construct to the required degree of 
accuracy for high resolution work. 

This problem has been tackled gradually. Firstly by developing a system 
of devices (cartridges or rods) which are all compatible with a permanent 
objective section of the microscope, rather than developing a set of completely 
different units. Secondly, by designing multipurpose stages and holders. 

A unique example of a multipurpose stage for a conventional 100 kV 
microscope is given by the stage built by Mills and Moodie (

1 3
). Here pro

visions are made for three translational degrees of freedom x, y and ζ (along 
the microscope axis), double tilting ( ± 40°), cooling and (direct) heating from 
—140 to 1200 °C, gas inlet and decontamination. 

A series of multipurpose cartridges and rods are under development for 
a 1 MY electron microscope (

1 9
) which can be equipped with either large bore 

or large gap objective pole pieces. Figure 12 shows a cartridge capable of 

ii) by producing an ultra-high vacuum in the specimen region only, 
by means of differential pumping through various steps (

4 2
"

4 7
) . 

The latter solution seems the most popular today because it is more ver

satile and easier to achieve as it sets stringent requirements only on a small 

portion of the microscope. In a two-step system (

4 8
) a pressure of less than 

1 · 10~

8
 torr may be obtained by means of ion or cryogenic pumps in the speci

men region, while a pressure of ~ 1 0

-7
 torr is produced by similar pumps 

in the guard vacuum surrounding the ultra-high vacuum region. Here « dirty » 

operations may take place, like outgassing of filaments and évaporants. The 

remaining parts of the microscope are at a pressure of ~ 1 0

-5
 torr obtained 

with the conventional pumping system of the instrument. 

The vapour deposition takes place on substrates made with cleaved layer 

structure materials or on carbon films. The substrate can be heated up to 

a few hundreds of °C. For work near room temperature double tilting 

facilities are already available. 
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double tilting ( ± 25°), rotation around the microscope axis ( ± 45°), furnace 

heating (1000 °C), gas inlet (including facilities for mounting a pressure cell) 

and gas analysis by means of a sniffer placed close to the specimen. 

Fig. 12. - Cartridge for a high voltage electron microscope. It allows double tilting, ro
tation, heating, gas inlet and gas sampling, a)  is a section of b)  through XX.  F,  furnace; 

G, gas inlet pipe; S,  sniffer; T,  fixed part; B,  rotatable body. 

Figure 13 is a schematic drawing of a side entry rod for double tilting 
( ± 45°, ± 5°) and furnace heating of the specimen up to 600 °C The spec
imen may also be deformed with a symmetrical, hard type straining device 
provided with coarse (mechanical) and fine (electrical) controls. A strain 
gauge is mounted for quantitative measurements. The tensile device may 
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F 

Fig. 13. - Rod for a high voltage electron microscope. It allows double tilting, straining, 
heating, gas inlet, a) is a section of b) through XX. F, furnace; /, jaws; R, L, right and 
left screws for mechanical straining; E, heater for fine strain; P, pivots; T, second tilt 

controller. 

be operated hydraulically with little alteration and may easily be converted 

into a soft straining machine. Gas inlet facilities are also incorporated. 

These devices are very delicate and their use should be restricted to special 

experiments, although it is easy, for routine work, to stop some of the degrees 

of freedom or to dismount unnecessary facilities. 

8. Conclusions. 

From the early days when specimens were clamped to the objective pole 
piece a lot has been learned, confidence has been acquired on the design of 
specimen stages and specialized workmanship has been trained. Lately more 
attention has been paid to the design of the object section of the microscopes 
and to the closely related objective lens in order to increase access, space 
and versatility; close contacts have also begun to take place between users 
of electron optical instruments and manufacturers in order to increase the 
efficiency of the instrumentation and to satisfy the real needs of the users. 
However much closer contacts are necessary and we cherish the time when, 
reversing the present criteria, the electron microscope will be made to fit 
a predesigned universal specimen stage containing the facilities of a laboratory 
for specimen treatments. 

a) 
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and Video Amplification Devices 

1. Image recording with semiconductor detectors. 
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1 1 . Introduction. 

Since the beginnings of the electron microscopy, the microscopist has 

become used to recording the image information, given by the current density 

distribution in the image plane, on the photographic plate. The photographic 

plate is in fact an almost ideal recording means for electron images; it can 

resolve a large number of image elements and is at the same time so sensitive 

that for the blackening of image elements within the range of the limiting 

resolution of the plate only a few electrons are sufficient, which means that 

the plate resolution is partly determined by electron statistics. 

The photographic plate has on the other hand some disadvantages which 

are disturbing in various applications. 

1) The image information is not immediately available. This, for ex
ample, means that for the adjustment of the microscope (focusing, astigmatism) 
we must depend on the system: final image screen—tenfold binocular mag
nifier—eye, which in some respects is overcome by the photographic plate. 
For this reason also the minimisation of electron bombardment damage in 
sensitive specimens is difficult. 

2) The quantitative measurement of current densities encounters dif
ficulties especially when an intensity range of several magnitudes must be 
measured. 
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This latter limitation, a result of the limited blackening extent of the plate, 

is especially disturbing in structure analysis by means of electron diffraction. 

In these lectures we will describe two recording methods, which have been 

developed taking the above disadvantages into account: I) the measurement 

of the current density at the highest image resolution by means of semicon

ductor detectors and II) the conversion of the electron image into a video 

image. We will describe the arrangement of the devices, show some possible 

applications and especially examine the efficiency and principal limitations 

of both methods. It will be interesting to compare both methods with each 

other. It will show that both methods favourably serve as supplements for 

each other. 

1*2. Measuring device with semiconductor detectors. 

To begin with, let us survey the historical development, which led to the 

use of semiconductor detectors. 

When analysing uranium minerals, H. Becquerel discovered in 1896 a 

previously unknown radiation. With the help of electric and magnetic fields 

this radiation could be analysed into three components. In the following 

years and decades the physicists aimed at a more exact separation and discrim

ination of the components of the Becquerel radiation. To achieve this, 

numerous instruments have been developed. The first instrument of this type 

was the « ionisation chamber », which was used for the detection and meas

urement of ionising radiation. A disadvantage of that apparatus lies in the 

small stopping power of the filling gas for weak ionising radiation. For that 

reason it was tried at an early stage to fill the ionisation chamber with denser 

agents than gases. Thus suitable crystals such as diamond, AgCl, AgBr, 

KC1, LiF, N a l , were equipped with thinly evaporated electrodes, to which 

a voltage was applied. If now ionising radiation is directed into the counter, 

it ionises the atoms of the crystal. In insulating crystals, charges (i.e. elec

trons) are set free, they drift through a field of some kV/cm to an electrode 

and cause there a charging pulse, which can be measured afterwards. 

Difficulties in the production of these crystal counters and the statistical 

limitation of the resolution, especially for « low energetic » radiation below 

500 keV, have considerably diminished their importance. 

By statistical resolution we mean the limitation of the resolution Δ £ , 

i.e. the possibility of still separating ionising radiation with an energy dif-
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ference ΔΕ. It is given by the equation 

ΔΕ/Ε= I/Vn 

where Ν is the number of electron processes in the counter, i.e. the number 

of electrons produced. In N a l counters one needs for instance an energy 

of 700 eV in order to form a photoelectron. A 100 keV electron will there

fore form about 140 electrons in the counter. Thus we obtain a statistical 

resolution of ΔΕ = 8.3 keV. 

The way for a change was opened when at the end of the forties the in

sulators were replaced by semiconductors. The advantage of these materials 

lies above all in the small energy of formation needed for a charge carrier 

pair and the resulting higher statistical resolution. The statistical resolution 

of a Si detector can serve as a comparison to the afore-mentioned value of 

8.3 keV for the N a l counter: with an energy of formation of only 3 eV we 

obtain a statistical resolution of 0.66 keV when using 100 keV electrons. 

With these semiconductor detectors counters became available, which 

allowed simple recording and analysis of radiation with high statistical resolu

tion. McKay Q) first described in 1949 a Li-drifted germanium detector. 

However, still about 10 years had to pass before industry developed com

ponents of commercial size and manufactured them with the necessary relia

bility. 

Highly pure silicon or germanium serve as base material. Compared to 

Si, Ge has the advantage of greater charge carrier mobility; but for the re

duction of thermally produced charges, i.e. for the reduction of noise effects 

it must be cooled to liquid hydrogen temperature. For this reason attempts 

were made to compensate these positive free charge carriers by diffusing lithium 

into the detector materials. To do this Li is diffused through the surface 

under the influence of electric fields at temperatures between 50 °C and 250 °C. 

But after turning off the field, a back diffusion starts, so that these drifted Ge 

crystals too have to be kept below — 70 °C. In this respect Li-drifted sil

icon, which remains stable even at room temperature, behaves more fa

vourably. 

One has to distinguish between two methods of production, which lead 

to two different types of counters, namely diffused counters and boundary 

layer counters. 

a) In diffused counters a strong asymmetrical p-n transition is produced 

by diffusing a counter doping of high concentration, mostly phosphorus, 
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into ^-conducting material at low depths ( < 1 μιη). When a voltage is applied 

this field zone is extended and forms the recording region for the incoming 

radiation. 

b) In boundary layer counters the barrier layer is produced by a surface 

charge on a gold film, which has been evaporated on ^-conducting silicon. 

Differential, or dE/dx counters also belong to this type of counter. They 

have very thin contact faces on very thin Si base material. The base material 

thickness is kept small in comparison with the penetration range of the ra

diation. 

In operation, diffused counters are to be preferred to boundary layer 

counters. They are not affected by external influences, for example, humidity 

and touching. If necessary it is even possible to clean their surfaces. 

Let us now see how such counters can be used as measuring elements for 

image recording and current density measurement in the electron microscope. 

To begin with, we will consider the mode of operation of such a detector. 

If a voltage is applied to a diffused counter, the boundary layer is expanded 

proportionally to the square root of the applied voltage and to the specific 

resistance. For 100 V and 10 000 Qcm ^-silicon we obtain a field thickness 

of 500 μιη. If a particle enters into the field, electron-hole pairs are formed. 

The electric field separates the electrons from the positive holes and decreases 

the probability of recombination. The electrons drift in the electric field 

and produce a charging pulse. If a radiation particle passes right through 

the boundary layer and enters deeper into the p-region, it also produces 

charge carrier pairs, but these recombine much quicker owing to the absence 

of the electric field. Only a few charges from this zone reach the boundary 

layer and contribute to the charging pulse. 

Although the charging pulse still grows with increasing particle energy, 

the linear relation between pulse amplitude and particle energy is lost. For 

this reason the zone thickness is adjusted to the particle energy by choice 

of a blocking voltage. For high energy radiation a limitation is set by the 

breakdown voltage of the semiconductor. The charging pulse is collected 

from an input resistance and fed to a pulse amplifier. If the amplifier is fast 

enough to amplify pulses of only a few microseconds duration, individual 

electrons, which enter into the field, can be detected and counted. Some 

requirements are placed on the amplifier with regard to background noise, 

which however will not be discussed here. 

The basic circuit shown in Fig. 1 is used for the current density measure

ment of the electrons. Apart from the components already mentioned, it 
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Fig. 1. - Semiconductor detector for the measurement of the electron current. 

also contains a rate-meter, a counter and a pulse height discriminator, all 

well-known units in radiation measuring techniques. The discriminator is 

important for several reasons. As a differential discriminator, it enables us 

to pick up the complete pulse height vertical distribution. For bombardment 

with 80 keV electrons the result of such a measurement is shown in Fig. 2. 

From this it follows that , apart from the peak caused by the electrons, a noise 

band is to be found at small pulse heights, which would considerably adul

terate the measurement. But if the discriminator is operated as integral 

discriminator, we can block these interference pulses. The threshold of the 

discriminator has been indicated in the figure with a dotted line. The semi

conductor detector is thus capable of counting practically each high energy 

incoming electron, with which the theoretical limit of sensitivity of this meas

uring method has been reached. From the number TV of electrons, which is 

counted within a measuring time T

7
, there results a current density j according 

to the equation 

j = eN/TF, (1) 

where F is the area of the detector which is being bombarded, Ν the number 

of electrons, e the elementary charge and Τ the measuring time. 

16 



It can already be seen here that the detector is capable of measuring small 
current densities if only the measuring time is made long enough. But it can 
also be calculated that within the range of the usual current densities the 
measuring face F, which normally is 250 mm

2
, must be highly reduced by 

an aperture, since the circuit, having a dead time of some {is, cannot detect 
electrons coming in at close time intervals. Therefore an aperture in front 
of the detector is necessary. In order to be able to adjust to a wide range of 
current densities and lateral resolutions, it is advantageous to plan an aper
ture changing device. Figure 3 shows the device which is installed in a viewing 
window of the Elmiskop 101 and can be put into the path of rays as a com
plete unit. A changing mechanism, which is shown disassembled on the 
right of the figure, permits us to bring in front of the detector by means of 
two controlling systems, either a number of various round apertures of 
diaphragm or a slit, whose width and length can be varied. 

If only a few single points in an image are to be measured, the necessary 
shift of image can be carried out by adjusting the specimen stage. If however 
linear or area-like distributions in images or diffraction patterns are to be 
measured, it is particularly advantageous to undertake the shifting by means 
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Fig. 3. - Semiconductor detector with variable aperture. 

The block diagram of the whole device is shown in Fig. 4. The deflection 
system and the semiconductor detector are indicated with its variable aperture 
in the electron ray diagram of the microscope. The right-hand side of the 
Figure contains the various electronic components, which are of use for the 
electrical control of the deflection system and for the recording of the measured 
intensity values. Different recording systems are used, depending on whether 
we are concerned with the measurement of distinct elements, the measurement 
along a line or a two-dimensional system. In the case of element measure
ments, the image can be brought into the desired position with the help of 
x 0, y0 adjusters and the electrons can be counted with the counter or indicated 
by the rate-meter. 

of an electromagnetic deflection system. Within the intermediate lens the 

Elmiskop 101 possesses an electromagnetic stigmator, which accomplishes 

this in connection with a suitable circuit. A control system, which has been 

taken from our X-ray microanalyser, permits a line shifting in any direction 

as well as a linear shifting of the image or of the diffraction pattern. 
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We would like to just mention that the values can also be written down 

with a recorder and that even a control circuit is thinkable, which is fed by a 

computer via a digital-analogue-converter, so that a programmed series of 
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1. image 
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x'=x

+
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Fig. 4. - Recording method in image current density measurement. 

intensity elements, for example the spots of a single crystal diffraction pattern, 
can be measured. These steps, however, have not been undertaken by us 
as yet. 

In case of line measurements, the deflection system is controlled by a 
saw-tooth generator. The values are noted by a recorder. For the recording 
of the large number of measurement values, which are obtained when scan
ning surfaces line by line, we use an oscillograph. It records in synchronism 
with the control of the deflection system in the line scan. The measured mean 
value is superimposed on this line scan as a vertical deflection. Embossed 
images are obtained, in which on account of an additional horizontal displace
ment of the lines a perspective effect is produced. Figure 5 shows such record
ings of a single crystal and a Debye-Scherrer diagram; on the right-hand 
side are shown segments taken from the complete diagrams reproduced on 
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Fig. 6. - Areal intensity recording of extinction lines in gold. 
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the left-hand side. The images contain quantitatively the current density 

distribution. Figure 6 shows the recording of extinction lines in gold. 

Let us now discuss the most important advantages of this method, but 

also its disadvantages and limitations. The possibilities of application will 

thus be immediately evident. 

1) The measuring values are available at once, that is either as analogue 

or digital values. 

2) The measuring range covers more than five orders of magnitudes. 

In this connection, which above all is of interest in the measurement of dif

fraction patterns, a clear superiority exists in comparison with the photo

graphic plates. In order to profit fully from this characteristic, a logarithmic 

range of the rate-meter is advantageous. Figure 7 shows such a logarithmically 

recorded current density distribution in a diffraction pattern of a gold film. 

3) If the pre-aperture has been chosen sufficiently small, the lateral 

resolution can be even better than the photographic plate. Figure 8, which 

shows the current density distribution in Fresnel fringes, does not as yet 

represent the optimum performance which could be reached. But it also 

shows that very small contrast effects can be measured. 

On the other hand these favourable characteristics are associated with 

a disadvantage, which strongly limits the possibilities of application of this 

measuring method. As it is known, the electrons do not bombard the selected 

area of the semiconductor detector in regular time intervals, but are subject 

to accidental fluctuations in their bombardment frequency. According to the 

statistical laws, a measuring error ε has to be taken into account during each 

single measurement, which, on average, is given by the number Ν of electron 

processes 

If the current density j 0 in the object plane, the measuring time Τ and the 
measuring surface relating to the target F0 are inserted in (2), we obtain: 

ε = ΔΝ/Ν = lfVN. (2) 

z = &j0lJ0 = Velj0'T'F0, (3) 

or 

T=e/j0-F0-e*. 

It becomes obvious that a small statistical error can be obtained only with 
long measuring times. This may possibly be tolerated in image element 
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measurements. In line measurements already a considerable limitation of 

the velocity of scanning can be noticed. If, in the interest of a desired resolu

tion δ, a dimensioned measuring area F = δ
2
, with a prescribed measuring 

error £ is to be measured, the velocity ν of scanning may not exceed the value: 

v = d/T=d-j0-d*-e*/e= Uofe) · <5

3
 · ε

2
. (4) 

Figure 9 shows this situation quantitatively. If we wish to record with a 

measuring error of 1 % and a resolution of 10 Â, only a distance of 100 Â 

can be scanned within 1 second. A corresponding value of the damping time 

constants of the amplifier must be adjusted on the rate-meter. In a line-like 

scanning of a bigger image area the situation is even worse. 

The recording time Τ of the whole image has been plotted in Fig. 10 in 

a different mode of demonstration against the resolution. The number of 

image elements is taken as parameter. The figure clearly shows what long 

times are reached if some requirements are demanded from the resolution 

and the image field. 

We wish to note that compared to television, the measuring time for an 

image of comparable number of image elements is about (12-Ξ-16) h. 

Here the most disagreeable limitation of the measuring method becomes 

obvious, from which it follows that only specimens which are not too sensi

tive to electron bombardment are suitable for area-like measurements. Nat

urally, any object contamination must be avoided by an effective cooling 

system of the specimen surroundings. Already here the advantages of storage 

systems can be seen, as offered by the photographic plate and the charge 

sensitive layers in TV camera tubes, with regard to the recording of com

plete images. In this respect the photographic plate is very superior, since 

it is able to record the electrons of all image elements at the same time. During 

the exposure time of a plate the semiconductor detector has measured only 

one image element. 

In practice our detector will be used successfully only if the desired quan

titative information can be obtained with as few measuring points as pos

sible. This is the case in contrast measurements of single image elements or 

longitudinal lines, which, for instance, in the case of amorphous objects, can 

give us information about the mass density distribution in the specimen. 

In crystal specimens, extinction lines or variations in intensity in the vicinity 

of dislocations or small area-like defects can be measured very exactly. The 

intensity measurement in diffraction patterns has already been discussed. 

N o doubt, the method can here be used successfully. As already indicated, 
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a considerable shortening of the measuring time can be achieved if only 

individual diffraction spots can be selected by a programme control. In this 

regard the method can be extended to the immediate further processing of 

the digital values obtained in a computer, as has been customary already for 

some time in the field of X-ray analysis. 

The area-like measurement and recording of the measured intensity values, 

which can produce quite impressive images, will most probably remain 

restricted to special cases on account of its long measuring times. In par

ticular it can be maintained that this recording has nothing to do with the 

problem of image amplification. The measuring times which would be needed 

to record the whole image information on a video monitor are completely 

unrealistic. The method would correspond approximately to the tests with 

the Nipkow disc, carried out at the beginning of the video technique. Only 

if for each single image element an individual detector could be on hand 

(that means, if no image information would get lost during the recording time), 

could one count on shortest recording times. Although the technical realiza

tion of these ideas is not as Utopian as originally might be thought, we shall 

take this only as the principle which forms the basis for the video image 

amplification: the simultaneous detection of all image elements without 

losing any electron. 

Fig. 11. - Transparency variation in a section of Bacterium coli. 
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Fig. 12. - Intensity distribution in a grain boundary of a CoFe alloy. Left: bright-field 
image; right: dark-field image. 

Finally, Fig. 11 and 12 show two examples of line recording along the 

directions marked on the pictures; Fig. 11 shows the variation in transparency 

in a biological specimen and Fig. 12 shows the variation in intensity in a 

bright and a dark field image of a grain boundary in a CoFe alloy. 

R E F E R E N C E S (Section 1) 

1) K . G . MCKAY: Phys. Rev., 76, 1537 (1949). 
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2. Image amplification with television methods. 

K . - H . HERMANN, D . KRAHL, A . KUBLER, K . - H . MULLER, V. RINDFLEISCH 

Siemens A. G. - Berlin and Karlsruhe, Germany 

21. Introduction. 

The principal aim of image amplification with TV methods lies, first of 

all, less in quantitative detection of the image information but rather in 

amplifying the brightness of the image to the extent that it can be observed 

without the necessity for dark adaptation of the human eye, which under 

certain circumstances requires up to 30min. This means that the eye can 

be used without the usual deterioration of its resolving power at small image 

brightnesses. 

In the case of the fluorescent substances, which are used for final image 

screens in the electron microscope, current densities in the final image plane 

of about (10~

1 0
-i-10

_ 9
) A/cm

2
 are necessary in order to produce images, 

which are observable without the disturbing dark adaptation. Already with 

electron optical magnifications of 50000 and upwards, the above-mentioned 

current densities in the final image plane can hardly be reached. The situa

tion gets even more critical, when objects with little bounding energy, for 

example plastics, catalists or macromolecules are to be observed. Depending 

on the bond type, such objects can stand only current densities in the specimen 

plane of j 0 ~ ( 1 0

_ 3
- f l 0 ~

4
) A/cm

2
. In electron optical magnifications of 100 000, 

final image current densities of only (10~

1 3
-^10

- 1 4
) A/cm

2
 are obtained; such 

images are not accessible to observation by the human eye. 

With the aid of image amplifying devices, the focussing and astigmatism 

correction in high electron optical amplifications are facilitated and observa

tions of electron sensitive objects made possible. 

The television technique offers particularly favourable conditions, since 

television electronics render possible additional techniques, for example the 

accentuation of contrast, but especially since all these methods have one 

important common characteristic: they have a storage target, on which the 

signals of all image elements are stored at the same time, in order to be 

then scanned by a reading electron beam one line after the other, line by line, 

and to be converted into the electric signal, the so-called video signal. 
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Here will be shown the advantage in comparison with the electron detec

tor, in which at any instant only one image element, which was selected by 

the aperture, detected the incoming current; the electrons, bombarding the 

other image elements, are not recorded. 

2 2. Method. 

For the amplification of the image brightness mainly three methods have 

become known so far, which have also been used in electron microscopes: 

a) The method with direct converting layers, which makes use of the 

« electron bombardment conductivity » effect, that is of the conductivity in 

insulators and semiconductor layers produced by electron bombardment with 

primary electrons, i.e. of the direct conversion of the electron image into 

a charge image on the target. 

b) The use of commercial television camera tubes of various types: 

vidicon, plumbicon, orthicon, SEC tube. Here a conversion of the electron 

image into a light image via a luminous screen takes place, since commercial 

television camera tubes can only detect light images. 

c) A third method makes use of multistage intensifiers, which however 

do not have the advantage of storage targets. 

We shall now concern ourselves in detail with the first two methods. 

2*2.1. Direct converting layers. - It is known that for example, in a dielec
tric a conductivity can only be produced by photons, if the photon energy 
becomes equal to one of the bands of the absorption spectrum. Fast elec
trons, as we find them in the electron microscope, can on the contrary induce 
a conductivity through ionization effects. Studies in 1948 showed, however, 
only small effects of this kind. In 1951 Ansbacher and Ehrenberg Q) found 
a strong dependence of the conductivity in A s2S3 under electron bombard
ment. The amplification factor, i.e. the relation of the current in the layer 
under electron bombardment to the incoming current of the primary electrons, 
reached maximum values of up to 40000. During the following period of 
time, other amorphous dielectrics (Se, Sb2S3, As2Se3, A 1 20 3, CdS) with simi
lar characteristics were discovered and tested. 

In 1958 Haine, Ennos and Einstein (

2
) published a paper concerning an 

image amplifier for an electron microscope, which was based on the prin
ciple of the EBC effect (EBC = electron bombardment conductivity). An 
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amorphous Se layer of 15 μπι thickness was used as electron sensitive layer. 

The experimental arrangement was the following. A support ring was coated 

with a thin carrier layer of 6 μιη Melinex foil, on to which was evaporated 

on both sides a thin Al layer, approximately 100 Â thick. The 15 μιη Se layer 

was then applied to one side of this carrier. The free side of the Se is scanned 

with an electron beam and so charged to cathode potential. 

The electrons induced in the layer by primary electrons are removed by 

an electric field which is built up with a bias voltage and leaves in the layer 

a positive charge distribution, the height of which is proportional to the 

incoming current density. When the target is read out with the scanning beam, 

the initial situation is restored again. To do this, the scanning beam sends 

electrons to the target. A charging pulse produces a voltage pulse on the 

input resistor, the video signal. Unfortunately this relatively simple and 

inexpensive method of image amplification has some considerable disad

vantages, which have so far prevented such devices from being used in the 

microscope. 

a) The amplification factor of Se (1000-^2000) is so low, that primary 

current densities of 10~

10
 A/cm

2
 are necessary for obtaining good image 

quality, in order to set the image signal off against the background noise. 

But the amorphous structure of Se, which shows the EBC effect, starts to 

crystallize after a few minutes; a process which is stimulated by the incan

descent light of the cathode. Thus the characteristics of the layer are greatly 

changed: on one hand the dark current increases considerably, which is no

ticeable through a worsening of the signal/noise ra t io ; on the other hand the 

transverse conductivity of the target increases remarkably. This causes the 

charge distribution to spread so that the storage effect of the layer worsens. 

The layers tested in our laboratory have had a lifetime of less than 30 min. 

b) The arsenides, which possess such high amplification factors that 
true image amplification devices could be built with them (As2S3, 40000; 
As2Se3, 20000) show such a high transverse conductivity that the charge 
image spreads almost immediately, i.e. in 1/25 s, the duration for successive 
scannings. 

c) Big residual charges, which remain in the target after the scanning, 

caused by incomplete discharge of the target, lead to smearing effects, which 

produce diffused images especially in the case of dynamic processes. 

On account of all these difficulties it does not seem of any advantage 
to use this type of image amplification in the microscope, especially since 
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with commercial television tubes we have components at our disposal, where 

devices can be used which show much better characteristics, i.e. higher am

plification factors and longer lifetime. 

2*2.2. Image amplification devices equipped with television camera tubes. -
There are different types of commercial camera tubes, which in principle are 

all more or less suitable for our purposes and have been used already. At first 

we will explain the principle on which these tubes work, then elaborate the 

fundamentals, which form the basis for the structure of the image ampli

fication devices. The criteria, according to which we will have to estimate 

their efficiency and limitations, will be elucidated. Finally, we will concern 

ourselves in more detail with one device, which we consider to be particularly 

suitable. 

A) Principle of the camera tubes. - The camera tubes always contain 

three necessary basic elements: 

a) A photoelectric conversion layer, on which the light image is 

projected. 

b) A storage target, which is connected to the photoelectric layer 

via an electron optical system and on which a charge image builds up, the 

latter being proportional to the light image. 

c) A scanning device in the form of an electron probe, which with 

a scanning movement evaluates the load distribution in the storage target. 

Vidicon tubes work on the principle of the outer photoelectric effect. 
The photoelectric conversion layer and storage target coincide in this type 
of tube. The storage target is built up of thin homogeneous semiconductor 
layers with a high electrical resistance (Se, Sb2S3), which have been coated 
on a light transmissive but conducting supporting layer, called the signal plate. 
The resistance of the semiconductor layer is proportional to the local bright
ness. The negative charge supplied during one scanning process partly flows 
off, before the next scan, according to the resistance of the image element. 
In comparison with the cathode the image element will have a positive po
tential. When scanning anew, the charge which has leaked away is replaced. 
A current pulse produces the video signal on the input resistor. 

The photoelectric layer and storage layer are separated in the orthicon. 
Due to the inner photoelectric effect, photoelectrons are emitted from the 
photocathode when irradiated with light ; the electron image is projected on 
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the storage layer as a result of electron optical projection. The electrons, 

which have been accelerated up to 2 keV, produce secondary electrons on 

the storage plate, which in standard orthicons consists of a special glass a 

few μηι thick (in special types of orthicons A l 2O s is used); these secondary 

electrons are drained off by a fine net in front of the storage target. As in 

the vidicon, the target is discharged again by a scanning beam. However, 

here the signal is not the charging pulse, but that fraction of the electrons 

in the scanning beam, which, depending on the electron optics of the system, 

return on the same path and enters a secondary electron multiplier, being 

amplified there and used as signal. 

A new type of tube, the SEC (secondary electron camera) tube developed 

by the Westinghouse Company (

3
), will now be described. It will be interesting 

to learn that the EBC effect, already discussed, is applied in this tube which 

as a commercial component shows its superiority in comparison with all 

methods of image conversion so far known. 

The target of the tube contains an A 1 20 3 support film of thickness about 

700 Â, a signal plate, which is coated on the support film (700 Â). The actual 

storage target with a density of only (1 -i-2) % of the normal density consists 

of highly insulating KC1. Its thickness is approximately (10-f-20) μιη. As in 

other tubes, the scanning beam lifts the target to cathode potential, the elec

tric field is built up by a bias voltage on the target. The target is then bom

barded with these photoelectrons, which have been accelerated to a maxi

mum of 7 keV in the converter of the tube. Secondary electrons produced 

in the KC1 layer are drained off by the field and leave positive charges behind, 

owing to the small drift velocity. The amplification factors are naturally 

not as favourable as in the layers using the EBC effect mentioned before. 

For the production of a SE in the KC1, approximately 30 eV are needed, so 

that about 300 secondary electrons are produced by one 7 keV electron. 

About 3 0 % of the SE are lost on account of recombination, so that ampli

fication factors of ~ 2 0 0 are to be expected. 

As far as sensitivity is concerned the orthicon and SEC tubes are better 

by the factor 30 than the tubes of the vidicon type. 

B) Basic structure of an image amplification device. - The basic struc
ture of such a device is shown in Fig. 13. A transparent luminous screen 
converts the electron image into a light image, whereby an Al coating layer 
of (100^-150) Â thickness ensures that the light originating in the screen is 
radiated only downwards, i.e. in the direction of the camera tube. This 
coupling link shown here contains mainly a light optical system with the help 
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of which the luminous screen image is projected onto the photocathode of 

the camera tube. But it can also contain active, i.e.  brightness amplifying 

elements, for example intensifiers, as will be seen later on in our image ampli-

electronmicroscope 
- screen-

monitor 

trans fersys  tern 

TV-câmerd-tuùe 

control unit 

videosmplifier 

Fig. 13. - Schematic drawing of the TV system connected to the electron microscope. 

fying device. As described earlier, the video signal which is produced in the 

camera tube, and is subsequently amplified in a wide-band amplifier, together 

with the corresponding synchronous signals, controls the recording beam 

of the monitor tube. 

Which requirements have now to be demanded from such a device? 

C) Basic  requirements.  - The general requirement, which we have to 
establish, is that, on its way through the television system, no image detail 
should get lost and that the image will be transmitted without distortion. 
In other words, no loss of information and no adulteration of the image 
information should occur. 

A first basic requirement, which has to be met, is that the resolving power 
does not worsen. Especially the scale of reproduction between the luminous 
screen and the camera tube must be chosen in such a manner that the banded 

17 
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structure of the television device (we use the 625 line system, standardised 

in Germany) is fine enough in comparison with the luminous screen. This 

requirement can only be met by a limitation of the transmitted image field. 

This limitation is smallest when the resolving power of the luminous screen 

is approximately adjusted to the resolving power of the camera tube, given 

by the banded structure. Since different commercial types of camera tubes 

have different photocathodes and target sizes, different optical magnifications 

are therefore necessary for optimum adjustment, and this can be reached 

by choice of the photooptical coupling links. 

The next basic requirement concerns the capability of the device to project 

images at as small a final image current densities as possible. This capability 

may be impaired by background noise. A more exact analysis, which the 

theorists of television techniques undertook some time ago, shows, that 

television devices possess a background noise which originates from the input 

stage of the video amplifier, that is from the electron multiplier in image 

orthicon tubes. It is understandable that the image perceived on the monitor 

will be better the more the video signal dominates over the noise. For this 

reason it has proved to be useful to denote the image quality by the signal/noise 

ratio (i.e.  S  =  signal voltage to noise voltage). An image with S  =  30 is to 

be considered as excellent, with S  =  10 as good, and with S  = 2 as still just 

usable. 

In order to make the image signal as big as possible, it is now our task 

to undertake the coupling of the television device to the luminous screen by 

means of coupling links of high light transmissivity. For this purpose so-

called tandem optics have proved to be useful. These are objectives of high 

aperture ratio which are used in pairs, and which have been focussed for 

infinity individually and which produce an image scale proportional to the 

focal length. By coupling the camera tube to the transparent luminous screen 

by means of fiberplates, which have a transmission of about (70-^80)% 

compared with 15 % of the highest intensity tandem objectives, the sensitivity 

may be increased by a further factor 5. Assuming the use of such fiberplates, 

we have compared various types of devices by calculating their characteristic 

curve of signal to noise ratio as a function of the final image current density 

in the microscope and also by measuring them to a great extent. The results 

shown in Fig. 14 make it clear that the devices become more sensitive in the 

following order: vidicon, plumbicon, orthicon (tube for studio television), 

SEC tube (discussed later on), MgO orthicon (a high sensitive special type) 

and SEC tube with image intensifier connected in series. With the last com

bination we will concern ourselves in detail later on. The other tubes can 
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naturally all benefit from the 200 fold increase in sensitivity given by an 

image amplifier. 

We will now try to answer the question to what extent an increase in 

sensitivity on an image amplifying device is convenient at all. It will seem 
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Fig. 14. - Signal-to-noise ratio of TV systems for electron microscopes. 

plausible after the explanations in the first par t of these lectures, that a natural 

limit will then be reached when the device is capable of making visible the 

signals of individual electrons per image element. Then the image quality 

is determined not any longer by the noise of the device but by the noise of 

the electrons of the microscope. For this we can also calculate a signal to 

noise ratio with the equation of statistics used before. 

àMJE = llVN=VeJj^TÔ*, 

or 

SQ=hl&jE = VhWe. (5) 

Here the symbols used are : 

SQ = signal to noise ratio subject to the electrons of the microscope (quantum 
noise), 
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Τ = t h e integration time, in our case 1/25 s. When observing the monitor 

with the human eye, the storage time of the eye must be inserted, which 

is about 0.2 s, 

j E = the final image current density, 

δ = the resolving power relative to the final image plane, about 50 μιη. 

The equation given in (5) has been inserted as the dotted curve in Fig. 15. 

We can now say that the overall signal to noise ratio is determined by both 

noise levels, the amplifier (or video noise) and the quantum noise according 
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Fig. 15. - Signal-to-noise ratio of SEC systems connected to Elmiskop 101. 

to the equation given in the diagram. Here the characteristic curves of the 

SEC tube with and without image amplifier are reproduced once more, as 

we have seen in the preceding figure. The over-all signal to noise ratio for the 

device with series-connected intensifier approaches closely the natural limit, 

which is given by the quantum noise of the electron beam of the microscope. 

The image quality is thus mainly determined by the quantum structure of 

the image forming electrons. A further increase in sensitivity would be mean

ingless, since no further information would be obtained. We can see from 

this, that a television image amplifying device can be looked at as being the 

more efficient, the closer its total characteristic curve is to the limiting curve 

of the electron noise. 
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For the device without image amplifier, the quantum noise and the ampli

fying noise are of the same magnitude, the image quality is thus determined 

by both components. This can be noticed in the total characteristic curve 

through the fact that it does not coincide with the natural limit, but lies below. 

At Siemens we have decided to use the system of the SEC tube with image 

amplifier as an accessory instrument for the Elmiskop 101, since apart from 

the high sensitivity this system offers still other advantages. We use fibre-

plates for the photo optical coupling, which, as already mentioned, have the 

advantage of high light transmissivity, of short over-all length and of better 

transfer characteristics in comparison with tandem optics. Apart from the 

noise, the information to be transmitted is determined by the M T F of the 

television system ( M T F = modulation transfer function). It is well known 

from the information theory of transmission systems, that small distances 

are not as good as bigger ones as far as the contrast is concerned, that is, 

that they are transferred with impaired contrast. If now the contrast drops 

below the physiological threshold, which should be assessed at about 1 0 % 

contrast, depending somewhat on the background brightness, these structures 

are not resolved by the human eye anymore and the information to be 

transmitted gets lost. 

Each of our transmission links has such a M T F . The facts, which form 

the basis for these characteristic curves, are different in the various components 

of the image amplifying system. In the case of the luminous screen the dif

fusion halo will mainly be responsible for the decrease in contrast. The M T F 

of the camera tubes is caused by the scanning mechanism. Structures with 

distances which are bigger than the scanning spot are modulated fully. If, 

however, the distances come within the area of the scanning spot, the modula

tion factors get smaller on account of edge smearing. The background bright

ness increases so that structures of this distance are not set off against the 

background anymore, and get lost as information. One assumes, that the 

electron optical magnification will be chosen in such a manner that the pat

terns to be transferred will not disappear in the transmitted image on account 

of an underevaluation of its contrast. 

The modulation transfer function of the total system is formed by multi

plying the individual MTF ' s . A decrease in the contrast at small distances 

has to be taken into account with each additional component in the transfer 

channel. Particular attention has to be paid to this fact, since images with 

a modulation of 100% are only very rarely offered to the image amplifying 

device. In the case of biological or highly resolved objects the contrast of

fered will hardly exceed 2 0 % . 
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We have now covered the basic problems in detail and should turn to the 

practical design of such an image amplification device. 

Figure 16 is a schematical drawing of the device we have adopted. The 

bot tom plate of the electron microscope camera has been tightly vacuum 

sealed by a fiberplate, on the topside of which a transmission screen with 
coating layer has been installed. A single stage electrostatic image intensifier 
with fiberplate input has been flanged to the fiberplate. By means of its 
photocathode it converts the incoming light image into an electron image. 
On account of an acceleration of the electrons to a maximum of 15 kV and 
an electron optical reduction by a factor 2 (with which we fulfil the first 
basic requirement: the adjustment of the resolving power of the luminous 
screen and the camera tube) a light image is again produced at the output 
on the luminous screen, the brightness of which is already 200 times higher 
than that of the microscope screen. This light image is again transmitted 
to the photocathode of the SEC tube via fiberplates, which are component 
parts of the image amplifier and the camera tube. The electron image created 
is then accelerated to a maximum of 7 kV in the image converter and is 
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reproduced on the actual storage target at a magnification of about 1:1. 

Figure 17 is a picture of this device. 

The high voltages, which are connected to the SEC tube and the image 

amplifier are of some importance. The 15 kV of the image amplifier has to 

transmission screen 

image intensifier 

locking rings 
SEC-tu be 
target-shielding 

springs 

electronics 

high voltage generator 

Fig. 17. - Assembly of the image intensifier. 

be added to the 7 kV of the SEC tube, so that on the bot tom side of the fiber 
plate of the microscope we obtain a voltage of 22 kV relative to ground, 
i.e. relative to the transparent luminous screen of the microscope. The break
down strength is then a problem due to the high voltage, but can be mastered 
by a sufficiently thick fiberplate and an insulating ring. Conducting layers 
on the fiberplate ensure that a uniform distribution of the potential always 
exists. Both voltages can also be reduced during operation, which causes a 
decrease in the image amplification and image conversion effect. This pro
cedure is important in order to deal with higher electron current densities, 
i.e. with higher image brightness, without overloading the device. The con
version characteristics of the device remain largely unaffected. As we have 
seen in Fig. 14, the characteristic curve of a television device covers only 
about one order of magnitude of current density. But since we want to cover 
several orders of magnitude, the shifting of the characteristic curve by means 
of the image intensifier voltage offers a valuable facility. One then operates 
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on the straight line part of the characteristic curve at all image brightnesses. 

We undertake this adjustment automatically in. our device by forming out of 

the video signal a control signal for the high voltage of the image intensifier 

and for the image conversion par t of the SEC tube. 

This possibility is illustrated in Fig. 18 by measurements in the SEC device. 
So far we demonstrated the signal to noise ratio ; here the signal current itself 
is plotted against the final image current density. By varying the tube voltage, 
the characteristic signal curve can obviously be shifted over a wide range. 
In addition we have plotted the amplifier noise as a constant value (5 nA) 
and the quantum noise, which increases with decreasing current densities. 
The inserted oscillograms show the video signal of an individual video scanning 
line, which passes through an illuminated par t of the image area. In all three 
cases the same image signal height was produced at different current densities 
and correspondingly different image amplification. At bigger current densities 
only the noise of the television device can be noticed, i.e. the amplification 
noise; at smaller densities, however, the electron noise becomes visible to a 
growing extent as a widening of the noise band. It can also be seen that 
below 10~1 3A/cm2 the electron noise even exceeds the signal. 

We will see now what this means for the observation of the image. We 
prefer to use defocussed images of holes in thin foils as test objects for our 
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Fig. 19. - Defocussed image of a hole in a carbon film. UB = 100 kV; Vel = 80000 χ ;: 
Δ// /=3.8·10-2; αΛ = 1 · ΐσ-6; JE = 5·10~15 A/cm2; y0> 3.2· 10~5 A/cm2; tB = 25 s. 

photographed the monitor picture with different exposure times tB at various 
very small current densities (which all completely exclude normal observation 
on the final screen), and we have represented the result in Fig. 20. Here an 
exposure time of about 0.2 s corresponds approximately to the impression, 
which the eye will have when observing the monitor. At 10~15 A/cm2 only 
the signals of individual electrons are visible and only at 4 - 1 0 ~1 4A / c m2 the 
image starts to fill up. The effect of a longer exposure time can be realised 
by a longer after glow time when looking at the monitor. Our devices have 
thus been equipped with such monitors. 

There are, it must be mentioned, still other, much more effective possi
bilities to advance into the field of smallest current densities, for which the 
best present possibilities are offered by the SEC tube. On one hand the 
SEC target has the characteristic that a picture load stored on it is « cleared 

device. It is known that only with smallest illumination apertures and hence 

smallest current densities, the multiple Fresnel fringes become visible. Our 

image amplifying device makes possible the observation of such images, as 

it is demonstrated by Fig. 19, photographed from the monitor. We have 
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Fig. 20. - Monitor pictures of Fresnel fringes. 

vidicon. But as soon as the electron beam is switched off, the image informa
t ion is held for several hours on account of the high insulating ability of the 
SEC target. It is just this characteristic which distinguishes the SEC tube 
from all other camera tubes. On account of the high electric resistance, it is 
not possible for a charge distribution to flow off. As far as the other 
camera tubes are concerned (vidicon, plumbicon, orthicon), the electrical 
target characteristics permit only storage times up to 0.5 s, without a con
siderable loss of information happening, which causes a decrease in signal 
height, subsequently a worsening of the signal to noise ratio, edge smearing 
at the black-and-white borders, i.e. a lack of focus and an increase in back
ground brightness. In the case of the SEC target, however, we can wait at 
small illumination intensities until enough image information has been ac
cumulated on the target, and then can start a reading process. But it requires 

off » except for a few per cent of its initial load. This means tha t a SEC 

tube can reproduce quick changing processes, it does not show any smearing 

effects, which prevent the observation of dynamic processes, especially in the 
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t > 1/ 2 5 S t = i o s τ= 20 s 

rat io for the electron noise. According to the television standard we have 
so far calculated with storage times of about 1/25 s. At longer storage times τ 
the limitation curve defined in (5) shifts to smaller current densities, where 
j c c l / τ . In this manner one can advance to image current densities of below 
1 0 - 15 A/cm2 at still tolerable storage times. Figure 21 demonstrates how an 
image, which is still invisible on the monitor with a normal storage time of 
1/25 s, fills up with increasing storage time. In our television device we have 
provided for a timer, on which various storage times can be dialed. The 
flash-like appearing image can either be recorded via synchronized monitor 
photography or magnetic tape recorder. 

With its storage capability the television device has a characteristic, which 
also is shared by the photographic plate, that is the most important character
istic, which makes the plate so superior to the visual observation of the final 

further technical developments to observe this image stationary, which at 

first would only appear on the monitor as a flash. Magnetic tape recorders 

are one of the means, which would be taken into consideration at the moment. 

Let us now consider once more the eq. (5), which represents the signal to noise 
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screen image by the human eye. The device is capable of building up an 

image of electrons only occasionally falling, on the image plane as a result 

of a correctly adjusted storage time. After recording this image on magnetic 

tape, it can be regarded as a stationary image on the monitor. From the 

question of how small current densities one can reach by this method, imme

diately results the question of the resolving power of the stored images. An 

incompletely « filled » image naturally has an impaired resolution. By means 

of Fresnel fringes we therefore measured the resolving power during half 

image operation and different storage times, and plotted it against the final 

image current density in Fig. 22. One can see that for current densities below 
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Fig. 22. - Resolvable distances d of Fresnel fringes for various storage times τ. 

Something has to be added to the resolving power during storage operation. 
As already known, we work in such commercial television devices with the 
interlacing system, that is at first the even numbered lines of the television 
image (0, 2, 4 , . . . etc.) are scanned, and after that the scanning beam jumps 
back in order to scan the second half image with the lines 1, 3, 5, ... etc. Our 
image is thus composed of two half images, which succeed each other with 
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a time interval of 1/50 s. One difficulty which results from this is for our 

resolution during storage operation. During the discharge of the first half 

image, also the second half image is discharged to a great extent (up to 

about 50%). This means that the signal to noise ratio worsens accordingly, 

so that the signal will disappear among the noise of the television device. 

At storage times of several seconds, this 1/50 s between the half image is not 

sufficient any more to raise the second half image up to the full signal height. 

In these cases we have to take into account a resolution loss in vertical direc

tion, i.e. our image is practically composed of half of the number of lines. 

By combining a special scanning technique with a specially controlled recording 

technique, this difficulty may be overcome : If during the scanning of the target, 

after one storage period has elapsed, only the first half image is recorded 

(for example with a polaroid camera) . If after a second storage period has 

elapsed, during which the target has been charged anew, only the second half 

image is scanned (this can be achieved by electronic techniques). The storage 

times must only be integral multiples of 1/50 s, and registered on the recording 

device, on which the first half image has already been stored. A complete image 

with an opt imum resolution is thus obtained. 

So far we have only considered the influence of amplifier and quantum 

noise on the resolution, and will now consider the effects of the modulation 

transfer function. 

In Fig. 23 is shown a test pattern familiar to entertainment television. 

It has been projected on the image amplifier input and photographed from 

the monitor. Immediately one can notice that in a big image area hardly 

any image distortions occur; small distortions can be noticed only at the 

outer edge of the image. The M T F of the system can now be determined 

with the aid of the test pattern. The test pattern offers to the device the same 

contrast for all distances. As can be seen from the video signal of a line, which 

has been drawn through this scanning pattern in the upper right corner, the 

smaller distances are underemphasized in the contrast which is associated with 

a decrease in signal amplitude and at the same time increase in background. 

If these measurements are evaluated, the curve shown at the bot tom left of 

the figure is obtained, which demonstrates, to what degree the contrast de

creases as a function of the local frequencies specified in MHz as is customary 

in television techniques. From such curves one can then calculate the object 

distances which will still be transferred by such a device. However, the M T F 

of the luminous screen, which has so far been disregarded here, has to be taken 

into account. This situation is demonstrated in the lower right par t of the 

figure. With an electron optical magnification of 250000 and an available 



270 K.-H. Hermann, D. Krahl, A. Kiibler, K.-H. Miiller, V. Rindfleisch 

contrast of 20 %, object distances of about 7 Â (assuming the physiological 

contrast threshold at 10%) can be transmitted, which means that they should 

become visible on the monitor. With a contrast of 50 %, distances of about 

(4-^5) Â should still be transmissible; here we already approach the limitation 

given by the bandwidth of the amplifier with Δ / = 8 MHz. 

Fig. 23. - Contrast transfer of the SEC image intensifier system. 

As a demonstration Fig. 24 shows a monitor picture of objects from the 

field of biology and metallurgy. It is not claimed that these are particularly 

characteristic examples of such applications. Figure 25 shows more examples 

of biological applications. The following can be said about the main fields 

of application of the image amplification device: 

1) For high resolution microscopy the image amplification will be 

invaluable, since the correction and focussing situation can be adequately 

recognized before the picture is taken. 

2) Objects which are sensitive to electron radiation, such as are found 

for example in organic chemistry and biology, can be tested within the range 

of 10~4A/cm2 in the object plane. 
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Fig. 24. - Monitor pictures of biological and metallurgical specimens. Left: j E = 110~] 
Α-cm"2, tB = 20 s, 5200 χ ; right: j E = 1 · 10~12 A-cm"2, tB = 20 s, 40000 χ . 
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Fig. 25. - Monitor pictures~bf biological specimens. 



272 K.-H. Hermann, D. Krahl, A. Kiibler, K.-H. Millier, V. Rindfleisch 

3) A complete replacement of the plate by television is not to be expected 

at the moment on account of the limited image area. In special cases, however, 

one would be satisfied with video recording. This, for example, applies to 

motion picture recording of dynamic processes. 

4) In images of poor contrast (for example thin specimens), electronic 

technique offers valuable possibilities of contrast enhancement. The biologist 

will certainly make use of this. 

5) For quantitative image contrast measurements, television does not 

offer the exactness and the range of orders of magnitude measured by semi

conductor detectors. But observations of the image signal in the television 

device on an oscilloscope screen can now and then be valuable on account 

of the rapidity with which it follows changes. 

6) In future the television techniques could offer favourable conditions 

for an image analysis by electronics. An automatic focussing aid, for example, 

could possibly use an image amplification device as basic instrument. 

We hope that we were able to make clear the uses and limitations of two 

measuring methods, which, it must be said, cannot replace the photographic 

plate, but which for the microscopist have such profitable characteristics, 

that in future they will attain increasing importance as accessory instruments, 

and may favourably serve as supplements to each other. 
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The Theory 
of Electron Diffraction Image Contrast 

A . H O W I E 

Cavendish Laboratory - Cambridge, England 

1. Introduction. 

Considerations of time and space do not allow the presentation in these 

lecture notes of more than a fraction of the theory of electron diffraction 

image contrast. Most attention has therefore been given to the introductory 

sections which assume no more than an elementary knowledge of electron 

waves. Later sections dealing with more sophisticated topics which have 

already been described in some detail elsewhere Q) are presented in a more 

condensed form. More up to date references have been quoted where pos

sible but no pretence is made at completeness in this respect. 

2. Foundations of diffraction theory. 

Electrons propagating in free space after acceleration through a poten

tial Ε0 may be described by a plane wave exp [2πίχ · r] where the wave 

vector χ describes the direction of motion and has magnitude χ = λ~
Χ
 = 

= (2m0eE0Y/h. A more accurate formula for relativistic electrons is given 

later (see eq. (28)). When the wave strikes a crystal, elastic scattering (Bragg 

reflection) occurs and the amplitude of the wave exp [2πίχ'-ν] emerging in 

the direction χ'(%'=%) contains an interference factor A taking account of 

the different path lengths involved for scattering by different atoms. 

Λ = Σ / / β χ ρ [ 2 * ί ( χ - χ ' ) τ β, ] , (1) 



276 A. Howie 

where f3- is the atomic scattering factor of the y-th atom at the angle 2Θ in 

question and depends only on | χ ' — χ | = 2 sin(0)/A (see Hall 's lecture). In 

a perfect crystal the position of the y-th atom in the n-th unit cell is given by 

raj = rn + pj, where rn = nxa + n2b + n3c. a, b and c are then the transla

tion vectors of the lattice. We then have 

Α = ΣΛ
 e x

P \-
2πί
(Χ — Χ') * Ρ*] Σ

 e x
P [

2πί
(Χ — %') ' rn] (2) 

j η 
= F ^ exp [2πι(χ — χ ' ) · rn], (3) 

η 

where F(\x' — χ | ) is the scattering amplitude of the unit cell. The behaviour 

of the interference term depends on χ ' — χ , a vector in reciprocal space and 

which it is convenient to describe relative to the reciprocal lattice. 

The vectors g of the reciprocal lattice are defined by 

g = ha* + kb* + lc* , (4) 

where the reciprocal lattice translation vectors have the property aa* = 
= bb* = cc* = 1, ab* = ac* = be* = 0 and can easily be shown to be 

given by 

where Vc is the volume of the unit cell. (See Goringe and Hall, Problem 1.) 
As a consequence of these definitions the vector g is normal to the crystal 

lattice plane with Miller indices h, k, I and grn = integer for any lattice 
vector rn. Reference to eq. (3) then shows that all of the waves scattered by 
the different unit cells will have the same phase, leading therefore to a max
imum in the scattered amplitude A, if and only if 

X ' - X = * . (6) 

It is left as an exercise for the student to show that this condition is equivalent 

to Bragg's law λ = 2άύηθ. When the Bragg condition is not exactly ful

filled it is convenient to write 

(7) 
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where 5 is a small vector in reciprocal space denoting deviation, from the 

Bragg condition. Figure 1 giving the Ewald sphere construction used to 

locate the important Bragg reflections, shows the relation between these various 

vectors. 

Fig. 1. - The Ewald sphere construction. 

The diffracted intensity \A\* from a perfect thin crystal of thickness t in 

the ζ direction and lateral dimensions Lx and Ly is obtained by substituting 

from eq. (7) and replacing the sum in eq. (3) by an integral. 

_ \F\
2
 sin

2
 jntsz) ur\

2
(nLxsx) sin

2
(nLysy) 1 1

 ~ Vf (nszf (nsxf {nsyf '
 K j 

We can see from this expression that \A\
2
 will be very small unless szt, 

sxLx and syLy are all small in magnitude. Since Lx and Ly are much 

greater than t we therefore usually regard sx and sy as being negligible com

pared with sz and simply denote sz by s. 
In the electron diffraction case the small values of λ lead to small Bragg 

angles dB ^ λ/ld ^ 0.01 rad and the Ewald sphere is very large. Moreover the 

atomic scattering amplitudes f(6) fall off fairly rapidly with increasing sin 0/2 

so that the important reciprocal lattice points giving rise to Bragg reflection 

in a given case lie on a plane of the reciprocal lattice passing through the 

origin and lying approximately normal to the incident beam direction. The 

ability to recognise and index the spots in these cross grating diffraction pat-
terns is an important preliminary in the interpretation of electron micrographs 

of crystals. (See Goringe and Hall , Problem 2.) 
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Equation (8) shows that a given cross grating pattern will be observed 

over a certain range ( ~ 5°) of incident angles (the value of s and hence 

the intensity, but not the position, of each spot may change). Fortunately 

in the case of thicker crystals one observes in the diffraction pattern Kikuchi 
lines due to inelastic scattering and as the crystal is tilted these lines move 

as if rigidly attached to it (see Fig. 2 for a description of the origin of the lines). 

9 Ε 0 D 
Fig. 2. - Formation of Kikuchi lines. Elastically scattered electrons form diffraction spots 
at 0 and g. Inelastically scattered electrons travel in various directions but those travelling 
towards D and falling at a Bragg angle on a particular set of planes are diffracted towards 

Ε or vice versa. 

Kikuchi lines occur in parallel pairs separated by g (the magnitude of the re
ciprocal lattice vector corresponding to the Bragg reflection involved). At the 
exact Bragg reflecting position the two lines pass through 0 and g as shown in 
Fig. 3. The precise incident beam orientation can readily be worked out 
when the lines are in different positions. In very thick crystals where the 
Bragg spots may not be clearly visible against the background it may be 
easier to identify prominent crystal orientations from the complex but char
acteristic intersecting patterns of Kikuchi lines or bands (the dark or bright 
strip often observed in the region between two lines). By comparing the 
angular width of these bands with the purely geometrical angle between two 
such prominent orientations, the Bragg angle and hence the accelerating 
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Χ
^ \ ^ · 002( 

O*C
#
040 

y / *
0 0

* 

» 4 · \ · χ 

Fig. 3. - Kikuchi lines near 100 orientation, exact Bragg position for (020) and symmetry 
position for (002) and (002) reflections. 

effect of the imperfection may be characterised by a change in F (due to 

impurity atoms for instance) or to an elastic strain which causes a displace

ment of the unit cell from the perfect crystal position rn to rn + R(?n)-
Using eqs (3) and (7) we then find in the latter case 

A = F^Qxp [— Inisz — Inig R], (9) 
η 

where we have used the fact that g · rn = integer, s-rn = sz and have neg

lected a term s-R which is very small since s ^ L g and R<rn- The pres

ence of defects thus gives rise to changes in the diffraction pattern and these 

can sometimes be used to give information about the nature of the displace

ment function R. It can be seen for instance that if the direction of R lies 

in a plane, there will be Bragg reflections (from planes of atoms parallel to 

this) which are unaffected by the imperfection, since g-R = 0. In general 

however, with the development of the methods of electron microscopy and 

also of X-ray topography it has been found much easier to get direct infor

mation about defects by studying the intensity leaving the exit surface of the 

crystal rather than the intensity in the diffraction pattern. 

voltage of the instrument can be measured. (See Goringe and Hall, this 

volume, Problems 3 and 4.) 
Returning to the question of elastic scattering we note that eqs (1), (2) 

and (3) may be modified to deal with the case of imperfect crystals. The 
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mediate or selecting area aperture is placed in the image plane CD to define 
approximately the area of specimen contributing to the observed diffraction 
pattern. Similarly the parts of the diffraction pattern contributing to the 
micrograph can be controlled by inserting an objective aperture in the dif
fraction plane AB. When the objective aperture encloses only the central 
spot corresponding to the direct beam a bright field image is obtained. With 
the aperture enclosing one of the other diffraction spots a dark field image 
is obtained. Since a particular plane wave emerging from the object plane 
is brought to a point in the diffraction plane it can be seen (neglecting lens 
aberrations) that the amplitudes in these two planes are related by a Fourier 

Figure 4 shows schematically the way in which the objective lens in an 

electron microscope forms an image (in the plane CD) of the intensity at the 

exit face of a crystalline object and a diffraction pattern in the plane AB. 
Subsequent lenses can thus be focussed on either CD or AB to obtain micro

graphs or diffraction patterns respectively. In the diffraction mode an inter
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transform. Consequently the size of the objective aperture used can limit 

the fineness of the detail which can be observed on the micrograph. In par

ticular, the lattice planes in the crystal will not be resolved unless the aperture 

encloses at least two Bragg spots simultaneously. These direct resolution 
images are usually obtained from rather thin crystals using the zero order 

(direct beam) spot and a low-order Bragg spot. 

3. Simplified theories of wave propagation in crystals. 

The origin of the diffraction effects just described is made clearer by con

sidering electron propagation in the crystal potential V(r) with the periodic 

property V(r + ?η) = V(r) guaranteed by writing 

F(r) = 2 K , e x p [ 2 r c f c - r ] . (10) 
g 

The constants Vg depend on the form of the potential in a given case 

(see eq. (30)) and have the property Vg = VZg since V(r) is real. The effect 

of a potential Vis to change the electron wave vector χ to a new local value χι 
where 

( 1 V \ m„ ρ V 

When a plane wave ç?0exp [2π/χ·#·] falls on a thin crystal slab dz an 

extra phase shift will occur in the slab so that the emerging wave becomes 

<p0exp [ 2 π / χ τ ] exp [2nim0eV(r)dz/h
2
x] 

~ 9?0exp [2π/χ·#·]{1 + 2nim0eV(r)dz/h
2
x} ^ 

~ <p0exp [2π ι χ τ ]{1 + (2nim0edz/h
2
x) 2 Vgexp [2mg-r]} . (12) 

g 

From the right-hand side of (12) we see that in addition to the directly 

transmitted wave a number of diffracted waves leave the slab with the wave 

vectors χ ' and amplitudes άφ9 where 

d<pgexp [2mx'-r] = ( 2 ^ / m 0e d z / ^

2
^ ) ç ) 0̂ e x p [2π/(χ +g)-r]. 

Using eq. (7) and considering as before only the ζ component of s, we have 

Tii 

d(pg = -τ-φ0 exp [— 2nisz] dz , (13) 
£g 
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where the quantity ξ9, with the dimensions of length, is the extinction distance 
given nonrelativistically by 

ξ9 = /τ*χ/2ιηοβν9. (14) 

Typical values of ξ9 in electron diffraction lie in the range 100 Â to 1000 Â. 

(See Goringe and Hall, Problem 5.) Equation (13) is the basis of the kine
matical theory of diffraction in perfect crystals and can be integrated directly 

(assuming that φ0 is constant = 1) to give 

s Ν. tlx _ . _ sin ( ra i ) 
Ψ git ) = y- exp [— nits] , (15) 

Çg 71S 

" " - w -

 < 1 6) 

Equation (16), with the same interference factor which appeared in eq. (8), 

can be used to discuss some of the features observed in dark field electron 

micrographs of perfect crystals. If the crystal thickness t varies, thickness 
fringes will be observed with a spacing Δ ί = If s. When t is constant but s 
varies due to local bending of the crystal, extinction contours or bend contours 
appear following the locus of points where the crystal is at the Bragg posi

tion. Equation (16) shows that these contours are symmetrical in ± s and 

have a bright central maximum flanked by subsidiary maxima of decreasing 

intensity but separated by constant amounts of As = 1 jt. Contours of this 

type are in fact observed in very thin crystals. When only one Bragg reflec

tion is important the intensity in the bright field image is complementary 

to that in the dark field image, i.e. |^0|
2:= 1 —

 |^|
2
· 

Equations (10), (12) and (13) can readily be generalised to give the kinema
tical theory for imperfect crystals. As a result of displacements R due to defects 

the potential at the point r in the imperfect crystal is the same as that at 

r — R(r) in the perfect crystal, i.e. 

V(r) = Σ ^ e x p [2rcfc-r]exp [-2nig-R]. (17) 

g 

Proceeding as before we then find 

τιi 

αφg = — φ0 exp [— 2nisz — 2nig · R] dz , (18) 

t 
7ZX C 

<Μθ

 =
 τ~ΨΟ\

 e x
P [ " 2nisz — 2nig · R] dz . (19) 

£g J 
ο 
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Using these equations, in which the phase factor previously appearing 

in eq. (9) may be recognised, the bright and dark field images of various 

defects with known displacement functions R(r) can be calculated by nu

merical evaluation of the integral. It should be noted that for each point 

x, y, t on the exit surface cpg(t) is obtained by integrating down a column of 

crystal at the position x, y. Any change in the interference effects from 

neighbouring columns due to different values of R in these columns is ignored. 

This is known as the column approximation. 
The kinematical theory is qualitatively quite successful in describing a 

number of the features observed in electron micrographs of both perfect and 

imperfect crystals but is hot quantitatively reliable since it assumes that the 

diffracted waves are always so weak that the incident wave amplitude is con

stant with depth ζ in the crystal. As a consequence unphysical results are 

sometimes obtained. For instance eq. (16) implies that \φ9\
2
 may (for small s 

and large t) exceed the incident intensity. 

Some of these difficulties can be overcome by using the two-beam dynamical 
theory in which it is assumed that the incident wave amplitude φ0 and the 

diffracted wave amplitude φ9 both vary with depth ζ in the crystal. Only one 

diffracted wave is considered. It is then clear that eqs (13) and (18) will still 

be valid but must be combined with a similar equation for d ^ , the change 

in φ0 due to diffraction from <pg. Since the wave vector change χ ' - > χ is 

now reversed, the phase term is also changed in sign so that the coupled 

equations for an imperfect crystal become 

Contrast calculations for specific defects can be carried out (again using 

the column approximation) by integrating this pair of equations from ζ = 0 

to ζ = t with the starting condition 9?0(0) = 1, %(0) = 0. Details are given 

in Brown's lectures. As an exercise for the student it is left to show that the 

bright and dark field intensities are complementary, i.e. that | φ0|
2
 + |ç%|

2 

is constant. It may also be shown that in the case of a perfect crystal 

d<^(z) ni 
dz ξ9 

d(p0(z) _ πι 
dz ~ ξ g 

— φ0(ζ) exp [— Inisz — 2nig · R], 

cpg(z) exp [Inisz + Inig · R]. 
(20) 

π? sin
2
 (ntVs

2
+ l / |g) 

| | *

2
+ 1 / έ 1 

(21) 
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This formula is directly comparable with the kinematical theory eq. ( 1 6 ) 

to which it reduces when t < ^ or when s
2
 :^ l / l

2
, , i.e. when the crystal is 

not too close to the Bragg position. Once again thickness fringes and bend 

contours are predicted but in contrast to the previous results the thickness 

fringes have a spacing Δ Γ = f^/Vl + w

J
 where w — s£g (with a maximum 

value of ξ9 at s = 0 ) and the bend contours, though still symmetrical, need 

not have a central maximum and the subsidiary fringes are not evenly spaced. 

All of these differences are confirmed experimentally. (See Goringe and Hall , 

Problem 6.) 
The two-beam dynamical theory just outlined represents a great improve

ment on the kinematical theory but still has some limitations. In the first 

place several important absorption effects are not included. It is more con

venient to deal with these later after introduction of the concept of Bloch 

waves, however it may be noted that eq. ( 2 0 ) can be modified to take account 

of absorption if the quantity 1/ξ9 is replaced by 1/ξ9 + ΐ/ξ'σ where ξ'0 is an 

absorption parameter usually of the order of 1 0 | ^ or 2 0 ξ9 in magnitude. 

A second limitation of the theory is the neglect of other Bragg reflections. 

It will be evident on consideration that the method used to derive eq. ( 2 0 ) 

could be extended to cover η-beam dynamical theory involving η coupled 

equations in η wave amplitudes (see eq. ( 4 9 ) ) . Such a theory is necessary 

for incident beam orientations where a number of reciprocal lattice points 

lie on or near the Ewald sphere. To some extent these orientations can be 

avoided but reference to Fig. 1 shows that, if the point g is on the sphere, 

the point —g will be deviated by only a small amount s = g
2
j%. For the 

validity of two beam theory in this case we thus obtain the (approximate) 

condition 

S

2
I W X » 1 . ( 2 2 ) 

The condition simply expresses the fact that if the deviation of the point 

— g from the sphere is less than l/ξρ it too will be in the dynamical region and 

a three beam theory will be required. In practice the two-beam theory is a 

very useful approximation in many cases but breaks down for strongly scat

tering crystals where small values of ξ9 can occur for low values of g. 
Finally we note another useful approximation to the scattering problem 

which takes some account of many-beam dynamical effects at the expense 

of other disadvantages. This is the phase grating approximation in which 

the total phase shift of the wave in passing through the crystal is simply 

obtained by multiplying together the factors for successive slabs dz given 

on the left of eq. ( 1 2 ) . We thus obtain for the wave function on the exit face 
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the expression 
t 

ψ(χ, y, t) = φ0exp [2πίχ-r] exp [(2mm0efh
2
x)jv(x9 y, z ) d z ] . (23) 

o 
This formula, which is not restricted to crystalline specimens, gives \ψ\

2
= 1, 

i.e. no amplitude contrast but only phase contrast (unless we effectively in
troduce some absorption by using a complex potential V). Amplitude con
trast can be obtained in out-of-focus pictures (see pp . 540-623). The phase 
grating theory is a very useful one particularly for thin biological speci
mens but its basic assumption that the optical path is to be computed 
along a straight line trajectory parallel to ζ (equivalent to ignoring defocusing 
effects in a distance t) is not always justified. In the case of a potential 
V= V0 + 2Vgcos(2ngx) for instance it can readily be seen that the lowest 
diffracted orders will travel at an angle ΘΒ = ± g\2% and will eventually 
explore quite different regions of potential if dBt>\ /g. The phase grating 
theory therefore requires the condition 

£t\2x « 1 . (24) 

Comparison with eq. (22) then shows that it represents in a sense an al
ternative to the-two beam theory at the opposite extreme of approximation. 
(See Goringe and Hall, Problems 10 and 11.) 

4. Formal theory of elastic scattering in perfect crystals. 

The simplified treatment of electron diffraction just presented can be given 
a more rigorous basis combined with the deeper insight necessary for further 
extensions of the theory by a study of the perfect crystal solutions of the 
Schrodinger equation 

\
2
xp(r) + (%n

2
mefh

2
) {E + V(r)} y(r) = 0 . (25) 

Apart from possible spin effects this equation describes the diffraction of 
relativistic electrons provided that Ε and m are given in terms of the acceler
ating potential E0 and the electron rest mass m0 by the equations 

m = m0(l — v
2
jc

2
y* = m0( l + eE0/m0c

2
), 

Ε = E0(l + eE0/2m0c
2
)/(l + eE0/m0c

2
) . 

(26) 

(27) 



286 A. Howie 

The magnitude of the wave vector χ is given by 

χ = λ-
1
 - 2m0eE0{l + eE.flm^/h . (28) 

As before the potential V(r) is given by the Fourier series 

h
2 

V(r) = 2Vg exp [2nig-r] = — | Ug exp [Inig-r], (29) 

where the constants Ug can be related to the scattering amplitude for elec
trons fj of the 7-th atom in the unit cell (at sinOfÀ = g/2). 

Ug = — C X P [ ~ M i y ] Σ exp [-2nig-9j]Msm θ/λ). (30) m0 nVc fa 

Ug then decreases slightly with increasing temperature because of the Debye-
Waller factor exp [— Mg] and increases with increasing energy Ε because of 
the factor mfm0. We look for a solution of eq. (25) in the form of a linear 
combination of plane waves linked by the Bragg reflection process. 

φ ) = b{r) = 2Cg exp [2m(k + g)-r], (31) 
9 

It may be noted that this has the Bloch form of a plane wave exp [2%ik · r] 
multiplied by a periodic function. By substituting into (25) and equating to 
zero the coefficient of each term in exp [2nig-r] we obtain a set of equa
tions for the wave amplitudes Cg. 

{K
2
-(k + g)

2
} Cg + 2 Ug, Cg_g, = 0 , (32) 

where Κ
2
 = χ

2
 + U0 is a constant depending essentially on the electron 

energy. This set of Ν equations (TV depends on the number of reciprocal lat
tice points or beams considered) constitutes the fundamental equations of 
dynamical theory. The method of solution can be demonstrated most easily 
in the two-beam approximation where only the wave amplitudes C0 and Cg 
are considered. We then have a pair of equations 

(K
2
-k

2
)C0 +U_gC9 = 0, UgC0 + (K

2
-(k + g)

2
)Cg = 0 . (33) 
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For a nontrivial solution to occur we require 

= (K
2
-k

2
)(K

2
-(k +g)

2
)- \Ug\

2
 = 0 . (34) 

This relation between the energy K
2
 and the wave vector k constitutes a 

dispersion equation and enables us to plot a dispersion surface in reciprocal 

space for a given energy. In our case since \Ug\ ^ K
2
/5Q0 the dispersion sur

face consists of two spheres of radius Κ centred on 0 and g in the reciprocal 

lattice but splits slightly apart near the points where they touch on the Bril-

louin zone boundary. Part of the surface (not to scale) is shown in Fig. 5. 

η 

ο • g 

Fig. 5. - Two-beam dispersion surface. The vertical broken line is the Brillouin zone 
boundary. 

Any point on this surface of two branches j = 1,2 corresponds to a wave 

vector k
(j)
 and a solution C

(

0

j)
, C

(
p of the eqs (33). The actual solutions which 

will be excited in a given case must have the same tangential components of 

K
2
—k

2
 U-g 

Ug K
2
-(k+g)

2 
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wave vector as the incident wave exp [ 2 π / χ τ ] falling on the crystal entrance 

surface, i.e. k
{
^ = χχ, k^

]
 = %y. The two points D

{1)
 and D

(2)
 on the disper

sion surface can then be found by drawing through the end of the vector χ 

a line in the direction η of the entrance surface normal and finding 

its intersections with the dispersion surface (see Fig. 5). For the case most 

frequently considered when η is parallel to the Brillouin zone boundary it 

can be seen that Δ/:, the difference between the ζ components of the two 

excited Bloch wave vectors reaches a minimum at the zone boundary, where 

k
2
 = (k + g)

2
 (the exact Bragg position). Using eqs (34) and (14) we then 

find 

M = \k?-k™\ = KcosdBl\Vg\ = , (35) 

where ξ9 is the extinction distance. Equations (33) then show that the waves 

at the zone boundary take the simple form C£

1 }
= — C^

1 }
= 1/V2; C£

2)
 = C

(

g

2)
= 

= 1/V2. It is conventional to choose the wave amplitudes of a given Bloch 

wave so that 2 | Q |

2
=

 A
- The intensity \b

U)
\
2
 or current distribution in these 

two Bloch waves is shown relative to the crystal planes in Fig. 6. In wave (1) 

itS2,f 

Fig. 6. - Current distribution relative to the Bragg planes in the two-beam case (s = 0). 

the electrons mainly explore the regions of high potential energy between 
the atoms, whereas in wave (2) they travel in the regions of low potential energy 
near the atoms. Because the total energy Ε of the two waves is identical they 
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19 

must have different kinetic energies and hence different values of kz as seen 
in eq. (35). The difference Δ A: in kz between the two waves results in a beating 
or interference effect as they travel through the crystal with a characteristic 
periodicity Δ/r

-1
 = ξ9 at the reflecting position. This is the origin of the thick

ness fringes already noted and it can readily be demonstrated from eq. (33) 
that, for crystals deviated from the Bragg position, leading to an increase 
in Δ/c (see Fig. 5) the decrease in the thickness fringe spacing agrees with 
eq. (21). 

Most of these simple ideas carry over to the case where Ν beams are 
considered in the construction of the Bloch wave in eq. (31). The dispersion 
eq. (34) then involves the vanishing of an NxN determinant defining a dis
persion equation of Ν branches corresponding to spheres of radius Κ cen
tred on the relevant reciprocal lattice points. There are thus Ν different 
Bloch waves W\r) with the correct energy and tangential components of 
wave vector and the complete wave function may be written 

ψ(τ) = I y>
U)
 Σ Cf exp [2ni(k^ + *) · r ] . (36) 

The Bloch wave excitation amplitudes are determined from the condition 
that at the top of the crystal (r = 0) only the direct wave amplitude should 
occur, i.e. 

2v><»C«> = V (37) 

The general solution of this equation can be shown to be 

y>
{j)
 = C0

j)
. (38) 

In practice the Bloch wave elements C
{
p and wave vectors appear ba

sically as eigenvectors and eigenvalues in the dynamical eq. (33) and can 
easily be computed by standard methods. Evidently however there are a 
vast number of situations to explore. So far most work has been done on the 
case of only systematic reflections ng along a line since the excitation of these 
reflections is controlled by the excitation of the low order reflection g. Acci
dental reflections not along this line can often be avoided if desired. In cer
tain symmetry situations analytical solutions of the dynamical equations can 
be obtained. For instance at the exact Bragg position for 2g the equations 
(taking account of C0, Q , C2g) simplify since (k + 2gf = k* = k\ + g

2
, Ug = 
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= u_g = uv u2g = u_2g = u2 

^2 7.2 Λ2 (K
2
-k

2

z-g
2
)C0 + U1Cg + U2C2g = 0 , 

C ^ Q + (K
2
-kl)C, + U,C2g = 0 , 

U2C0 + E/xQ + (K
2
-kl-g

2
)C 2? 0 . 

(39) 

The appropriate dispersion surface is shown in Fig. 7. By inspection (or by 

symmetry arguments) we see that there are symmetric solutions with C0 = C2g 

or antisymmetric solutions with C0 = — C2g : In the latter case Cg = 0 and 

kl — K
2
c^2K(kz — K) = — (U2 + g

2
). For the symmetric case it is easily 

shown that k
2

z — K
2
 = - \{g

2
 — U2) ± {((g

2
 — C/2)/2)

2
 + 2U

2
}K It may be noted 

that the smaller two of the three values of kz will be equal provided that 

Ul+U2g* = Ul (40) 

This condition (when two branches of the dispersion surface touch) can 
sometimes be fulfilled at a given energy since, as shown by eq. (30), Όχ and U2 
vary like m/m0. At the critical energy a minimum is observed in the intensity 
of the second order diffracted beam (

2 , 3 > 4
) (the extinction contour correspond-
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ing to 2g vanishes). Measurement of the critical energy gives an accurate 

method of determining U1 in terms of U2 or vice versa. Such measurements 

are likely to be useful in, for instance, the study of ordering effects in alloys. 

It is suggested that the student should solve for himself various other many-

beam problems in cases of symmetry, e.g. the four-beam case — g, 0, g, 2g 
at the Bragg position for g (

5
'

6
) ; cases where several reciprocal lattice points 

all lie on the Ewald sphere such as 220, 202 (a three-beam case) or 200,020,220 

(a four-beam case). In all cases the wave vectors k
(
J\ the wave elements C

{
p 

and the Bloch wave intensities \b
(j)
(r)\

2
 in the crystal can be found. (See 

Goringe and Hall, Problems 7 and 9.) 

5. Anomalous absorption effects. 

Various observations such as the noncomplementary nature of bright-

and dark-field images, the disappearance of thickness fringes in thick crystals 

where there is still appreciable transmission and asymmetrical intensity distri

bution on either side of bright-field extinction contours suggest that some 

attenuation of Bloch waves occurs as they pass through the crystal. Moreover 

different Bloch waves are differently attenuated because they explore dif

ferent regions of the unit cell. This attenuation can be included in the dynam

ical theory by allowing the wave vector components k
{

z

j)
 to have a small im

aginary part iq
{
J
]
 given by 

qf = ^Jé<»V)V'(r)bV\r)d~ . (41) 

iV'(r) is an additional imaginary potential defining the parts of the unit cell 

where strong « absorption » of the waves occurs. 

In analogy with the relativistic equation for the extinction distance ξ9, 
we can define absorption distances ξ'9 in terms of the Fourier expansion coef

ficients of V'{y) 
h

2 

v<r) = 1 K

 e x
P \-

2
™8'Λ = 2 ^ 2

U
9

 e x
P ν*ν·Λ > (

42
) 

ξ9 = χ/υ9, S'g = xlU'g. (43) 

Using the full solution for the two beam wave amplitudes Cg

j)
 from eq. (33) 

namely 

<T = Cf = cos {ββ), C<

2
> = - Cf = sin 08/2), w = ctg/?, (44) 
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we find from eqs (41), (42) and (43) 

*Μ(γΛχΜ' (45) 

where the lower sign refers to branch (1) which, as expected, is subject to 

less attenuation since it avoids the atoms, ξ'0 describes orientation-independ

ent background absorption, ξ'9 describes the anomalous absorption which 

is especially noticeable near the Bragg position. Since ξ'ρ can approach ξ'0 
in magnitude the anomalous transmission of wave (1) is very important in 

practice and is responsible for the bright high transmission regions seen on 

the w > 0 side of low order extinction contours (see Fig. 8a)). Equations (44) 

show that for w< 0 mainly wave (2) is excited and this is heavily attenuated. 

(See Goringe and Hall, Problem 8.) 

I 1 1 >-

0 1.0 2.0 0/Θ 
β 

Fig. 8. - Computed curves for a) electron transmission (bright field: 111 reflections in Al); 
b) X-ray production (200 reflections in Ni). 

Physically the « absorption » is due to scattering of the beam outside the 
objective aperture as a result of a) thermal diffuse scattering, b) inelastic 
collisions with atomic core electrons, c) high-order weak Bragg beams. Recent 
calculations (

7 , s
) (where earlier references are quoted) of V

r

g in terms of these 
processes have shown that the main contribution comes from a) but b) con-
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tributes appreciably to the background term VQ. The dependence of £ g on 

temperature is complicated but to a rough approximation ξ' ce T'
1
 at high 

temperatures and increases by a factor of about 2 or 3 on cooling to 4 °K. 

As a function of electron velocity v, l'g to a first approximation varies like v
2 

whereas ξ9 varies like v. 

6. Experimental verification of perfect crystal dynamical theory. 

The theory just described taking account of anomalous absorption effects 

has been confirmed both qualitatively and to a fair extent quantitatively by 

numerous transmission electron microscope studies of thickness fringes and 

extinction contours in bent crystals. In flat crystals the information available 

from a bend contour can conveniently be obtained by the convergent beam 

technique (

9 1 0
) . The advent of high voltage electron microscopy has stim

ulated more detailed studies of various critical voltage effects in the elastic 

(Bragg) scattering (

2
"

4
) (as in eq. (40)) and also in the anomalous transmis

sion in many-beam situations (

u 1 2
) . The close similarity between the anom

alous transmission effect and the channelling effects observed in the last few 

years with protons, α particles and other ions (

1 8
) is apparent and can be 

developed in detail. The dependence of various scattering processes on the 

Bloch wave structure, and hence on the incident beam direction, have been 

directly observed and agree with calculation (

1 4
) in a number of cases, e.g. inner 

shell X-ray production (

1 5
·

1 6
) and electron back scattering (

1 5
) reach a maxi

mum when Bloch wave (2) is excited (Fig. 8/3)). Recently the electron back-

scattering or secondary emission anomaly has been observed in much more 

detail in scanning electron microscopy (

1 7
·

1 8
) and also in Leed studies (

1 9
) . 

In the case of the X-rays or of the high-energy component of the secondary 

emission it appears that the anomaly only arises from the region near the 

entrance surface where the incident electron Bloch waves mainly responsible 

for the effect have not yet been inelastically scattered. Deeper regions of the 

crystal may be important in the case of secondaries whose energy is much 

less than that of the incident beam since the effect then is more strongly in

fluenced by the difficulty these electrons experience in travelling back to the 

surface especially if the incident wave was anomalously transmitted so that 

it penetrates a long way before it is inelastically scattered and begins to 

produce secondaries (

1 9
) . 

The applications of the theory can be further extended by use of the 

reciprocity theorem (the principle of reversibility of the waves). Even in the 
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presence of inelastic scattering the principle can still be applied and states 

that if the positions of the source (of given intensity) and the collector are 

interchanged the intensity received by the collector will not be affected (

2 0
) . 

In the case of elastic scattering only, the principle refers to amplitudes rather 

than intensities. We can apply the reciprocity principle to the case of activated 

crystals where electrons are emitted by atoms on lattice sites to show that 

the electrons will emerge from the crystal mainly along the directions along 

which an incident electron beam directed into the crystal would produce 

waves with a high probability of striking the atoms (

2 1
) (Fig. 8/3)). The prin

ciple can also be used (

2 2
) to explain various diffraction contrast effects ob

served in the scanning electron microscope (

2 3
) . 

7. Formal theory of elastic scattering in imperfect crystals. 

Before discussing the details of diffraction theory for imperfect crystals 

we can point out that the reciprocity theorem (RT) just outlined can be used 

(subject to the column approximation) in conjunction with possible symmetry 

operations such as inversion in a centre (P) or mirror reflection (M) in a plane 

midway between the crystal surfaces, to demonstrate two general and very 

useful symmetry principles for defect images (

2 0
) . 

a) Bright field intensities from two columns 1 and 2 in a centrosym-

metric crystal will be identical if the displacement functions Rx(z) and R2(z) 
(p. 279) satisfy the relation 

R1(z) = R0-R2(t-z), (46) 

where i?0 is any constant (

2 4
) (see Fig. 9a)). 

b) Dark-field intensities from two columns will be identical (see Fig. 9b)) 
provided that (

2 5
) 

R1(z) = R0 + R2(t-z). (47) 

These principles of image symmetry were first observed experimen

tally (

2 4 26 2 7
) and are of considerable value in defect studies (see Brown, 

this volume). 

There are a number of ways in which solutions can be developed for the 

Schrôdinger equation in an imperfect crystal where the potential is given by 

eq. (17). The simple theory previously used is quickly obtained by taking 



The theory of electron diffraction image contrast 295 

Fig. 9. - Image symmetry principles for a) bright field and b) dark field images gener
ated from the reciprocity theorem (RT) combined with either inversion in a centre (P) 

or mirror reflection (M). 

the wave function tp(r) in the form 

Φ) = Σψο(τ)
 e x

P [

2 π
' ( Χ + S + sg) -r]. 

9 

(48) 

Substituting into the Schrodinger equation, and assuming that the functions 
<pg(r) and R(r) vary only slowly over a lattice distance so that the coefficient 
of the different terms in exp [2nig · r] can be separately equated to zero, we 
obtain the equations 

( χ + g +
 s
g)>< 

d<pff 
ΣmUg-h exp [2ni((sh — sg)z + (h-g)-R)]ψη{ν)-

ΰψ9 
dx ( 4 9 ) 
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φ) = 2ψ
0)
(ζ)Σ Cg

j)
exp [2ni(k^ +g)-r]exp [ - 2 m g · R ] . (50) 

This differs from eq. (36) for the perfect crystal in that the Bloch wave 
amplitudes now vary with depth ζ in the crystal (still starting however 
at the value ip

{j
\0) = C

(

0

j)
 given by eq. (38)) and that the Bloch waves con

tain the factor exp [— Inig-R] allowing these to follow automatically the 
local lattice displacement. Substituting into the Schrodinger equation, using 
the orthogonality of different Bloch waves and ignoring the χ and y derivatives 
of g-R and all second derivatives of g-R and (a kind of column approxi
mation) we readily obtain 

These equations offer not only a second useful alternative for the numerical 
computation of defect images but also give a number of valuable insights 
into the basic principles of image contrast. 

g 

dz 
= 2ni (51) 

( 2 ) 

A (1) 

( 3 ) 

Fig. 10. - Four-beam theory dispersion surfaces. 

These equations can easily be recognised as a generalisation to the many-
beam case of the two-beam eq. (20) provided the terms in square brackets 
can be neglected. This corresponds to the column approximation (see below). 
Many-beam images of defects can readily be computed with these equations 
but for small defects with localised strain fields in thick crystals they become 
a little cumbersome since the wave amplitudes φ9 change continuously even 
in the perfect crystal region. In these cases it is better to write ψ in the form 
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a) The defect causes elastic scattering between different points on the 

dispersion surface, e.g. the points A, B, C, D in Fig. 10. These scattering 

transitions can be classed as intraband l = j or interband transitions l=^j 
and strong diffraction contrast (at least in the case of localised defects) is 

due to the interband transitions (

2 8
) . Reference to the equations shows that 

the interband terms can in fact be completely removed by redefining k^K 

b) The term in square brackets gives rise to certain selection rules and 

certain transitions can be forbidden, e.g. if g-R = 0 for all the relevant 

reciprocal lattice vectors. At special points in the zone, e.g. Bragg reflecting 

positions on the zone boundary or at the centre of the zone kx = ky = 0, 

the Bloch waves themselves, as discussed previously, have certain symmetry 

properties and it can be seen from eq. (51) that only transitions where the 

Bloch wave symmetry is changed from symmetric (S) to antisymmetric (^4) 

will be allowed. In particular, intraband transitions do not occur at these 

points. 

c) The actual transition probability and hence the defect visibility 

depends on the rate at which β'9 = g-dR/άζ varies. More precisely, using 

a weak scattering approximation, where we replace ψ
{1)
(ζ) on the right by 

ψ«\0) = C
(

0

l)
 = constant, we find 

t 

νϋ>(,) = ψΦφ) + 2 π / £ £ Ci'>C">*C«>P exp [2ni{kf-k^)z]àz . (52) 9
 0 

Thus the transition probability depends on the Fourier transform of β' (for 
small localised defects not too close to the crystal surfaces the limits of in
tegration may be extended to ± 0 0 ) . The image contrast will be weak if β' 
varies either too rapidly or too slowly over a distance of the order of the 
relevant extinction distance. 

It is now clear why many defects have image widths of the order of the 
extinction distance because it is only within this distance of the defect that 
sufficiently rapid variations of β'9 occur. Moreover it has been shown (

29 3 0
) 

that the image widths and visibility of small precipitate strain fields can be 
quantitatively assessed in terms of Atj the integral appearing in eq. (52). For 
precipitates near the surface the image intensity (in bright field or strong 
dark field images) is expected to depend on Atj but for precipitates near 
the middle of thick crystals a dependence on |zly|

2
 is expected. 

These arguments strongly suggest the possibility that the effective resolu
tion of very small defects could be improved if transitions involving large 
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values of \kz

l)
 — k

(
p\ corresponding to short extinction distances could be 

used (*). Such transitions can be obtained in the four-beam case shown in 

Fig. 10 if the crystal is set to the Bragg position so that the main waves ex

cited are A and B. Transitions to C and D can then be detected by taking 

tilted dark field images in the weak beams — g or +2g (to which these 

waves mainly contribute). From symmetry, only the transitions AD or BC 
are allowed and the latter will be more important in all cases where the defect 

does not lie close to the entrance surface. Calculations (

3 0
) and more recently 

experiments (

3 1
) have shown that high resolution dark field images showing 

bright against a low intensity background can be obtained in this way. Various 

alternative schemes can be used, for instance, the reverse transitions DA 
and CB could be studied by setting the crystal to the Bragg position for 3g 
and taking the dark field image in g or 2g. These two situations can be 

related by the reciprocity theorem. Further discussion of these techniques 

is given in Goringe's lecture and in Problem 16. 
These possibilities of very high resolution studies of defects draw atten

tion to the need for critical consideration of a number of approximations in 

dynamical theory, in particular the column approximation. Calculations (

3 0
) 

using eq. (49) showed that for strong beam images of dislocations the column 

approximation is extremely good but effects would be expected for more 

localised defects. In terms of Fig. 10 the column approximation consists of 

restricting the Bloch waves considered to the points A, B, C, D whereas in 

reality a range àkx of scattered wave points should be considered inversely 

proportional to the image width. For the usual dislocation images \Akx\ < g 

and it can be seen that the scattered waves all propagate in a narrow fan of 

semi-angle ΘΌ <^ΘΒ. For weak beam images however \àkx\ is a good deal 

larger and dD may be more comparable with ΘΒ. It seems likely that the 

effects of the column approximation may be more severe when weak beam 

images using the transitions AD, BC are used rather than the inverse transi

tions DA, CB. 

8. Inelastic scattering. 

Some of the important aspects of inelastic scattering have already been 
discussed in terms of absorption effects, i.e. loss of intensity due to inelastic 
scattering outside the aperture. The dependence of these effects on both 
temperature and accelerating voltage are questions of immediate interest. 

Many inelastically scattered electrons pass through the aperture however 
and contribute directly to the image, particularly in thick crystals ( i ^ 2 0 0 0 Â ) 
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(2) 

Fig. 11. - Elastic and inelastic scattering transitions. 

Kikuchi lines and bands demonstrate directly the Bragg reflection and 
anomalous absorption effects experienced by inelastically scattered electrons. 
We therefore describe these electrons by a dispersion surface for energy 
Ε—ΔΕ, shown in the two-beam approximation, relative to the dispersion 
surface for the zero loss electrons of energy E. Scattering transitions 1, 2, 3, 4 
can then be classed as elastic intraband and interband, inelastic intraband 
and interband. Preservation of contrast is explained firstly by the fact that 
contrast-destroying transitions of the inelastic interband type 4 are forbidden 
or very weak, secondly by the fact that inelastic intraband transitions 3 and 5 
can proceed using the same momentum change, i.e. the same plasma oscilla
tion (

2 8
) . The phase relation between the waves A and Β is thus preserved 

at C and D. Thickness fringes, bend contours and dislocation images can 
thus be clearly observed using inelastically scattered electrons (

3 2
) . This has 

now been demonstrated clearly for plasmon excitation (

3 3
) and with rather 

less certainty for single electron excitations (

3 3 _ 3 5
) . Contrast preservation 

after thermal-diffuse scattering is certainly much poorer but there is still some 
controversy on the point (

34 36 3 7
) . Such electrons make only a very small 

contribution to the image in practice however. The extent to which contrast 
is not perfectly preserved after inelastic scattering may be of significance in 
determining the maximum thickness of crystal which can be studied at a given 
energy. 

where typically nearly all the electrons have lost energy ΔΕ ^ (10—20) eV 

at least once to the excitation of plasma oscillations (the predominant loss 

mechanism in the low-angle region). The mechanism by which the elastic 

scattering contrast effects just calculated can be preserved after these inelastic 

scattering events is of interest and is shown in Fig. 11. 



300 A. Howie 

Contrast preservation may no longer hold in out-of-focus images because 

the inelastically scattered electrons have a spread of wave vectors Akx = 6Ekz 
where ΘΕ = ΔΕ/2Ε^ 10~

4
 is the angular width of the scattering distribution 

after plasmon excitation. The inelastically scattered electron image thus 

behaves as if it had a lateral coherence length Ax = ( Δ / ^ )

-1
 ~ 300 Â. The 

effect of this has recently been detected (

3 8
) using pointed filaments to in

crease the lateral coherence length of the incident illumination and hence 

the zero loss image. The in-focus images of the zero loss and first loss elec

trons were closely similar but on going out of focus, loss of contrast occurred 

much more quickly in the first loss image. This effect could be of importance 

in any situation where inelastically scattered electrons contribute to out-of-

focus images. 

9. Conclusions. 

It is clear that the dynamical theory of diffraction contrast is now at a 

very interesting stage of development. Many observations can be explained 

in great detail so that there is no doubt about the essential correctness of most 

of the basic ideas. However, there is a continuing stream of new investigations 

for instance in high voltage electron microscopy, scanning microscopy, reflec

tion diffraction, and in high resolution dark field microscopy which stimulate 

further theoretical efforts and test more rigorously the various approxima

tions made. Questions of electron optical performance and design will evidently 

become of more importance in studies of lattice defects, in particular the 

convergence and coherence properties of the illumination and the imaging of 

the inelastically scattered electrons. It may be hoped that some day we will 

be able to describe the motion of each electron wave packet from the fila

ment, down the column to the specimen and from there through the imaging 

lenses to the final screen. Only then will the wave-like properties of the elec

tron upon which electron microscopy is based be made fully manifest. 
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Application of Electron Diffraction 

R . GEVERS 

Rijksuniversitair Centrum Antwerpen - Antwerpen 
Solid State Physics Department, S.C.K./CE.N. - Mol, Belgium 

1. Images of planar defects in electron transmission microscopy. 

11. Model of planar defect. 

One considers (see Fig. 1) a plate-shaped crystal foil (thickness z0) formed 

by the superposition of two plane-parallel perfect crystals I and II (thicknesses 

z1 and z29 z0 = z1 + z2). 

inc ident 

4 * 4 * 
t r a n s m i t t e d s c a t t e r e d 

b e a m b e a m 

Fig. 1. - Schematic drawing showing the different beams in a crystal formed by the super
position of two plate-shape foils. 
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The two parts may have either the same lattice (stacking faults, anti

phase boundaries, microtwins), or slightly different lattices (domain bound

aries). 

It is assumed that the foil orientation corresponds to a reasonable good 

« two-beam » situation, i.e. there is in both parts only one strongly scattered 

beam. The reflecting planes are defined by the reciprocal lattice vectors gx 
in I, and g2 in II, and we notice: 

&g=g*-gi> Ο) 

Since Ag Φ 0 means that the orientation and (or) the lattice parameter of 

the reflecting planes is slightly different in I and II, one has also to introduce 

a different deviation parameter from the exact Bragg orientation s1 and s2 
in I and II. 

It is easily seen from the reflection sphere construction of Fig. 2 that : 

s1—s2 = às = àgez, (2) 

where ez is the unit vector normal to the foil surfaces in the sense of prop

agation of the electrons. 

Fig. 2. - Reflection sphere construction showing in particular As. One has replaced, in 
good approximation, the sphere by its tangent plane. (Courtesy of Phys. Stat. Sol. 18, 

325 (1966).) 

The amplitudes of the beams scattered and transmitted by a plate-shaped 

perfect crystal foil depend on the Fourier coefficients of the g term in the 

Fourier series of the crystal potential. Let ξχ and ξ2 be the corresponding 

extinction distances in I and II, and ξ'λ and ξ'2 the two absorption lengths. 

Furthermore we notice θ1 and θ2 for the phase angles of these coefficients, 

for the same choice of origin. 
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It will be shown how one can calculate the intensities of the transmitted 
beam, IT(zly z2) (bright-field image), and of the scattered beam Is(zl9 z2) (dark 
field image). 

These expressions apply also in the case of an interface inclined with 
respect to the surface (slope angle ψ, projected width a), assuming the column 
approximation to be valid. The depth zx of the interface under the entrance 
surface is then, however, a function of the position χ of the column under 
consideration (see Fig. 3). 

a. 

i o 

V t \\ 
\ ' Λ 

i 

: 

i 

z1 
z 0 

1 { 
! 1/ 

: z 2 , 

Fig. 3. - Scheme illustrating notations for interface inclined with respect to foil surface. 

One has then to substitute: 

into the expressions for IT and Is, and one finds: 

IT = IT(x), Is = Is(x), (4) 

where (4) depends on the illumination condition, i.e. s± and s2, and on the 
parameters describing the planar defect. It is hoped that one can deduce 
from the observation of (4), significant informations about these parameters. 

It will turn out that (4) are functions with nearly equidistant maxima 
and minima. One observes, in bright and dark field, a « fringe system » 
contrast image. 

20 
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Γ2 . α and δ fringes. 

1*2.1. oc-fringes. - The most simple planar defect occurs if I and II are 

identical but displaced with respect to each other (stacking fault, anti-phase 

boundary). 

One has then: 

Sl = s2 = s (As = 0), f χ = f 2 = f , ξ[=ξ'2 = ξ'. (5) 

The planar defect is completely characterized by the displacement vector R 
of part II with respect to part I. It has then be proposed as a good approxi

mation to put : 

V2(r + R) = V1(r), (6) 

for the crystal potentials in both parts. 

For the phase factors of the g Fourier coefficient, one obtains then: 

e2 + 2ng'R = e l9 
or 

oc = 61 — d2 = 2ng-R. (7) 

The images (4) depend thus only on the phase angle a, and will be called 

« α-fringe » images. 

1*2.2. δ-domain boundaries. - Ordering effects introduce mostly slight 

homogeneous deformations in a matrix crystal, e.g. ordering of impurities 

in Nb , of spins in NiO, of electrical dipoles in B a T i 0 3. The symmetry of the 

resulting new phase is mostly lower than the symmetry of the matrix crystal. 

As a result, domains are formed, the deformation at different sides of the 

domain boundary being related by a symmetry operation of the matrix. The 

plane of the boundary is then a common lattice plane for the lattices of the 

adjacent domains. One can then choose the base vectors a and b of the unit 

cell in the boundary, in part I and part II. The third base vector is c in I 

and c + Ac in II. 

One has then: 

0 = A(g · a) = Ag - a, since Aa = 0 

and also: 
0=A(g-b)=Ag-b. 
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From àga = àgb = 0 follows then that Δ # will be normal to the interface. 

If A, Β and C are the base vectors of the reciprocal lattice corresponding to 

a, b, c, one has : 

àg = rc ( T « l ) . ( 8 ) 

Furthermore, it follows from: 

0=/\(gc)=/Agc + g/Ac 
if one notes for Ac 

Ac = oca + fib + yc, (9) 

that 

Γ = - (* - Ac) = - (oft + jSfc + y / ) , (10) 

if 

g = hA + kB + lC. (11) 

One can always orient C such that it points from I to II . One has then (see 

Fig. 4) : 

às = Ag-ez = rcosipC = — (g'àc)Ccosf. (12) 

Fig. 4. - Schematic drawing illustrating the relation between Ag and As, for a boundary 

for which Ag is normal to the boundary plane. 

In the case under consideration, one has, in very good approximation 
! i = f2> = ^2

 a n c
* mostly Θ1 = Θ2, if one chooses the origin in the inter

face. 
The characteristics of the fringe images will now depend on the parameter: 

ο=ξΔε (13) 

and therefore will be called « ^-fringe » images. 
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If Ac is parallel to the interface, the two domains at opposite side of the 

boundary are « twin » related. The twin vector is then, however, very small 

as compared to a lattice vector. 

It is possible that a domain boundary must be described by a α and a δ. 
These « oc-δ » fringe patterns are more difficult to interpret than the pure a, 

or pure δ types. 

If, moreover, ξχ Φ ξ2 (and ξ'λ Φ ξ2) the images can become very com

plicated, e.g. images of twins in quartz. 

1*3. Calculation of the amplitudes. 

The amplitudes of the transmitted and scattered beam, leaving a plate-

shaped crystal with thickness z, and deviation parameter s, are given by: 

Ψτ = exp [msz] T(s, ζ), (14a) 

Ψ8 = exp [ - ins{z + 2z')] S(s, z) exp [id], (14*) 

if z' is the distance from origin to entrance surface in the z-direction normal 

to the surfaces. 

1*3.1. Transmitted beam. - The beam transmitted through the bi-crystal 

of Fig. 1, is the superposition of two beams. 

1) The doubly transmitted beam T1— T2. Its amplitude is given by: 

= exp [ms^] Tx exp [ms2z2] T2 exp [i2nk0 · r], 

or 

= exp [mfaz! + s2z2)] 7i T2 exp [i2nk0 · r] (15) 

and its wave vector is &0, the wave vector of the incident beam. 

2) The doubly scattered beam Sx— S2. In order to calculate its am

plitude, one has to take the following remarks into account. 

The beam scattered by the first par t is considered as the beam incident 
on the second part. It can be scattered back into the original direction. How
ever, the scattering vector is now —g2 and the corresponding deviation par
ameter is — s 2, as can be seen on the reflection sphere construction of Fig. 2. 
The phase angle θ to be introduced is then the one corresponding to — g2, 
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i.e. — θ2. One takes the origin in the entrance surface of the foil, this means 
that one has to put z

r
=0 in part I, but z'=zl9 in part II, in the expres

sion (146). At last, the wave vector in this partial beam is: 

One has thus for the second transmitted beam: 

= exp [— ins^j] exp [/^] Sx · 

• {exp [ms2(z2 + 2zx)] exp [— ΐθ2]S2} exp [i2n(kQ—Ag + (sx — s2)ez) ·r], (16) 

if one introduces the notations 

If one takes the origin on the intersection of the interface and the entrance 
surface, one has : 

r = r1 + z2ez 

(for the meaning of rx we refer to Fig. 5). 

ο 

Fig. 5. - Scheme showing the meaning of the notation r1 used in text. 

We calculate the phase factors occurring in (16). Namely (we leave out 
the factor π): 

φ= — sxzi + s2(z2 + 2z1) — 2Ag · (rx + z2ez) + 2As(z1 + z 2) , 

or, taking (2) into account: 

φ = {sxzx + s2z2)~ 2(As)z1~2(às)z2 + 2As{zx + z2)—2Ag-rx, 

Κ + ( S i + Si*z) — te2 + s2ez) = k0—Ag + (sx—s2)ez . 

T-,S-{s) = T,S(-s). (17) 
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or 

ψ = (h
z
i +

 s
2
z
z) — 2Ag-rx. (18) 

Taking (18) and the definition (7) into account, one obtains: 

= exp [mfaz! + s2z2)] exp [/(α — 2 π Δ # · Γ 1) ] ( 5 ' 1£ 2) exp [i2nk0-r]. (19) 

From (15) and (19) one deduces finally for the amplitude of the transmitted 

beam, leaving out irrelevant phase factors: 

T= TXT2 + SiS^exp [i(a-~2nAg-rx)]. (20) 

1*3.2. Scattered beam. - For the beam Tx — S2, i.e. transmitted by I and 

scattered by II, one has now: 

= exp [ z ' ^ z J T i l e x p [— ms2(z2 + 2zx)] exp [i02]S2} · 

• exp [ϊ'2π(Λ0 + g2 + s2ez) · r], (21) 

while the beam Sx— T2, i.e. scattered by I and transmitted by II, is given by: 

= exp [— ms^i] Sx exp [/0J exp [— ins2z2\ T2 · 

• exp [i2n(k0 + gx + sxez) · r], (22) 

or, after calculating again first the phase factors: 

= exp [i2n{As)z1] exp [— mfjs^ + s2z2)] exp [/Θ2](Γ15'2) · 
• exp [i2n(k0 + g2 + s2) · r], (23) 

= exp [i2n(As)z1] exp [— mfaz-L + s2z2)] exp [ΐθ2] · 

• (Si.T2) exp [/(a—2nAg-rx)] exp [ι2π(Α0 + # 2 + J 2) · r ] . (24) 

From (23) and (24) follows then for the total scattered beam, leaving out 

not significant phase factors: 

S = TXS2 + .SVr-exp [i(oc~2nAg-r1)]. (25) 
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1*3.3. Matrix notation. - The formulae (20) and (25) can be summarized 

as follows: 

Λ (T2 0 

sj~\S2 7 T / \ 0 exp [/(α— 2 π Δ # τ 1) ] 

The physical meaning of (26) is straightforward. The first matrix from the right 

describes the boundary conditions at the entrance surface. The next matrix 

corresponds to the transmission through the first perfect part. The following 

diagonal matrix represents the planar defect, introducing a phase shift α 

and an orientation difference Ag. 
The last matrix corresponds again to a perfect plate-shaped crystal. 

T4. Influence of absorption. 

The well-known expressions for Τ and S are: 

2 (

1
 σΓ) J exp [marz] exp [—παιζ] + 

+ ^ 1 + exp [— morz] exp [παιζ], (27) 

S = / exp [marz] exp [— natz] — ^7^7 exp [— /πσγζ] exp [παζ], (28) 
2((7r£J 2(oyf) 

where 

tfr= *(1 + ω
2
)*, (29α) 

ω = , (296) 

σ ^ ^ α + ω2)-1. (29c) 

The first term in (27) and (28) counts the electrons which are in the strongly 
absorbed wave field, while the second term corresponds to the electrons in 
the easily transmitted wave field (one has left out in (27), (28) the exponential 
factor describing normal absorption). 
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For a thickness z not very small compared to Ι/σ^, the second term is 

much more important then the first one. It evenb ecomes then a good approx

imation to neglect, in first approximation, the first term. This means that 

one does not count the relative few electrons which have survided at the 

back surface in the strongly absorbed wave field. The physical picture becomes 

than more simple, and so do the calculations. 

For a thick crystal, one has, in first approximation: 

(T S-\ ι I or στξ 
\s T~I ' 2

E XP
 ^ ~

i 7 l G r Z
^

E XP
 ^

n ai Z
J 1 1 I * (

3 0
) 

1-

As an example we consider the case of a stacking fault (Ag = 0), and cal

culate the amplitudes near the center of the fault, assuming that z0/2 is suf

ficiently large to accept (30) as a good approximation for part I and II. We 

assume moreover, for simplicity, that s = 0. 

One finds then, from (26) and (30), with s = 0: 

τ\ 1 
ιπΊΓψϊ>\[-ι 1/10 e x p [ / a ] / \ - l 

or 

:
 4 e x p I J - * * ! e x p ^ J ( l + exp[/a]) 

Noting c° for in the absence of the fault (a = 0), one finds: 

1 + exp [/a] (T0\ 
So 

For the intensities: 

IT 2a Φ 
(31) 

The mean intensity near the middle of the image of a stacking fault is 

strongly reduced with respect to the background intensity, by a factor 

cos

2
a/2 , if s = 0 (in f.c.c. metals: α = ± 2π/3, and thus cos

2
a/2 = J) . 
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The physical reason is that electrons, which cannot change from one 

wave field to another in a perfect crystal, can do so at the stacking fault. 

One has assumed that the electrons which arrive at the interface are those 

of the easily transmitted field. Many of these will, however, be transferred 

at the fault into the strongly absorbed field, and will not reach the back 

surface, i.e. the intensity will be lower than in the absence of the fault. The 

result (31) estimates how important the effect is. 

The assumptions are too drastic. In reality the fluctuating terms will 

give rise to a fringe image near the center of the image, however, with poor 

contrast and a low background. 

The reasoning is not valid for the two extremes of the images, since part I 

or part II become now too thin for the approximation (30) to be of any value 

for that part . 

It is, however, still possible to use (30) for the thicker part , leading im

mediately to correct predictions about very significant properties of the images. 

Let us first suppose that zx is small and z2 is large. Using the approxima

tion for par t II , one finds then (for .s = 0): 

or 

For the intensities: 

| 7 1 - 5 ^ χ ρ [ / α ] |

2
| | | . (32) 

One has immediately as a first conclusion: bright and dark field are the same 
near the front surface (z^ z0) in a thick crystal. 

Near the front surface, it becomes a good approximation to neglect ab
sorption for the first part . 

One can then substitute in (32): 

\T1—S1exp [ioc]\
2
 = \cosn^— i sin π | exp [z'a]|

2
 = 1 + sin a sin 2π y . (33) 

- exp 2*f 
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From (33) follow the further conclusions: the first fringe at the front surface 
in a thick crystal will be : 

bright if s i n a > 0 , 

dark if s i n a < 0 . 

The depth position of the first fringe is zx = J | . In a column inter

secting the fault close to the entrance surface, it is possible that electrons 

moving in the strongly absorbed field are saved from absorption by changing 

wave field at the fault plane. The intensity will then be higher than in the 

absence of the fault (bright field). The formula (33) shows where this will 

happen, and also how important the effect can be (for s = 0). 

Let us consider now the other extreme of the image, i.e. z2<t:z0. 
One can now use the approximation (30) for the first part, leading to 

(for s = 0): 

or 

For the intensities: 

or taking (33) into account: 

T2— S2e x p [ioc]\
2 

r J \ | r 2- S 2e x p [ - / a ] |
2
/ ' 

(34) 

1 + (sin a) sin 2n — ^ 

1 — (sin a) sin In y i 

(35) 

From (35) follow the conclusions: the bright field is symmetrical; the dark 
field is asymmetrical: the nature of the first and last fringe are different at 
the back surface, where bright and dark field are pseudo-complementary. 
The first property is not only approximately true. It follows in fact from: 

T= TXT% + SXS2 exp [fa] and S~ = S. 
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1*5. Properties of stacking fault images in thick crystal. 

The properties deduced in Subsect. Γ 4 for s = 0, can be proved by more 

precise calculations for s φ 0, if z0 is sufficiently large and |,y| sufficiently small. 

For the nature of the first fringe at the front surface and the last fringe 

at the back surface, one has thus found: 

TABLE I . 

Front surface Back surface 

B . F . D . F. B . F . D . F. 

sin α > 0 Β Β Β D 
sin oc< 0 D D D Β 

The depth period of the fringe pattern is of course the period of T12 and 

i.e. Az = ξ(1 + ω
2
)~Κ 

1*6. Properties of ό-fringe pattern. 

For the domain boundaries described in Subsect. 1*2.2, one has : 

a = 0 , Agr^O 

and (26) becomes for this case: 

Θ-Ê S:)-
Let us consider the region close to the front surface ( z x< z0) . Introducing 

the approximation (30) gives now for the bright field image: 

Τ = \ exp [— ma2rz2]exp [πσ2ΐζ2]{( 1 + ^-\τλ

 l
— s \ . (36) z

 l\

 a
2 r /

 a
2 r ^ 2 J 
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If one neglects the absorption for the thin part , one obtains for the expres

sion between brackets: 

cos πσ1τζ1 — ι — sin παΎΐζχ 
. 1 1 . 
ι — - τ 7 smnalrz1. σ2νξ2 σ11.ξ1 

From the latter follows that : 

or 

| | 2 = Λ + £ i \

2

 + Γ i

s
^°ir + Sj) +

 1
 Y _ + *2>* s i n

2
 π ( 7ΐΓ 

We calculate now the coefficient A of s in

2
rctfl rz1? using the notations (29α)· 

One has : 

_ [ ω ι[ ( 1 + ω\ψ + ω2] + l ]

2
- [(1 + ω

2
) + ω 2]

2
( 1 + ω

2
) _ 

(1 + ω?)(1 + ω

2
) 

2(a)!— ω 2) [(1 + ω | )* + ω 2] 
(1 + ω?)(1 + ω

2
) 

or, introducing the notation 

δ = ω1 — ω2 = s ^ — s ^ , 

or 

ό = ( Δ ί ) | , if f! = fa, 

^ =2 ί -
1 + , ί /

^ 

(37α) 

(376) 

(38α) 

(38/3) 

( σ ^ )

2
^ ^ ' 

or 

.4 = (l + — V 2δ °
2r
^
2
 ( 1 — — \ 

One has then close to the entrance surface, in good approximation: 

IT = \ exp [Ιπσ^] ( l + i i j {l + z g ^ ^ O - ^ r ) ^ ^ ^ j . ( 3 9) 
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(40) S = ^ exp [— ina2rz2] exp [πσΗz2] j — — T x + {\ — 5XJ . 

Comparing (36) and (40), taking (29) into account, one obtains: 

σ2ΐξ2 1 -h s2/acr 
or 

IT=[(a2r + s2r̂2fIs. (41) 

From (41) one concludes that bright and dark field are similar near 

the entrance surface. 

The expression 

T(zX9 z2) = TxT2-\- SXS2, 

where one has taken into account that S2 = S2 is invariant for the inter

change (zx̂±z2), provided one substitutes also sx-^s2, s2->sx, £ ι -> ί2> ^ - ^ u 

As a consequence, one has also to substitute δ -> — δ. 
The bright field is asymmetrical. In particular the nature of first and last 

fringe are different. 
In the same way, one remarks that the expression 

z2) — ΤχΞ2-{- SXT2 

From (39) one concludes: 

1) The fringe depth periodicity is 1/σ1τ, corresponding to the effective 

extinction distance of the thin part . 

2) The position of the first fringe is zx = 1/σ1τ. 

3) The nature of the first fringe is solely determined by δ and does not 

depend on the diffraction condition sx + s2. 
The first fringe at the entrance surface is bright if δ > 0, and dark if 

δ<0. 

4) The contrast depends on sx and s2 separately. For values of δ of the 

order of magnitude of one, the contrast will be important. 

Let us consider now the dark field close to the front surface. 

From (35) follows, making again use of the approximation (30): 
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does not change if zx and z2, are inverted, provided one substitutes: 

f 1 ^> f 2 > f 1 ^2 ' ^1 ^2 ? ^2 ^1 · 

The important parameter (5 remains then unchanged. One concludes: the dark 

field image is pseudo-symmetrical, i.e. the nature of first and last fringe is 

the same for the dark field image. 

We summarize the results about the nature of the outer fringes in Table II. 

TABLE I I . 

Front surface Back surface 

B.F. D.F. B.F. D.F. 

As> 0 Β Β D Β 
Δ^< 0 D D Β D 

1 7 . Examples of application. 

1*7.1. Determination of type of stacking faults in fee. metals. - The stacking 

faults present in f.c.c. metals can be obtained either by removing a layer and 

closing the gap (intrinsic fault), or by inserting a layer (extrinsic fault). 

The displacement vector R of the second part II with respect to the first, 

can always be noted as : 

Λ = ι [111] (42) 

and is normal to the stacking fault. 
For an intrinsic fault R must point from II to I, since R closes the gap 

after the removal of the layer. For an extrinsic fault R must point in the 
opposite sense, from I to II, since II must first be displaced to make room 
for the new layer to be inserted. 

The determination of the type of the fault corresponds then to the deter
mination of the sense of R. If R changes sign, so does a, and, as a consequence, 
the nature of the outer fringes. One concludes that it must be possible to 
deduce the type of the fault from the nature of the outer fringes. One can 
always suppose, without loss of generality that g points to the right of the 
fringes which are parallel to the intersection of surface and fault plane. From 
the diffraction pattern one deduces the type {hkl} of the diffraction spot. 
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There are, however, three problems: 

1) is the fault plane sloping up to the right or to the left; 

2) what is the sign combination to be taken for {hkl}; 

3) what is the type of the fault. 

Let us consider the situation (L, / ) (sloping up to the left, intrinsic fault) 

(see Fig. 6). The cosinus of the angle β between R and gp9 the projection of g 
on the plane normal to the fringes, is then positive, and thus also the cosinus 

of the angle between R and g. 

Fig. 6. - Scheme illustrating the notations R, gp and β used in text for stacking fault. 

This means that one must satisfy the condition: 

If cos β > 0, one must take the sign combination leading to (43) and 

h + k + I no multiple of three. For c o s / 3 < 0 the sum must be negative. 

If (43) is satisfied the sign of sin α will depend on the type of diffrac

tion spot. There are two classes: 

g-R = i(h + k + l)>0. (43) 

B) leading to sin α > 0 , 

A) leading to s i n a < 0 . 

To class B) belongs {111}, {220}, . . .s i since : 

for (111), 

for (220). 
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To class A) belongs {200}, {222}, . . . s ince: 

9ττ Ajr 
« = — (2 + 0 + 0) = y for (200), 

Summarizing: 

27T 4-7Γ 

« = — ( 2 + 2 —2) = y for (222). 

TABLE I I I . 

class B) class A) 

cos β > 0 sin α > 0 sin α < 0 
cos β < 0 sin α < 0 sin α > 0 

(Extrinsic) 

( Intr insic) 

Bright f ie ld image 

θ 

D D 

θ θ 

Β Β 

D D 

Β Β 

D D 

D D 

Dark f i e l d image 

B D 

D B 

Β B D B 

D B 

0 B 

B D 

B D 

Fig. 7. - Table showing the nature of the first and last fringe of a stacking fault image 
for all different possibilities. (B: bright; D: dark; diffraction vector to the right). (Cour

tesy of Phys. Stat. Sol., 3, 1563 (1963)) 
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Considering Table I and III, one can now construct Fig. 7. From Fig. 7 

follows then the simple rule: 

1) Orient the diffraction pattern with respect to the dark field image 
such that the diffraction vector points to the right of the fringes. 

2) If the g vector points from the bright to the dark outer fringes in 

the dark field, the fault is intrinsic if g belongs to B; extrinsic if g belongs to A. 

If the diffraction vector points from dark to bright the conclusions are 

reversed. 

1.7.2. Micro twins and stacking faults. - We consider a microtwin as in 
Fig. 8, with thickness A, and we assume that the foil is oriented such that 
the twinned region is not diffracting. 

Part II is now displaced with respect to part I by nR, if R is the twin vector 
and η the number of planes in the microtwin. 

As for a stacking fault, this displacement will introduce a phase angle: 

noc, oc = 2ng-R. (44) 

For f.c.c. metals, e.g. α = ± 2π/3, and thus noc = 0, 2π/3, 4π/3 (mod. 2π). 
One can recommence the reasoning of Subsect. 1*3, with the following mod
ification. 

For the amplitude of a beam scattered by the part II, one has now to 
replace z' in (14/3) not by zx but by z1 + A. 

This introduces a supplementary phase shift: 

2nsA . 

21 
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The microtwin can then be considered as a planar defect with the same 
image of a stacking fault, with phase shift angle: 

The image of the overlapping part of a microtwin is similar to the image 
of a stacking fault. Misinterpretations are possible if Δ is so small that there 
are no wedge fringes in the nonoverlapping part . 

Tilting experiments, however, make it possible to differentiate. During 
tilting the second term of (45) varies, resulting in a more drastic variation 
of the contrast of the image than for a stacking fault. It is even possible 
that sin/? changes sign during tilting, resulting in a change of nature of the 
outer fringes. Moreover, it can be possible to achieve orientations for which β 
becomes zero. Nearly extinction of the image is then to be expected. 

Γ7.3. Domain boundaries in barium titanate. - When cooling below a 
transition temperature, ferroelectric domains are formed in barium titanate. 
In a domain one of the three cubic axis becomes somewhat larger than the 
other two (tetragonal distortion). In two adjacent domains, the tetragonal 
oaxes are different. The lattices are then rotated relative to each other over 
a small angle 2d in order to bring the two domains in a strict twin relationships 
the twin boundary being of the type {Oil}. 

Assume one observes the geometrical situation of Fig. 9a), in a foil with 

surfaces parallel to a cubic plane. 
The boundary plane I/II which is a (Oil) plane is sloping upwards to the 

right. The tetragonal c-axis is almost horizontal in II and almost vertical in L 
We call the base vector of the lattice in crystal I al9 a2 and a3 where a3 is 
along the c-axis; in crystal II the crystal axes are similarly called bl9 b2 and b% 
where now bx is along the c-axis. It is clear that ax and bx and also a3 and b$ 
enclose angles 2Θ, whereas a2 and b2 coincide (Fig. 9b)). The lower part of 
the crystal is derived from the upper part by a shear, which we will call Δ . 
In this particular case it is clear tha t : 

with a > 0. We have hereby used the system ax,a2, as as the reference system. 
In this same reference system we can write: 

β = noc + 2nsA . (45) 

Δ = oc(a1—a3), (46) 

Δαχ=Δ, Δα2 = 0 , Δα3 = Δ (Δα* = bi — m). (47) 
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b 

c 
® 

a 

( a ) ( b ) 

Fig. 9. - a) Cross-section through a foil of barium titanate normal to boundary and surface 

plane. Ag and Δ* are indicated, b) Reference system used in discussing the geometry of the 

domain boundary structure in barium titanate. (Courtesy of Phys. Stat. Sol., 5, 595 (1964).) 

We now calculate Ag for a given diffraction vector g. Let the base vectors of 

the reciprocal lattice of al9 a2, a3 be Al9 A2 and A3. The vector g can always 

be written as : 

where / = 0 for the reflections of interest here (the foil plane is (001) in the 

reference system used). The components of Ag are found by projection on 

the crystal axes. Since ga1 = integer we can write: 

g = hA1 + kA2 + U (48) 

&g '«i = — g "Δβι = — g Δ = α ( / - h) 
and similarly: 

- £ · Δ α 2 = 0, 

— g'Aaz = oc(l—h). 
One finds as a result: 

(49α) 

and hence for the operating reflections (/ = 0) : 

Ag = — och(A1 + A3). (49b) 
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For a diffraction vector to the right of the intersection line of the boundary 
plane and the foil plane the angle between ax and g is acute and h=g-a1 
is positive. We conclude that in this case Ag has the direction and sense of 
— (A1 + Az), i.e. it is as shown in Fig. 9a). Since Δ^ = 5 1— s 2 is the pro-

Fig. 10. - Table showing the nature of first and last fringe of the image of a domain 
boundary in barium titanate for all different possibilities. (B: bright; D: dark; diffraction 

vector to the right). (Courtesy of Phys. Stat. Sol., 5, 595 (1964).) 
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jection of Ag on the normal to the foil plane, we find that As is negative 

(the positive sense of s is downward). F rom Table II we conclude that the 

first fringe in the bright field image is dark and the last fringe bright. In the 

dark field image both first and the last fringe are dark. 

If the orientation of the tetragonal axis in the two crystal parts are inter

changed, i.e. for the configuration of Fig. 10Z>), it is clear that Δ and α change 

sign and consequently that Ag and hence also As change sign. A similar 

reasoning can be made when the contact plane is sloping upwards to the 

left as in Fig. 10c) and d). The results for a diffraction vector pointing towards 

the right of XY are summarized in the table of Fig. 10 where the nature of 

the first and last fringes is also represented schematically. The geometry is 

represented by means of a cut perpendicular to the foil and to the boundary 

and also by means of a stereographic projection on the foil plane. The 

boundary plane is represented by a full dot, assuming that the pole is in the 

upper hemisphere. The c-axes are represented by small squares; a full one 

for par t I, an empty one for par t II . 

If the sense of the sloping of the boundary plane is not required the direc

tion of the c-axis can be deduced from the dark field image only. The fol

lowing rule becomes immediately obvious when consulting Fig. 10. If in 

the dark field image the first (and last) fringe is a dark fringe the g vector 

points towards the region where the tetragonal axis is horizontal. It points 

towards the region where the c-axis is vertical if the first and last fringe is 

a bright one. 

1 8 . Moiré fringes. 

If the interface is not a common lattice plane for both parts , one has : 

Δ ^ ι ^ Ο 

in (26). 

This term introduces a further strictly periodic intensity modulation. 

A moiré fringe system appears, superposed on the wedge fringes. The absence 

of this moiré proves that it was correct to assume that the interface was a 

common lattice plane. 

1 9 . Observations. 

In the Figs 11 to 27 a few examples are given of observations of stacking 

faults, antiphase boundaries, microtwins, domain boundaries, in order to 

illustrate the significant properties of the images. For details we refer to the 

captions. 
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Fig. 1 1 . - Dark and bright field image of a stacking fault in a Cu-Ga foil for two op
posite diffraction vectors. 



 ̂ ^ ^ ^ ^ ^ ̂ *^ 

Fig. 12. - Bright and dark field image of a stacking fault in a Cu-Ga foil, illustrating the use of the rule for determining the type of ^ 
fault (intrinsic). (Courtesy of Phys. Stat. Sol, 3, 1563 (1963).) & 



Fig. 13. - Same as for Fig. 12. At both sides of the partial dislocation AB the fault is of different nature. (Courtesy of Phys. 
Stat. Sol, 3, 1563 (1963).) 

to 
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Fig. 14. - Bright field images of stacking faults. Note the poor contrast near the centre 
in the thicker part. Notice also the images of the intersecting faults. 



Fig. 15. - Bright field image of a stacking fault in a wedge-shaped foil of stainless steel. Notice the different characteristics of the 
image in the thinner and the thicker part of the foil. 

ο 

3 



Fig. 16. - Bright and dark field image of a boundary between ordered domains due to 
impurities in niobium. The BF is asymmetrical and the DF symmetrical. There is 

only a slight difference in background in the two adjacent domains. 



Fig, 17. - Ordered domain boundaries in Nb containing impurities. Note the difference 
in background in the different domains (bright field image). (Courtesy of Phys. Stat. Sol., 

5, 595 (1964).) 
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Fig. 18. - Bright field image of a domain wall in niobium. Diffraction pattern of the total 
area is given as an inset. Notice that the side of the bright fringe is different in A and B, 
the active diffraction vector is different in A and B. (Courtesy of Phys. Stat. Sol., 5, 

595 (1964).) 



Fig. 19. - Ferroelectric domain boundaiies in barium titanate. The first and last fringe 
are opposite in nature. The two walls are parallel since the bright fringes are at opposite 

sides (bright field image). (Courtesy of Phys. Stat. Sol., 5, 595 (1964).) 
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Fig. 20. - Bright field image of domain boundary in nickel oxyde. The fringe spacing is 
nearly the same at both ends of the pattern (i.e. |s2|) , but the contrast is different. 
The contrast changes periodically with foil thickness, it is maximum in the dark thickness 

contours. (Courtesy of Phys. Stat. Sol., 5, 595 (1964).) 



Fig. 21. - Bright field images of the same domain boundary in nickel oxyde for g and — g. Notice that the nature of the outer fringes 
changes. (Courtesy of Phys. Stat. Sol. 5, 595 (1694).) 
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Fig. 23 . - Pair of {110} domain boundaries producing tilts of opposite signs (barium titan

ate, bright field). The complete pattern has a line of symmetry. The two contact planes 

are parallel. (Courtesy of Phys. Stat. Sol., 5, 595 (1964).) 



Fig. 24. - Bright field images of domain walls in barium titanate in the same area under two different diffraction conditions : a) the 
wall marked A is in contrast; b) the wall marked A is out of contrast (extinction). In b) Ag = 0, or g Δ = 0. (Courtesy of Phys. 

Stat. Sol, 5 , 595 (1964).) 
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Fig. 25. - Bright field image of close pairs of parallel domain boundaries, producing tilts 
of opposite sign, in barium titanate. The individual fringe patterns overlap causing a pat
tern which is effectively symmetrical. The complications in the inner part of the images 
can be explained if one assumes that a third boundary of different type is present between 

the boundaries of the pairs. (Courtesy of Phys. Stat. Sol, 5, 595 (1964).) 
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Fig. 26. - Bright (a) and dark field (b) images of plate-shaped thin precipitates in niobium 
with impurities. The fringe pattern resulting from the overlap of the individual images of 
the two boundaries is symmetrical in the bright field and asymmetrical in the dark field. 
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Fig. 27. - Bright field images of micro-twins in rutile, for different inclinations and dif
fraction conditions. In a) the boundaries are seen edge on, in b), c), d), which show the 
twin in inclined position, discontinuous changes in the pattern associated with sudden 
variations of the thickness can be seen (n varies). One notes that, depending on t hedif-
fraction condition s, the pattern at the overlapping part varies, and may even disappear 

lb) and d)\ β ~0], (Courtesy of Phys. Stat. Sol., 9, 135 (1965).) 
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2. Fine structure of diffraction spots. 

2 1 . General formulation. 

Suppose that one has been able to calculate the wave function of the 
electron beams passing through a plate-shaped foil, with thickness z. One 
can always take the origin in the back surface, and let (ex, ey) be orthonormal 
base vectors in that plane. The unit vector ez is taken perpendicular to the 
surface, in the sense of propagation of the electrons. A point of the back 
surface is given by: 

r0 = xex + yey. (50) 

We note for the wave function inside the crystal: 

W(r)Qxp[i2nk0-r], (51) 

where k0 is the wave vector of the incident beam. 
After the back surface, the wave function is a superposition of plane waves 

with wave vectors k, satisfying: 

k
2
 = k\ (52) 

(condition for elastic scattering). 
The condition (52) means that the endpoint of k must lie on the reflec

tion sphere. 

One can always note : 

k = k0 + ω , (53) 

where ω is any vector joining the origin of the reciprocal space with a point 
of the reflection sphere. 

It is always possible to decompose ω as follows: 

ω = ω , + ω 1ί ζ, (54) 

where <o„ is the projection of ω in the back surface. From (54) follows that 
it sufficies to give ω „. 

For the wave function after the crystal, one can write: 

^ « =JJ^K) exp [i2n(k0 + co,, + co±ez) -r] d
2
to„ , (55) 

Σ 
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where the integral is extended over the back surface Σ. One must express 
now that the wave function is continuous at the back surface, i.e. 

^(r0)exp [ /2a*0- '0] = ^ ( r 0) . (56) 

F rom (56), (51) and (55) follows then, taking into account tha t : 

r0-ez = 0, 

W(rQ) = ^Α(ω„) exp [ϋπω„ ·r0]d
2
co„. (57) 

Σ 

The expression (57) signifies that Ψ is the bi-dimensional Fourier transform 
of A. 

One finds then from (57) by inverse transformation: 

Α(ω „) = J|V(r0) exp [— ί2πω„ · r0] d
2
r0. (58) 

The formula (58) means that the diffracted beams are formed by the inter
ference of spherical wavelets emitted by the points r0 of the back surface,, 
with amplitude Ψ^0). 

2 2 . The different beams. 

The wave function Ψ is a superposition of Bloch waves, i.e. 

nr0) = W + Σ W exp U2ng • r0]. (59> 
g 

The first term corresponds to the transmitted beams, whereas the terms Wg 
represent the diffracted beams. 

Introducing (59) into (58), one obtains: 

Α(ω,) = Α0(η) + ΣΑ8(ϋ), (60) 
g 

if 

A (
w
) = [J^o^o)

 e x
P [ —

ί 2 π
" '

r
o \

ά
\ > (

61 a
) 

M») = f K('o) exp [ - / 2 « - r 0] d % , (616) 
with

 JJ 

ω„ = = £ „ + » · (61c) 
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For a perfect plate-shaped foi l , Ψ0 and Ψ8 are constants, and it follows then 
from (61) 

« = 0 , 

giving rise to the sharp diffraction spots. 
The functions Ψ0 and Wg are no longer constant i f the foil contains defects. 

There are two possibilities: 

1) Ag(u) is a single broadened function. The diffraction spot is broadened 
and has a certain structure. 

2) Ag(u) consists of several separated sharp peak functions. The dif
fracted beam g has then several components. 
We shall concentrate on the second possibility. 

2 '3. The diffraction pattern of a fringe pattern. 

One can choose now the j-axis along the fringes, and let: 

u = uex + vey. (62) 

The functions Ψ0 and Wg do not depend on y9 and one finds then from (61): 

A0(u, ν) = A0(u) δ(ν), A0(u) =JV0(w) exp [— Htcux\ dx, (63a) 

Ag(u, v) = Ag(u) δ(υ), Ag(u) = (V» exp [- ilnux] dx, (636) 

where 

δ(ν) = Jexp [— ίίπνγ] dy. (63c) 

If the dimension in the j-direction is taken sufficiently large, δ(ν) is the delta 
function. 

The condition ν = 0 leads to the following conclusion: the different 
components of the diffracted beam g lie on a line through g normal to the 
fringes. The spots are elongated in the x-direction. 

In most cases, Ψ0 and Wg are of the form: 

^o(*) = Σ C o ) e xP [ftwix], (64a) 
i 

ψ

8 ( χ ) = Σ cg} e xP V^tHx] - (646) 
i 
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Introducing (64) into (63) gives: 

I 

Ag(u) = 2C$
)
P(u-ui), (65b) 
^8 

i 
where 

+a/2 

π, \ Γ r . ^ i i sin nua f rc . 
P(u) = exp [iznux] dx = (65c) 

J nu 
-a /2 

is a sharp function centered around u = 0 (a: projected width of the fault). 

The different components of a spot, are situated at positions u = ut9 
for the transmitted beam as well as for the different diffracted beams. The 

geometrical configuration of the satellites is the same for all spots. The 

relative intensities do , however, differ from spot to spot. 
2*4. Stacking fault: two-beam case. (*) 

2*4.1. Transmitted beam. - For the amplitude of the beam transmitted 

by a foil containing a stacking fault, one has : 

T=T1Ti + S1S2exp [/a], 

or if T0 is the amplitude in the absence of the fault: 

T = r 0- ( l - e x p [ /α])5ί£2. 
Explicitly: 

1 — exp [/a] . 

or 

Τ = T0 Η 7~^2
 s

*

n π σ ζ
ι

SM π σ ζ
2 J 

m I' 1 — exp [ioc] \ 1 — exp Γ/α] 
\° 2(αξΥ

 COS7zaz
o) + 2(σξ)* °°

$πσ
^~

ζ
^ ' 

The first term gives the contribution of the fault area to the main transmitted 
spot at u = 0. The second term can be rewritten, if one introduces 

Zi = ^ + *j tg ψ , z2 = ^ — xj tg y (y : slope angle) (* *) , (66) 

(*) For notations see Section 1. 
(**) The x-axis points from intersection of stacking fault plane with front surface to 

the intersection with the back surface. 
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1 — exp [ioc] 
4(<r|)

2 
exp [ί2πσ tg ψχ] + exp [— Una tg ψχ]. (67) 

One concludes: 

1) The two satellite spots of the transmitted beam are situated a t : 

They lie at symmetrical positions with respect to the main transmitted 

beam. 

The positions depend on the extinction distance, the slope angle and the 

exact orientation, but not on oc. 
If one tilts away from the exact Bragg orientation, the distances of satellite 

spots to the main spot increase. This distance does not depend on the sense 

of inclination, since a(s) = σ(— s). 

2) the intensities of the satellite beams are proportional t o : 

and they, consequently, decrease rapidly if \s\ increases. The two satellite 

beams have some intensity, whatever the crystal orientation. 

2*4.2. Scattered beam. - For the scattered beam, one has : 

u — a tg ψ and u = — σ tg ψ , 

a = - (1 + ω

2
)*, c» = . 

(68a) 

(686) 

1 sin

2
 a/2 

ϊΐσϊ)4" 

S = TXS2 + S Î77 exp [ioc] 
or 

S= S0—(1 — exp [ z a ] ) . ^ - = 

i I s 
= S0—(1 — exp [ioc])sinπσζ1 (cosπσζ2 + i

r
- sinπσζ^ 

The terms corresponding to the satellite beams are: 

and 
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Fig. 28. - Graphical representation for the positions of the satellites around the transmitted 
beam. The widths of the cross-hatched strip is a measure for the intensity variation. 

(Courtesy of Phys. Stat. Sol., 18, 343 (1966).) 

Fig. 29. - Geometry and intensity of the satellites in the case of stacking faults. From 
this drawing the position and intensity of the satellites can be deduced as a function of s. 
The width of the cross hatched part along the hyperbola is a measure of the intensity 
variation as a function of s, as it is also represented in Fig. 30. The dotted line parallel 

to g represents the Ewald sphere. (Courtesy of Phys. Stat. Sol., 18, 343 (1966).) 
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The geometry is the same as for the transmitted beam. However, the in
tensities are now proportional to: 

and are different unless s = 0. 
One obtains for the ratio of the intensities: 

I(u = atgip) 
I(u = —atgip) ν+Φ) ' 

Reflection sphere constructions showing the positions of the satellite beams 
for varying s are given in Fig. 28 and 29, while Fig. 30 gives a schematic 
representation of the variation of the relative intensities for different s values. 
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2*5. One-beam kinematical approximation. 

In the kinematical limit \s\/a->l, it follows from (69) that one of the 
two components becomes too weak to be observed. 

In a kinematical spot, i.e. the corresponding reciprocal lattice point is very 
far from the reflection sphere, one expects only one weak satellite. 

The position of this spot wil l be determined by the sign of s and the slope 
orientation of the fault plane. 

If s > 0, the satellite wil l be u = — s tg ψ, since now 1 — s/σ ^ 0, a ^ s* 
For a weak spot it is easy to determine the sign of s from the diffraction 
pattern. The condition s > 0 means in fact that the reciprocal lattice point 
is inside the reflection sphere. 

As can be seen from Fig. 29 the component u = — s tg ψ is given by 
the intersection of the reflection sphere and the line perpendicular to the 
fault plane. From the knowledge of the sign of s, and the position of the 
satellite with respect to the main spot, the orientation of the fault plane 
can thus be deduced. 

For s > 0, a = \s\, one observes u = \s\ tg ψ > 0, again situated at inter
section of reflection sphere and rod normal to the fault plane. The conclusion 
is the same as in the former case. 

2*6. Influence of anomalous absorption. 

The anomalous absorption is accounted for i f one considers a as a complex 
quantity: 

a = Gr + ici. (70) 

The u values become then also complex, i.e. 

U = U r + m , U r = ± 0>tg ψ9 U i = ±Gi\gtp. (71) 

The effect is that the peak function P(w), given by (65c) has to be replaced 
by the Lorentzian curve: 

P(u — un) = ^ u _ l r y t + ^ t
s i n2 π

( " —Ur)a + sinh
2
 πια a]. (72) 

The peak height and shape are influenced by absorption. 
The electrons in a satellite beam are those which changed from wave 

field at the fault plane. In a « two-beam » situation there are two wave fields 
I and II. One satellite contains electrons which have made the change I -> II, 
the other those which made the change II -> I. The electrons which cross-
the fault plane remaining in their wave field are found back in the main spot. 
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The absorption coefficients for the two wave fields are very different. 

However the ratio of the intensities of the two satellites is not influenced 

Fig. 31. - Bright-field image of anti-phase boundaries in rutile, b) and c) are diffraction 
patterns of this grain in different orientations. The patterns are in correct orientation with 
respect to the image. Attention is drawn on the position of the satellites at the spots 
marked by a circle. The spot marked by a square is shown enlarged in d). e) is an en
largement of the upper spot in pattern b) (weak kinematical spots). (Courtesy of Phys. 

Stat. Sol., 1 8 , 363 (1966).) 
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Observations of anti-phase boundaries in T i 0 2 and stacking faults in 
stainless steel are shown in Figs 31, 32, 33, 34, 35, 36. They confirm plainly 
the theoretical predictions. 

Fig . 32 . - Bright field image of stacking faults in stainless steel. The faults, o n two sets 

o f planes, cause satellites in diffraction pattern (b). Enlargements of spots marked 1, 2 

and 3 are shown as insets . Configuration 3 is also represented schematically in c). Not i ce 

a l so the splitting o f the main spot due to the wedge shape of this crystal (weak kine

matical spots) . (Courtesy of Phys. Stat. Sol., 18, 363 (1966).) 

23 

by absorption. This could be expected since both satellites contain electrons 
which moved in one wave field before the fault and in the other one after 
the fault has been crossed. 

In a multiple beam situation complications arise, and anomalous absorp* 
tion can influence the relative intensities of the different satellites. 

2*7. Observations. 



Fig. 33. - Effect of tilting through the Ewald sphere. The behaviour of the satellites at the spot marked by a circle can be fol
lowed on the enlargements shown as insets under the respective diffraction patterns. The dashed lines represent the intersection 

circles with the Ewald sphere. (Courtesy of Phys. Stat. Sol, 1 8 , 363 (1966).) 

3 



Fig. 34. - « Dynamical » spots of a diffraction pattern from the same region as Fig. 31. 
Notice the two pairs of satellite spots. (Courtesy of Phys. Stat. Sol., 18, 363 (1966).) 
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Fig. 35. - Bright field image of anti-phase boundary in rutile. The transmitted beam, as 
shown highly enlarged in inset 2, shows four satellite beams. Insets 1 and 3 show enlarge
ments of the two other spots. A schematic representation is given next to the insets. 
The pattern is due to the two families of faults inclined at different angles to the foil plane 
(transmitted, dynamical and kinematical spots). (Courtesy oïPhys.  Stat.  Sol.,  18, 363 (1966).) 
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Fig. 36. - Bright field image of stacking faults in steel, a) and the associated diffraction 
pattern c). An enlargement of the selected area is given in b). The diffraction pattern c) 
is in correct orientation with respect to b). Insets 1, 2, 3 and 4 show enlargements of the 
four spots. The two satellites at the trasmitted and « dynamical » spots are clearly seen 
in insets 2 and 3. In spot 1 and 4 only one satellite is visible. (Courtesy of Phys. Stat. Sol.> 

18, 363 (1966).) 
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2*8. Two-beam kinematical approximation. 

The « one-beam » kinematical approach is not realistic, since in a « two-

beam » illumination condition there are two strong beams. The electrons 

in a weak beam arise then from scattering out of these beams. 

If one makes the calculations for this case, one finds that the « single » 

satellite at — s tg ψ is replaced by two satellites, their mutual distances 

being a tg ψ, where a refers to the dynamical beam. However, their intensity 

ratio is strongly affected by the anomalous absorption. This becomes evident 

if one takes into account that each satellite contains electrons scattered away 

into the weak beam direction from a different wave field. The satellite cor

responding to the strongly absorbed wave field will be very weak. Mostly 

Fig. 37. - The diffraction pattern of a stainless steel foil containing stacking faults. The 
fine structures of the transmitted and the different scattered beams are shown in the en
largements b), c) and d). Notice that Δ = δ0. (Courtesy of Phys. Stat. Sol., 23, 549(1967).) 
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it will be too weak to be observed. One has then a single satellite, in accord 
with the « one-beam » kinematical theory. 

By careful tilting the crystal into a favourable orientation, the second, 
more weak, satellite can also be revealed. An example is shown in Fig. 37. 
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Metallurgical Information 
from Electron Micrographs 

L. M. BROWN 

Cavendish Laboratory, University of Cambridge - Cambridge, England 

1. Introduction. 

The title of this set of lectures is perhaps a misnomer, because they are 
concerned with only a limited type of metallurgical information, namely 
that concerning the configuration of planar, linear, and point defects. Such 
problems as the identification of precipitates by electron diffraction or the 
calculation of dislocation density are ignored altogether. We are concerned 
with information which can be obtained by observation of the relatively fine 
structure of electron images, and which requires analysis on the basis of the 
dynamical theory of electron diffraction and image formation (see Howie, 
this volume). 

The material in the lectures follows a set pattern. First, a simplified 
treatment of the contrast to be expected from planar, linear and point defects 
is given. That part of the subject which is discussed in the book « Electron 
microscopy of thin crystals » by P. B. Hirsch, A. Howie, R. B. Nicholson, 
D . W. Pashley and M. J. Whelan Q) and hereafter referred to as HHNPW 
is mentioned very briefly; whereas developments that have occurred since 
the book was written are discussed more fully, and references are given to 
the later work. Thus it is hoped that the lectures will be both self-explanatory 
and up-to-date. However it has been impossible to discuss the ramifications 
of the application of these developments to particular problems in radiation 
damage, work hardening, the study of the theoretical strength, the study 
of stacking-fault energy, and so on. The reader will find only allusions to 
these subjects, some of which will be dealt with in other lectures. 
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2. Contrast from planar defects. 

First we consider contrast from stacking faults, giving a simplified treat
ment of the features to be expected from a stacking fault in a thick, absorbing 
crystal. We then try to give a survey of the types of fringes to be expected 
at interfaces generally. 

2 1 . Stacking faults. 

The stacking fault is the simplest kind of planar defect, and the first whose 
appearance in the electron microscope was understood (Whelan and 
Hirsch (^

b
)) . 

Pig. 1. - A planar fault, on a plane of normal #i, defined so that crystal II is displaced by 
a vector R with respect to crystal I. 

A stacking fault arises when the crystal on one side of a plane is displaced 
by a vector R with respect to the crystal on the other side (Fig. 1). The vec
tor R need not necessarily be parallel to the plane, although it often is; if R 
has a component perpendicular to the plane it is assumed that material has 
been added to or taken away from the cut, so that holes do not open up nor 
is there interpénétration of crystal. On either side of the fault, the crystal 
is perfect and the solutions of the dynamical theory for perfect crystals dis
cussed in Howie's lectures may be used. For simplicity, let us consider the 
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case in which s = 0; in that case, Howie's eqs (20) become 

a<j>g in 

dz ~ξ9 
-^ = 1rφ0exp[-2nig^R] 

^ ° - g ^ e x p [2nig-R] 
(1) 

In a crystal for which R = constant (i.e. a. perfect crystal) the general 
solution of eqs (1) is 

. nz nz ./ 
φ0 = α cos - r- + b sin - ζ - , φ9 = /1 β 

£0 \ 

. nz . nz 
sin & cos — (2) 

where the unknown constants are determined from the boundary conditions 
at the entrance surface of the crystal. Now in the undisplaced crystal, crystal I, 
at whose top (z = 0) surface φ0 = 1 and φ9 = 0, the solutions are 

φ\ = cos nz φ\ = ι s i n — . (3) 

These solutions describe the transmitted and diffracted amplitudes in a column 
down to z = t', where the displacement R occurs. If we call oc = 2ng-R, 
eqs (1) tell us that there must be a discontinuity in the z-derivatives of φ0 
and φ9 so that 

[ g - g L - s W - # « * w i . . 
(4) 

If there is a step discontinuity in the derivatives, the amplitudes themselves 
must be continuous. We can now do a wave-matching calculation for the 
unknown constants of the general solution in the displaced crystal. Since the 
amplitudes themselves must be continuous, we write 

n nz . n(z—t ) φ$ = cos— + a sm — , 

ΛΙΙ . nz y. . n(z—t') φγ = ι sm — + b sin — . 
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φ\
ι
 = ι sin ——\- 2 exp [— ία/2] sin a/2 cos — sin — r . 

Equations (5) can be used to discuss the contrast at stacking faults in 

the absence of absorption; we refer the reader to the discussion in H H N P W 

p. 229. The fringes in this case are rather complicated, consisting of alter

nating strong and weak fringes. However, a much simpler situation, and one 

more commonly met with, is the case of a thick absorbing crystal. To deal 

with this case we multiply the amplitudes of eqs (5) by exp [— πζ/ξ^] to 

take account of the « background » or « mean » absorption, and we replace 

l/ξg by lfê g +  ifêg  wherever this occurs (see Howie, this volume). A thick 

absorbing crystal will be taken to be one in which the amplitudes have been 

reduced by e on traversing the crystal: for typical cases in which the absorp

tion lengths are ten times the extinction distances, this means a crystal about 

3ξρ thick or thicker. Under these circumstances it becomes a good approx

imation to write 

We now look at eqs (5) under two circumstances: the first for a column 

near the top of the fault ( r ' < r, see Fig. 1) and the second for a column 

near the bot tom (t' c± r). It is a simple matter to use eqs (6) in eqs (5) to find 

for the transmitted and diffracted intensities the following: 

fault near top of foil, t' < r I 

φ§ = cos 2i exp [/a/2] sin a/2 s in— sin 

πζ 

nt' . n(z—t) 
i— sin—-t , 

Cg 

nt' . n(z—1
!
) 

(5) 

(6) 

1 + sin a sin 
2nt 

fault near bot tom of foil, t'c^t (7) 

1 — sin α sin 

1 + sin α sin 
2n(t-t') 

un - -
s? 

m J 

and use eqs (4) to determine the constants a and b. We easily find for the 

transmitted and diffracted amplitudes at depth ζ 



Metallurgical information from electron micrographs 365 

When the fault is in the centre of the foil, t
r
 r/2, no very simple approxi

mation can be made, but one can see that the oscillating terms in eqs (5) will 

contribute only weakly to the total intensity. 

Equations (7) demonstrate a number of important features of stacking 

fault contrast. 

Firstly, when the fault is at the top of the foil, the transmitted and dif

fracted intensities are similar; in the approximations made here, they are 

identical. Thus bright-field and dark-field micrographs will show similar 

images of faults near the top (electron entrance) surface of the foil. But 

when the fault is at the bot tom of the foil, the transmitted and diffracted 

intensities are complementary. These are very general characteristics of dif

fraction contrast. We may understand how they arise by noting that the 

effect of anomalous absorption is always to make the diffracted amplitude 

approximately equal to the transmitted amplitude after the wave has traversed 

about 3ξ9. This is true regardless of the boundary conditions at the top of 

the crystal. If the total incident intensity is unity, then the trasmitted and 

diffracted intensities both approach \ exp [—27zr(l/f0'—l/ξρ)] (see eqs (7) 

with α = 0) and the phases of both also become equal. Thus whatever the 

amplitudes are when the wave enters crystal II near the top of the foil, the 

amplitudes will be equal near the exist surface and the bright- and dark-

field images will be similar. Also, since the amplitudes incident upon crys

ta l II near the bot tom of the foil are equal, and since in the absence of absorp

t ion intensity is conserved, the two intensities will be complementary when 

the fault is near the bot tom of the crystal. 

Secondly, the bright-field image is symmetrical and the dark-field image 

is no t ; the dark-field image is approximately antisymmetrical. This situa

t ion is peculiar to the type of displacement generated by the fault; it is not 

a general feature of images. In general, if the displacement function R(z) 
by a suitable choice of origin can be made an odd function of z, the bright-

field image will be symmetrical; if the displacement function can be made 

a n even function of ζ the dark-field image will be symmetrical (see the sym

metry rules proved by Howie, his eqs (46) and (47)). 

Thirdly, the image is associated with fringes whose period in t' is one 

extinction distance. This is a feature of images which is generally true in 

thick absorbing crystals, but not in very thin ones. It is also not true if the 

crystal is deviated from the Bragg position: the depth periodicity of the fringes 

is then f^/Vl + n>

2
 (Μ = δ9ξ9 and is propor t ional to the angular deviation 

from the Bragg angle). 

Fourthly, the fringes are such that whether they are black or white depends 
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upon the sign of a. From eqs (7) one can formulate a rule: for bright-field 

images, the top and bot tom fringes (the outermost fringes on a micrograph) 

are brighter than background if α is positive. This feature of the image can 

be used to get valuable information about the nature of the fault. The reader 

should refer to Gevers' lectures for details; the point is that if the fault can 

be regarded as made by the removal of a plane of atoms (an intrinsic fault) 

then R in Fig. 1 is pointing upwards, whereas if the fault is to be regarded 

as made by the insertion of a plane of atoms (an extrinsic fault) R will have 

opposite sign. One can thus distinguish faults which have formed by 

the condensation of vacancies from these which have formed by the 

condensation of interst i t ials; recently use has been made of this to verify 

that the loops observed as a result of electron damage in the high voltage 

microscope are composed of interstitial atoms (Ipohorski and Spring (

3
)). 

Fifthly, it is clear from eqs (5) that when α = 0, 2π,... 2ηπ, the con

trast from the fault vanishes completely. This condition for invisibility enables 

one to determine experimentally the vector R for a given fault. The physical 

significance of this vanishing criterion is purely geometrical; it does not 

depend upon any detailed treatment of the dynamical theory. For g-R = 0 
implies that R is parallel to the Bragg planes, and if only two beams are 

excited, displacement of a Bragg plane parallel to itself does not affect the 

diffraction. When oc = n, 3π , . . . (2n+ 1)π, eqs (7) show that there will also 

be no fringes; however eqs (5) show that the contrast does not vanish, the 

image is just a dark band. Contrast from these so-called ττ-faults is discussed 

in detail in H H N P W p. 241. 

Sixthly, and finally, it is of interest to ask how small a value of α can be 

detected. If one can just detect a small fractional deviation from background 

of / , then eqs (7) show that the minimum observable value of α is also / . 

Howie and Jouffrey (

4
) estimate that / ^ 0.02, and hence they set limits on 

the displacement of the atomic planes perpendicular to a shear fault in cad

mium. However, this visibility limit corresponds to « normal viewing » con

ditions, that is observation under dynamical conditions in a thick absorbing 

crystal. Undoubtedly application of dark-field techniques will improve the 

visibility of stacking-faults. 

Before we leave this Section, we should point out that although the cal
culation on which the discussion is based is rather simple and instructive, 
when a number of fault planes overlap it is useful to have a routine method 
to carry through the wave-matching. The reader will appreciate that the 
quickest (and most error-free) method of plotting intensities from the ampli
tudes of eqs (5) is to use a computer to evaluate the formulae. Thus there 
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(*) Strictly speaking, Fig. 2 shows a section of the dispersion surface defined by th& 
plane containing g and a vector normal to the surface of the specimen. 

is no point in avoiding the use of a computer early on in the calculations 
the most efficient way of doing the calculation is to set up matrices which 
relate the wave amplitudes on the exit surface of a slab to those on the en
trance surface, and to use the standard routines for matrix multiplication 
to calculate the images. The interested reader should consult H H N P W , 
Chapter 10 and Goringe, this volume. 

2*2. More general discussion of contrast from planar defects. 

In electron microscopy, fringes arise whenever two (or more) plane waves 
which are coherent but are travelling in slightly different directions are made 
to interfere. If we assume that the z-component of the wave-vectors is the 
same, but the wave vectors differ by a small amount in their x-components, 
so that 

kx = (— 8k, 0, k), k2 = (ok, 0, k), 

then 

A = exp [Inik^r] + exp [2nik2-r] = (a phase factor)(cosIn8kx) . 

Thus the intensity ( = \A\
2
) has a periodicity of (2Sk)~

1
 in the ^-direction-

The fringes appear as stripes perpendicular to the plane containing the two 
wave vectors, and the spacing of the fringes is the wavelength divided by the 
angle between the wave vectors. 

It is extremely instructive to see how stacking fault fringes arise in the 
dispersion surface construction. We remember that in this construction 
k vectors lie only on the surface shown in Fig. 2 ; this surface (*) arises from 
the solution of the Schrodinger equation (see Howie, this volume). When 
waves pass from one crystal into another, new k vectors are required to carry 
out the wave-matching; since the tangential components of the k vectors 
must be equal, the new vectors are found by drawing a normal to the surface 
of the crystal and finding its intersection with the other branches of the 
dispersion surface. Let us suppose, in Fig. 2, that the incident wave gives 
rise to the wave points P x and P 2, so that waves with these wave vectors 
propagate in crystal I. When they reach crystal II, the wave-matching will 
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give rise to two further wave points, P 3 and P 4. Now in bright-field viewing 

conditions, four plane waves with wave vectors joining the origin of recip

rocal space to the four wave points will pass through the objective aperture 

Fig. 2. - Wave-matching in the dispersion surface. The lines PXP± and P2PZ are both par
allel to the normal η of Fig. 1. In the upper crystal, wave points P1 and P2 are excited, 
corresponding to a deviation parameter s . The separation of the branches of the disper
sion surface is Ak — 1 + w

2
)~\ equal to the inverse of extinction distance for w= 0. 

and give rise to interference fringes. If we consider a column which intersects 
the bot tom of the fault, the waves associated with the wave-point Px will be 
very weak, having been attenuated by anomalous absorption. Thus, at the 
exit surface of the crystal, two-beam or cosine fringes will be observed due to 
interference between waves associated with P2 and P 3: The angle between 
the wave vectors is ( P 3P 2) sin0/ |£|so that the spacing of the fringes in real 
space is ( P 3P 2)

_1
 cosec 0. But ( P 3P 2)

-1
 is to a good approximation (P1P2)~

1
 cos θ 

so that the depth periodicity of the fringes (the depth periodicity is, by defi
nition, the periodicity in the x-direction times tgfl) is ( P i P 2)

-1
 = fp/Vl + w

2 

as given earlier. Similarly, for a column which intersects the top of the fault, 
cosine fringes due to interference between waves associated with wave points 
P 2 and P 4 are observed. For columns intersecting the middle of the fault, 
weak four-beam fringes are observed. 
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24 

Further analysis is required to find the symmetry of the images and the 

rules governing the appearance of the bright-field and dark-field fringes. 

But this construction shows that every planar discontinuity in the foil will 

give rise to fringes; and the fringes will have a spacing tied to the extinction 

distance. Fringes of this type are : 1) thickness fringes (see Howie, this volume) ; 

2) structure-factor fringes, which arise when the foil contains a thin slab of 

material of different scattering power from the matrix; 3) (5-fringes (see Gevers, 

this volume). These fringes arise when the Bragg planes of crystal II are rotated 

slightly from the Bragg planes of crystal I. The wave-matching is now from one 

dispersion surface to another in a slightly different position, but the fringe spacing 

is still given approximately by the extinction distance; however, the fringes 

are somewhat irregularly spaced. By an appropriate choice of origin, R  can 

be made an even  function of z, so that the dark-field images of these fringes 

are symmetrical. Observations of ^-fringes have been made in barium titan

ate, where the ferro-electric anti-phase boundaries are seen in this way 

(Gevers et  ah  (

5
)); also in V3Si which undergoes a martensitic transformation at 

low temperatures to a tetragonal form; the structure is twinned and the twin 

boundaries display ^-fringes (Goringe and Valdrè (

6
)); another interesting 

example is a planar coherent interface between a precipitate and matrix 

(Ardell (

7
)). 

In addition to these types of fringes, one can have fringes formed from 

two beams which do not arise because of the dispersion surface. If two 

overlapping crystals give rise to different Bragg reflections g x and g 2, and 

both of these are allowed through the objective aperture to form an image, 

cosine fringes will be observed perpendicular to  g 2—gi and with spacing 

| ^ 2 — T h e s e are so-called moiré fringes, or if g x and g 2 arise from the 

same crystal, they are lattice fringes; evidently their spacing is entirely geo

metrically determined and has nothing to do with the extinction distances 

in the crystals. The interested reader should consult ref. (

x
) Chapter 15; 

also try problem 14, this volume. 

The observation of moiré fringes permits an accurate comparison of the 
spacing of atomic planes in two lattices. An interesting recent example is 
provided by the work of Vincent (

8
) who observed the variation of strain in 

islands of tin deposited on tin telluride. As the islands grow, they become 
progressively less strained by the introduction of misfit dislocations in the 
interface, an effect first predicted by Franck and van der Merwe (

9
). Figure 3 

shows some of these moiré finges. The fringe spacing is inversely propor
tional to the mismatch between the Sn and the SnTe, and it can be seen that 
smaller islands have fringes of larger spacing than large islands. Thus the 



Fig. 3. - Dark-field micrograph of epitaxial tin islands grown by evaporation onto SnTe; the tensile strain within the smaller islands 
causes an increase in the moiré fringe spacing and also black-white strain contrast in the adjacent areas of the substrate. (Courtesy 

of R. Vincent.) 
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Type of fringe Spacing Visibility 

Best at 
s = 0 

Sign rules References 

Stacking-fault. 
Displacement R 
of II with respect 
to I 

J 

Depth periodicity 

| s/ V l + w
y
< 

Visibility 

Best at 
s = 0 

If g R> 0, ou
termost fringes of 
bright field are 
white; bright-
field symm. 

0) , Ch. 10 

(5-fringe. 
Crystal II has s29 
crystal I has s1 

Depth periodicity 
~ξα but irregu
lar, depending 
on s 

Best for S
l
 =

 ~ $2 

If s1> s29 outer
most fringes of 
dark field are 
white ; dark-field 
symm. 

(

5
) , (

1 0
) 

Thickness fringes Depth periodicity 

f,AVl + w» 

Best at 
s = 0 

C

1
), Ch. 8 

Structure-factor 
fringes 

Depth periodicity Invisible for 0) , Ch. 10.6 
(cavity) 

Moiré fringes I s i - ft I"

1 
Whenever 
there is inten
sity in both 
beams 

C), Ch. 15 

3. Contrast from dislocations. 

Most treatments of contrast from dislocations, and indeed from defects 

in which R is a continuous function of z, use a digital computer to solve 

Howie's eqs (20). Each case really has to be calculated afresh, although 

certain general principles can be used to see what is happening, and we will 

try to emphasise these. For a discussion of the computational techniques 

see Goringe, this volume. 

mismatch between the two lattices increases as the islands grow, and less 

elastic strain is necessary to accommodate the mismatch. 

All these different types of fringes are summarised in the following Table. 
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The problem of contrast from dislocations was first studied by Howie 
and Whelan (

u
) . As most later workers have also done, they used the elastic 

continuum theory of dislocations in an isotropic medium to derive the dis-

X 

1 

'z 

Fig. 4. - The co-ordinate system used to describe dislocation contrast. 

placement R. For instance, for a screw dislocation the displacements are 
everywhere parallel to the Burgers vector, and can be shown to be 

* = ^ t g - > . (8) 

(See Fig. 4 for the co-ordinate system.) The contrast depends upon the quan
tity g-R, so that if this is zero, no contrast will be observed. It follows that 
for a screw dislocation in an isotropic medium that if g · b = 0 there will 
be no contrast. This criterion for the vanishing of a dislocation depends 
entirely upon geometry, and does not depend upon the detailed application 
of the dynamical theory: it follows because Bragg planes parallel to the dislo
cation are undistorted, so any image formed using a ^-vector perpendicular 
to the dislocation will be unaffected by the presence of the dislocation. 

For a more general dislocation, 
1
 ί . ^ , t s i n 2 0 , , / l — 2v , , , , c o s 2 0 \ ] 

2π{ 4 (1=7)
 + b X

" [W^v)
 l

°
g +

 4 ( 1 = 7 ) ) }
 ( 9) 

(see Read (
1 2

)). In this expression, ν is Poisson's ratio, Φ = φ — γ (Fig. 4), 
b is the total Burgers vector, be is the edge component, and « is a unit vector 
parallel to the dislocation line. It will be seen that there are components of 
the displacement perpendicular to the slip plane, arising because elastic com
pression or extension always leads to displacements perpendicular to the axis 
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of compression or extension. If the dislocation has pure edge character, the 

vanishing condition is now g · b — 0 and g · (b χ u) = 0. This means that g 
is parallel to the dislocation line, and once more has a simple geometrical 

meaning. 

Howie and Whelan noted the following general features of dislocation 

contrast. Firstly, when a dislocation threads the foil, the bright-field image 

is symmetrical about the mid-point of the foil and the dark-field image is 

not. This is another example of the symmetry rules proved by Howie in this 

volume. The dark-field and bright-field images are similar for the part of 

the dislocation near the top of the foil, and complementary for the part of 

the dislocation near the bottom. 

Secondly, the image of the dislocation in a thick absorbing crystal is asso

ciated with depth oscillations in appearance which can be quite complicated. 

The oscillations have a period of l^ /Vl + H>

2
, and are most pronounced near 

either surface of the foil under dynamical conditions. Near the centre of the 

foil, a dislocation appears as a dark line. 

Thirdly, the images of edge dislocations tend to be wider by about a factor 

of two than those for screw dislocations. Near the middle of the foil, a screw 

dislocation appears as a dark line of width about ξ9/3. 
Fourthly, in face-centered crystals, where partial dislocations can be 

found for which gb= ± J , ± §> etc., Howie and Whelan found by nu

merical calculation for reasonable visibility criteria that partial dislocations 

with g - b = I were invisible. 

Since this work, and since H H N P W was written, a great deal of work 
has been done. One should mention the work of Silcock and Tunstall (

1 3
) 

on the contrast from partial dislocations. They extend Howie and Whelan's 
treatment, and are able to demonstrate a new form of precipitation in aus-
tenitic stainless steels. 

The difficulties which may be encountered in applying the vanishing con
ditions to determine Burgers vectors are illustrated by the work of Dingley 
and Hale (

1 4
). These authors used dark-field techniques to investigate the 

types of dislocation occuring in iron. They found that in addition to J a < l l l > , 
Burgers vectors of the a<100> and a<110> type were present. However, cal
culations by France and Loretto (

1 5
) and by Dingley (

1 6
) show that great 

care must be taken in this kind of experiment, and that almost certainly no 
dislocations of the unusual a<100> and #<110> types are present. The reason 
for this difficulty is that large values of s gèg =  w  can cause the image to 
vanish, and if reflections with large extinction distances are used (these are 
higher-order reflections in monatomic cubic lattices) the images will vanish 
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for rather small values of sg: In practice, micrographs are often taken with 
sg > 0, in order to achieve good transmission and to minimise dynamical 
oscillations and contrast from artefacts, so this effect will make interpreta
tion difficult. In their most recent publication, Loretto and France (

1 7
) present 

very complete data, taking into account possible effects of elastic anisotropy. 

The best way to overcome these difficulties has been developed by Head (

1 8
) . 

He programmed the computer to generate simulated micrographs. The 
intensities which are derived from the Howie-Whelan equations are displayed 
as « points » of varying density. Thus a full-stop ( · ) may represent an inten
sity of χ units, and a colon (:) an intensity of 2x, and so on. Head points 
out that a very large number of integrations of the equations are required to 
generate one picture of a dislocation threading the foil; he estimates something 
like 65. It is necessary to use the computer as economically as possible, and 
Head indicates how this may be done ; it turns out that images corresponding 
to all depths of dislocation in the foil can be generated by just two integra
tions of the equations (see Goringe, this volume, for details). 

At the same time, the Australian workers have performed calculations 
which do not make the assumption of isotropic elasticity contained in eqs (8) 
and (9). In a series of papers (Head, Loretto and Humble (

1 9
) ; Humble (

2 0
)) 

dislocations in β-brass are analysed, β-brass has a very large elastic aniso
tropy, and screw dislocations for which g · b = 0 are visible as a pair of 
lines on either side of the dislocation. Of the various theoretical possibilities, 
b = α[ΐ\ί] corresponds most closely with the experimental data. None of 
the other theoretical possibilities correspond closely with observation. It is 
thus possible to identify Burgers vectors in a most direct and striking way. 
One should mention here another effect of elastic anisotropy on dislocations 
which can be observed in β-brass. This is that certain orientations of the 
dislocation line become forbidden, and the dislocations assume a character
istic bent appearance. The reader should consult the references for details. 

So far, the identification of dislocations (and defects generally) has been 
done by guesswork. One knows what is a likely candidate for the defect, 
and then one attempts to demonstrate by computing that the guess is con
sistent with observation. A recent paper by Head (

2 1
) shows that the reverse 

process is in principle possible: one can construct the displacement field of a 
defect uniquely from electron micrographs. It would be a great tour-de
force if this could be done, although there are a number of numerical dif
ficulties. 

A most promising development has been announced by Cockayne, Ray 
and Whelan (

2 2
) . As is known (see Howie, this volume), the width of a 
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dislocation image is controlled by the extinction distance ξ9. This is because, 

as his eq. (52) shows, Fourier components of the strains with this wavelength 

contribute most to the image. It has been recognised for some time that the 

images could be made narrower by decreasing the extinction distance, and a 

convenient way to do this is to make use of kinematical conditions, in which 

the extinction distance becomes s"
1
 and can, in a two-beam model, become 

as short as one would like. Of course, the limitation is that in the bright-

field image the contrast is lost, and the image has usually disappeared by the 

time w=s9£9 is about two or three, for typical low-order reflections. How

ever, in dark-field, although the total intensity scattered into the image will 

be small, it will nonetheless be very much greater than the background in

tensity, so there is the possibility of achieving sharp images with good con

trast by taking pictures in kinematical dark-field conditions (see (

x
), p . 192). 

Cockayne, Ray and Whelan have done this, and have been able to resolve 

partial dislocations only 120 Â apart (see Goringe and Hall, Problem 16.) 
Cockayne, Ray and Whelan also give an ingenious method for calculating 

the position of the maximum in intensity in a kinematical image. The problem 

is to find the column for which the kinematical integral 

Jexp [2ni[sz + g-R]]dz 

column 

gives a maximum amplitude. One is accustomed to the stationary phase 

method of estimating the integral. If there is some value of z, z0 for which 

±[sz+g-R] = 0, 

then the integral becomes 

column 

and can be approximated. However, if there is a column for which 
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then the integral will evidently give a maximum amplitude—this might be 

called the principle of the most stationary phase ! Cockayne, Ray and Whelan 

show that calculations based on this principle predict positions of images 

which agree very well with those obtained for many-beam dynamical cal

culations; problem 1 6 is intended for those who want to follow this up. The 

use of « high resolution dark-field » techniques could well resolve a number 

of outstanding problems ; in particular, it should prove possible to get infor

mation on the stacking-fault energy of materials of higher stacking-fault 

energy than have hitherto been studied. 

Inclusions can give rise to contrast by a large number of different mech

anisms, and although we shall list some of these, we cannot treat them all 

in very great detail. 

4 1 . Structure factor contrast. 

For a small inclusion, the reader is recommended to try problem 19; 

see also Q) p . 3 3 6 . The treatment has been recently extended by Gleiter (

2 3
) . 

The principle is very simple (

2 4 &
) . A small inclusion of size At changes the 

effective foil thickness by Δ Γ ( 1 / £ * — I fig). Thus by differentiating eqs ( 3 ) one 

finds for the intensity change due to the inclusion 

Maximum visibility occurs where t = (In + 1 )π /4 , and the contrast will be 
alternately bright and dark, depending on whether ξ

%
 > ξ9 or ξ

1
 < ξ9. 

4*2. Interface contrast. 

A great variety of mechanisms operate: if the inclusion is semi-coherent, 

so that a regular dislocation array exists in the interface, the dislocations may 

4. Contrast from inclusions. 
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be made visible. This case has not been treated theoretically, but a recent 
paper by Weatherly and Nicholson (

2 5 a
) reports a number of observations. 

They find that the conditions for visibility of the dislocations are very stringent. 
Matrix and precipitate reflections must co-incide or nearly co-incide, and the 
misfit must not be too large. They have obtained many beautiful and striking 
pictures in a number of systems. 

All the other types of fringes discussed earlier can provide contrast. In par
ticular, one may mention again the occurrence of o-fringes when a fully co
herent interface extends through the foil. This case has been treated by 
Ardell (

7
) and by Weatherly (

2 5 c
) . Outside a planar interface separating a 

uniformly expanded inclusion from the matrix, the matrix is stretched into 
a tetragonal form. Thus any Bragg plane neither parallel nor perpendicular 
to the interface will undergo slight rotations across the interface, and will 
give rise to à-fringes. 

4 3 . Strain contrast. 

We now turn our attention to strain contrast, in which a number of 
developments have occurred since H H N P W was written. Let us consider 
at the outset contrast from the misfitting sphere treated dynamically using 
the two-beam Howie-Whelan equations. The displacement vector R is always 
radially directed and is given by 

R = erlfr
2
, r>r0, 

R = er,
 r

<
r
o-

where r0 is the radius of the sphere, and ε is the misfit parameter, related to 

the unconstrained fractional difference in lattice parameter δ by the relation

ship (
2 6

) 

_ 3Κδ 2 

Here, Κ is the bulk modulus of the precipitate, and Ε and ν are the Young's 
modulus and Poisson's ratio respectively of the matrix. Figure 5 shows the 
situation. If one set of the atomic planes shown there are the Bragg planes, 
then it is clear that the Bragg plane passing through the centre will transmit 
background intensity. It follows that the image will be characterised by 
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a line of no contrast perpendicular to g and passing through the centre of the 

precipitate. The line of no contrast is observed to swing around so that it 

is always perpendicular to the locally operative g. 

D e p t h 
B r i g h t f i e l d ( £g u n i t ) 

1 ^ 
0-25 

D 
1-5 

0 
2-0 

2-5 

4-75 
• 

Dark f i e l d 

1 ^ 

"""ΝΛ 

• 2 - 1 0 1 2 -2 -1 1 2 
Fig. 6. - The variation of the images of a misfitting sphere with the depth of the sphere 
in the foil. Note that near either surface of the foil, very large, asymmetrical images are 
found, termed « anomalous images»; otherwise, the image width does not depend dra
stically on depth, χ is the distance from the centre of the precipitate measured in extinction 

distances. 
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Ashby and Brown (

2 4 a
) showed that for this model the width of the image 

is predominantly controlled by the parameter egr^/f

2
, and if r0 were known, 

an estimate of the misfit parameter could be made. Furthermore, they con

cluded that the sign of the misfit parameter could be determined from the 

dark-field image. For displacements of the above type, the dark-field images 

from defects placed in varying positions along the column will be symmetrical. 

An example of this is shown in Fig. 6, where the image from a defect at depth 

ξ9/4 is the same as the image from a defect at depth 19 ξ9/4 in a foil of thick

ness 20 ξ9/4. Furthermore, images from defects close to either surface of the 

foil are anomalously wide and characteristically black on one side and white 

on the other: if ε > 0, then the images are dark in the direction of positive g, 
whereas if ε < 0 the reverse is true. This rule has come to be called the 

Ashby-Brown rule. 

Further work has shown that this particularly simple picture must be mod

ified. First we discuss the modifications to the image width as a result of 

many-beam effects, particle-shape effects, and elastic anisotropy. Then we 

discuss the sign-measuring methods which have been developed. 

Howie and Basinski (

2 7
) have given a careful discussion of the effects of 

the approximations of the dynamical theory on the image width. Figure 7 

shows their results. It will be seen that the effect of taking into account four 

beams instead of two changes the image width only slightly (at most 15%) 

and Howie and Basinski conclude that the use of two-beam theory with a 

two-beam extinction distance will provide quite an accurate estimate of the 

image width even when quite strong systematic reflections are excited. 

The effect of nonspherical shape of the inclusion has been discussed by 

Sass, Mura and Cohen (

2 8
) . They conclude that for situations in which g 

is not perpendicular to a symmetry plane of the precipitate, the images are 

characteristically unsymmetrical, and they present images which compare 

well with their computed shape. Similar results have been observed in 

Cu-Co (

2 9
) . However, Sass, Mura and Cohen suggest that the error in the 

measured value of the mismatch for a 220 reflection and a cubic precipitate 

may still be only 2 5 % , decreasing for small values of the mismatch. 

The problem in the discussion of these effects is that the effects due to the 

« shape » of the precipitate and effects due to the elastic anisotropy of the 

matrix are inextricably linked. If the outline of the precipitate cannot be 

observed, which is commonly the case in systems with coherent precipitates 

where both the size and valence of the atoms in the precipitate tend to be 

similar to those of the matrix, the cubic symmetry of the images may be 

ascribed either to a cubically shaped precipitate or to the cubic anisotropy 
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Fig. 7. - A curve of image width as a function of sgr^/il (

t ne
 parameter giving the « strength » 

of the coherency strain). The full line is from the two-beam dynamical theory; the points 
are from the four-beam dynamical theory; and the dotted lines are calculated on the basis 

of approximate formulae. (From (

2 7
) by courtesy of the Phil. Mag.) 

for particles whose shape did not differ drastically from a sphere. To weaken the 

images, Woolhouse and Brown made observations under « quasi-kinematical » 

conditions, i.e. large values of s were used, corresponding to the Kikuchi 

band being displaced by g/4 from the Bragg condition (*). It appeared that 

the precipitates in Cu-Co were not spherical, but had the shape of a cubo-

octahedron. However, much further (and rather intricate) work is required 

before this conclusion can be considered certain. Evidently the dark-field 

techniques of Cockayne, Ray and Whelan (

2 2
) can cast light on the problem. 

(*) Application of the method of the most stationary phase shows that the image will 
have a peak at the periphery of the particle provided s^ge. 

b) 

a) 

of the matrix. Woolhouse and Brown (

3 0 a
>

b
) have attempted to separate the 

two effects by making use of the principle that when the image is weak it 

tends to come from the projection of the periphery of the particle. This is 

true for spherical particles, and one might expect that the same would hold 
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The effect of elastic anisotropy can be judged from recent work by Yoffe (

3 1
) . 

Her calculation makes use of the fact that the image shape depends not upon 

a full knowledge of the elastic displacements, but upon the Fourier transform 

of one of them. The calculation of the elastic displacement field in an ani

sotropic medium is a major numerical undertaking, but approximation 

methods exist for finding the Fourier transform. The result is that the expec

ted image shape for any combination of elastic forces can be found simply 

and analytically, to an approximation whose validity has not yet been fully 

tested. Figure 8 shows an example of Yoffe's results: the figure is appropriate 

to a centre of pressure in copper, and the importance of elastic anisotropy 

on the image can be appreciated. 

From a practical point of view, the most difficult measurement to make 

when estimating the mismatch is the particle size. If the outline of the particle 

can be clearly seen, as in the Cu-S i02 system (

2 4 f t
) the measurement will be 

most accurate. In other cases, the measurement may be quite wildly in 

error if the particle size is not known. As an example, we may take the 

C u - A l 20 3 system, which was judged by Ashby and Brown to have a very 

large mismatch. If the alumina particles are imaged in a reflection which 

is perpendicular to a symmetry plane of the precipitate, they show clear lines 

of no contrast, and Ashby and Brown assumed that the precipitate diameter 

was given by the length of the line of no contrast. However, other reflections 

yield very complicated images ; and extraction replicas show that the precip

itates are at least twice as large as estimated by Ashby and Brown. The 

mismatch is thus about ten times smaller than their estimate; the particles 

are not coherent. This conclusion is confirmed by the observation of spots 

from the precipitates in the diffraction pattern, and by other less direct 

evidence (

3 0 &
) . 

Nonetheless, in situations where the particle size is known the strain 

measuring method can be applied and useful information extracted. The 

measurement of strains in plate-shaped precipitates and in dislocation loops 

is likely to be accurate for the same reasons. One might cite as examples of 

useful reliable measurements Brown and Mazey's (

3 2
) study of strains around 

gas bubbles in irradiated copper and stainless steel; and Weatherly's recent 

work (

2 5 b
) , in which he shows that at the surface of silica particles in copper, 

dislocations may be generated by stresses of about one-hundredth of the 

shear modulus. 

We turn now to a discussion of the sign-measuring technique. It has been 
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Fig. 8. - Figure showing the effect of elastic anisotropy on the image from a « centre of 
pressure» in copper. (A centre of pressure has the same external strain-field as a mis

fitting sphere), a) g = (002); b) g = (220); c) g = (113); d) g = (111). 
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applied successfully to many precipitation systems by a number of authors. 

However, when attempts were made to apply the method to small defect-

clusters, it was found that the dark-field images did not display a unique 

black-white direction. (See, for instance, (

3 3 , 3 4
) ) . In order to appreciate 

the problem, a certain amount of history is necessary. In irradiated 

metals, vacancies and interstitials are produced which are observable in the 

form of rather indistinct black dots, sometimes containing structure. Essmann 

and Wilkens (

3 3
) observed that when the dots were viewed under dynamical 

conditions, they showed a characteristic black-white contrast and it seemed 

that it might be possible to tell which dots were composed of vacancies and 

which of interstitials, and hence to discover something about the process of 

formation of the damage. 

Before assessing the sign of these defects, it is necessary to decide on their 

geometry. Essmann and Wilkens, observing that the images were streaked 

always parallel to the trace of < 111 > directions, concluded that the defects 

were in the form of small Frank loops, of Burgers vector J a < l l l > . This 

conclusion has been confirmed by Ruhle, Wilkens and Essmann (

3 5
) who 

performed machine calculations based on the two-beam dynamical theory 

and isotropic elasticity. Yoffe's theory (

3 1
) , based on anisotropic elasticity 

has also been compared with observation by Mclntyre, Brown and Eades (

3 6
) 

who find that the majority of the loops are indeed Frank loops. 

However, the machine calculations showed that the image of a defect 

depends strongly on its depth ; if we consider the dark-field case, an intersti

tial loop will have an image dark in the direction of positive g if it lies within 

ξ9/4 of either foil surface; bright in the direction of g if it lies between 3ξ0/4 
and 5ξ9/4 of either foil surface, and so on. These variations in contrast die 

out as the defect approaches the centre of the foil, and one can expect to see 

at most three or four reversals. The reader will appreciate that these oscilla

tions are very similar to the oscillations associated with stacking-fault con

trast, except that the dark-field oscillations are symmetrical and the phase of 

the oscillations is different; reversals occur at depths of (In + \)ξ9Ι4 instead 

of at ξ9/2. These differences are due to the different symmetry of the displace

ment function, and the proof of this forms the basis of problem 20. The 

predicted contrast from an interstitial loop whose Burgers vector and loop 

normal are parallel to g is shown in Fig. 9. 

Now the elastic displacements due to a misfitting sphere, and those due 

to a prismatic loop are very similar; and it might be expected (and indeed 

it is true) that the contrast from precipitates and loops would be similar. 
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How then can the Ashby-Brown rule be reconciled with the present results? 

The answer lies in the effect of the stress-free surface of the foil. If the image 

of the defect is wide, a column near the edge of the image contains displace-
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Fig. 9. - The predicted contrast from an interstitial loop as a function of depth in the foil. 

ments that are strongly affected by the presence of the elastic « image » defect 
which creates (approximately) the stress-free surface. This displacement has 
the effect of reversing the sense of the black-white image in the second layer, 
and thus of making all the layers (except the scarcely visible fourth) obey 
the Ashby-Brown rule. Mclntyre and Brown (

3 7
) show that if egrl/ig is 
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(here b is the Burgers vector of the loop and rl is its radius). Very similar 

conclusions were reached by Chik, Wilkens and Ruhle (

3 8
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) . In this technique, three pictures are taken of the 

same area: a stereo pair in kinematical conditions, and one in dynamical 

conditions. The depths of the defects are measured from the stereo pair, 

using a parallax bar, and then the measured depth is correlated with the 

observed black-white sense of the image in the dynamical photograph. 

Unfortunately, application of this technique to radiation damage in neu

tron irradiated copper at first yielded opposite answers for the sign of the 

damage. Ruhle and Wilkens (

4 0
) found vacancy loops, whereas Mclntyre (

4 1
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found interstitial loops. However, a later study by Ruhle, Haussermann, 

Huber and Wilkens (

4 2
) showed that a number of large interstitial loops 

are present, together with smaller vacancy loops; similarly Ipohorski and 

Brown (

4 3
) have observed, in addition to the large interstitial loops, a 

a few smaller vacancy loops. Both English and German work now shows 

that copper, irradiated at room temperature, contains large interstitial loops 

and smaller vacancy loops. A discrepancy between the two schools still 

exists concerning the estimated number of vacancy loops ; however, one might 

expect the observation of these very small defects to be dependent upon both 

the resolution of the electron microscope and the details of the specimen 

preparat ion; certainly, very small clusters of vacancies must be present in 

both countries ! The significance of these and related observations is discussed 

by Makin in this volume. 
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The Application of Electron Microscopy 
to Radiation Damage Studies 

M . J. M A K I N 

Metallurgy Division, A.E.R.E. - Harwell, England 

1. The damage process. 

1 1 . The relevance of radiation damage studies. 

The need for radiation damage studies really began when it was realized 

that it was possible to make the uranium fission reaction self-sustaining, 

i.e. to use the neutrons emitted in the fission process to produce further 

fissions: 

2 3 5 U +n A + B + (2-f- 3 )n+160 MeV . 

Furthermore, the fission process is controllable, so that it is possible to release 

energy slowly and over a long period. This can be done because some of the 

neutrons are emitted after delays of up to one second, so increasing the 

doubling time, i.e. the time required for the neutron flux to double in density, 

and giving the control apparatus sufficient time to move neutron absorbing 

material either into or out of the reactor so as to depress or increase the 

neutron flux, and hence the rate of heat generation. It was discovered that 

there were substantial practical advantages in keeping the density of fissile 

material low. Only about 0 .7% of natural uranium is

 2 3 5
U , and increasing 

this concentration by removing

 2 3 8
U atoms is expensive. To obtain a self-

sustaining reaction in natural uranium, however, it is necessary to slow the 

neutrons down to thermal energies ( ~ 1/40 eV) from their fission energy 

of (l-f-10) MeV. This is accomplished by arranging for the neutrons to dif

fuse through a mass containing a large number of light atoms, since the energy 
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loss per collision is greatest when the incident and struck particles are of equal 

mass. The choice of this material however is also governed by its capture 

cross-section for neutrons. If this is too high then too many neutrons will 

be lost for the fission process to be self-sustaining. The practical choice 

of moderators, as such substances are known, is hence very limited, and 

in practice is restricted to virtually two: graphite and heavy water. In addi

tion to the moderator, arrangements have to be made for cooling the uranium 

billets, which will of course get hot from the heat generated by the fission 

process. Similar neutron capture considerations apply to the structure of 

the reactor as to the moderator i.e. materials with high capture cross-sections 

can be used only sparingly. The general outlines of a nuclear reactor thus 

emerge. Many different types of reactor have now been studied, and a wide 

range of different designs built. In general, as time has progressed the degree 

of

 2 3 5
U enrichment has tended to increase, so enabling the reactor to be 

smaller (since the critical mass is smaller) and the operating temperatures 

have increased, so raising the thermodynamic efficiency of the heat engine 

coupled to the coolant outlet. The power output per reactor has also greatly 

increased. Reactors are now the heat sources in a substantial number of 

power stations. In recent years interest has increased in the so-called 

« fast » reactors, in which the moderator is dispensed with, and the nuclear 

reaction sustained by using the much smaller capture cross-section of fissile 

materials for fission energy neutrons. Although these reactors are techno

logically difficult, since they are small and hence the heat and radiation fluxes 

are high, and expensive to fuel, since they require a very high enrichment, 

they have the over-riding advantage that they can be made to « breed », 

i.e. to generate more fissile material than they consume. By the use of such 

reactors the available heat content of the world supply of uranium is of course 

multiplied many times, since it is now theoretically possible to fission 100% 

of the uranium, instead of only 0 .7%. 

The great advantages of nuclear power, i.e. the independence from the 

need to transport large quantities of fuel to the power station, the complete 

absence of atmospheric pollution, and the very large reserves of power avail

able, are sufficient to ensure that in time a high proportion of the world's 

power will be generated from nuclear sources. Already in the U.K. ~ 2 0 % 

of the total quantity of electricity generated comes from the nuclear stations, 

and this percentage will rise steadily. 

The development of the nuclear power industry has been very rapid, 
occurring almost entirely within the last twenty five years, and it has required 
the development of many new materials and technologies. For example, 
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the need for low capture cross-section structural materials led to the develop

ment of new magnesium and zirconium alloy systems with the required 

nuclear cross-section, corrosion and fabrication properties. The new coolants 

required, such as C 0 2 and liquid sodium, posed many problems not before 

encountered and the unusual mechanical and physical properties of such 

materials as uranium and graphite posed many problems. In addition to the 

problems which occur when any new material, or new type of structure, are 

used there is also one completely new parameter, radiation damage. For 

the first time large and complex structures were required to operate at high 

temperatures while being constantly irradiated by energetic neutrons, fission 

fragments, knocked-on atoms and γ-rays. It was soon found that the effects 

of these radiations were substantial, and highly novel, and much work was, 

and still is, necessary to determine the nature of these effects and how they 

may endanger the continued safe operation of the reactor. The problem is not 

made any easier by the fact that unlike almost any other engineering structure, 

is it not possible to repair, or even inspect, much of the structure once it has 

operated, because of the high radiation levels which build up, and which 

would take many years to decay away to safe levels. Hence, once a reactor 

has operated, the possibility of changes in the design or repairs are limited. 

It is the purpose of these lectures to try to demonstrate how electron 

microscopy has been used to study both the practical radiation damage 

problems, and also the nature of the damage itself in different materials. 

(See also Goringe and Hall , this volume.) As it happens, the radiation 

produced defects responsible for many of the macroscopic effects are in 

the right size range to be observable by transmission electron microscopy, 

and the technique has hence proved to be extremely valuable in estab

lishing the mechanisms by which the macroscopic effects occur. The im

pact has been so great that it is difficult now to remember the air of 

mystery which used to surround many of the effects, such as the growth 

and hardening phenomena for example, before the advent of electron mi

croscopy. Many examples can also be quoted of where the use of electron 

microscopy has greatly reduced the effort and expense involved in studying 

a particular radiation effect. This occurs because when the defect responsible 

for the macroscopic effect has been identified in the microscope it is possible 

to carry out experiments under a wide range of experimental conditions 

using very small specimens which occupy much less reactor space and absorb 

many fewer neutrons than the large samples required for macroscopic meas

urements. An extreme example of this is the simulation of very high neutron 

dose effects in an accelerator. In this case it is possible to simulate the effect 
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of many years irradiation in a few hours, so enabling studies to be made 

which would otherwise be impossible. 

It should not be supposed, however, that all the problems have been 

solved. In fact as higher flux reactors are designed new radiation damage 

problems are being encountered, and it is unfortunately a fact that the 

economics of many of the existing reactors could be considerably improved 

if the radiation damage problems could be solved. It is likely, therefore, 

that this subject will be actively studied for many years yet. 

1*2. The primary event. 

1*2.1. Basic processes. - When solids are bombarded by radiation there 

are three general types of damage : the removal of electrons from their normal 

orbits, the displacement of atoms from their normal sites and the introduc

tion of impurities, either by nuclear transmutations or by the bombarding 

ions stopping within the solid. In these lectures we shall be primarily con

cerned with the last two effects. The displacement of electrons produces 

no effects in good conducting materials, where the displaced electrons are 

rapidly replaced by conduction electrons. Effects are produced in insulators, 

notably the colouration effects in alkali halides. Also the displacement of 

electrons can produce « displaced » atoms by the destruction of the chemical 

bonding in the material, and a striking example is the large effect produced 

in plastics. Although such effects can be observed in the electron micro

scope, microscopy has not been extensively utilised to study them as yet and 

I shall not deal with this subject. 

Γ2.2. The displacement process. - The simplest primary event is the col
lision between a charged particle and the atomic nucleus. This can be treated 
as a two-body collision provided that the mean free path between collisions 
is much greater than the interatomic spacing. If we initially assume that the 
collisions are elastic and that the velocities are sufficiently low for nonrela-
tivistic mechanics to apply then from the laws of conservation of energy 
and momentum it is easy to show that 

E2 = ΛΕ1 sin

2
 φ/2 , 

where 
_ 4M1M2 
" (M1 + M2f

 9 

E2 is the energy transferred to the struck atom, E± is the energy of the incident 
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particle φ is the angle of deflection of the incident particle as a result 

of the collision and M1 and M2 are the masses of the incident and struck 

atoms. Λ has special significance when φ=π, which is a head-on collision 

since the maximum energy transfer occurs for such a collision, £2(max) = 

= ΛΕλ. In any solid there is obviously a minimum value of E2 for the pro

duction of damage. This is known as the displacement energy Ed and may 

be expected to depend on the crystal structure, the interatomic forces between 

the atoms, the direction of displacement, the temperature etc. Theoretically, 

therefore, it is incorrect to assume a constant value for Ed, but the difficulties 

encountered in calculating Ea are such that this assumption is necessary in 

practice for most materials, and the value of 25 eV is widely used. Unfor

tunately Ed is not an easy quantity to measure experimentally and although 

many such measurements have been made, with the results quoted in Table I, 

TABLE I . - Measured values of displacement energy. 

Element Ed (eV) Reference 

22± 3 

Cu 
19^-20 (

2
> Cu 22 ο 

19^22 (

4
) 

I 16 (

4
) 

Al 19 (

5
) 

1 32 e ) 
Au 33-^36 c) 

Pt f 37 ο Pt 
I 36 (

8
) 

Fe 24 (

3
) 

Mo 37 (

3
) 

W > 35 (

3
) 

Ni 24 (

3
) 

Ti 29 (

3
) 

Ag 28 (

3
) 

in very few cases has the orientation dependence been measured. Where 
this has been done the results (Table II) show that there does not appear 
to be any single direction with a substantially lower energy. If this were the 
case then when the values obtained in the other directions are multiplied by 
(cosine)

2
 of the angle between that direction and the lowest energy direction 

«110> in face centred crystals) then a constant value would be obtained. 
It can be seen from Table II that this is not the case. 
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TABLE I I . - Displacement energies in the principal directions in some f.c.c. crystals. 

<no> <ioo> <in> (cos

2
45°)£1 00 (cos

2
 35°) 

Au (

9
) 16 23 20 11.4 13.3 

Ag 00 15 22 19 10.9 12.7 
Cu « 16 — — — — 

Cu (

1 0
) 25 24 80 11.9 — 

Cu (

n
) 19 19 — 9.4 — 

Cu (

1 2
) 19.2 21.6 23.6 10.8 15.7 

In the case of electrons, relativistic quantum mechanics must be used to 

calculate the energy transfer to struck atoms. Because of the disparity of 

masses it can be assumed that the electron velocity is unaltered by the col

lision, in which case the momentum transfer ΔΡ in a collision in which the 

electron is scattered through an angle θ is 2mv sin Θ/2, where m and υ are 

the relativistic mass and velocity of the electron. The energy transfer is 

( Δ Ρ / 2 Μ 2)
2
 and hence 

E2 = sin»fl/2 . 

I V
2
\-2 

m = m0il — ^21 and E=(m — m0)c
2
, 

M2c
2 

Using this formula and the one given previously, the order of magnitude 

of the particle energies required to transfer the displacement energy is given 

in Table III. 
TABLE I I I . Particle Target E1 (eV) 

Electron Li 10

4 

Electron U 10

6 

Proton Li 10

1 

Proton U 10

3 

Heavy ion (M = 100) Li 10

1 

Heavy ion (M = 100) U 10

3 

Since 

we get 
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1*2.3. The collision cross-section. 

a) Light ions. The cross-section for displacement collisions when bom

barding with charged particles is calculated by assuming that the atoms 

are displaced by the Coulomb interaction between the nuclei, and that the 

effect of the screening electrons is to cut off this interaction sharply at a 

radius of about tf0/Z*, where a0 is the Bohr radius and Ζ the atomic number. 

When the energy of the moving particle is smaller than that required to give 

an impact parameter equal to the screening radius then the collision approxi

mates to a hard sphere collision, there being no interaction until the electron 

cloud is penetrated, and then a relatively large force exists for a short time. 

There is thus a definite lower particle energy below which the simple Ruther

ford collision formula must not be used. This energy limit is given approxi

mately by: 

where ER is the Rydberg energy (13.6 eV). As can be seen in Table IV this 

energy limit increases rapidly as the weight of the moving ion increases and 

hence for heavy ions the simple Rutherford formula is not very relevant. 

For light energetic charged particles however the formula is believed to be 

TABLE IV. 

Particle Target (eV) (eV) 

C 4 10

2 
8 10

2 

Al 1 10

3 
2 10

3 

D

+ 
Cu 3 10

3 
8 10

3 

Au 1 10

4 
4 10

4 

C C 5 10

3 
3· 10

5 

Al Al 3· 10

4 
9 10

6 

Cu Cu 2· 10

5 
4 10

8 

Au Au 2· 10

6 
4· 10

10 

fairly accurate. Above LA the effect of the screening is to cut off the Ru
therford collisions at values of the screening radius equal to the impact pa
rameter. This limits the minimum energy which can be transferred to : 

= AEjZlZKZJ + ZDM! 
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As long as E* is more than the displacement energy all Rutherford colli

sions displace atoms, but when the energy of the moving atom exceeds 

LB, where: 

then only some collisions do so. When E^>LB then only half the energy 

lost in Rutherford collisions is in the displaced atoms. 

The cross-section ap for displacement by Rutherford collisions is given by: 

The term (l—Ed/ΛΕ) is nearly unity in all cases of practical interest and 

hence can be omitted. The cross-section is therefore inversely proportional 

to E. The mean energy Ε of the knock-ons is 

It is a characteristic of Rutherford collisions that they have a relatively high 

cross-section ap but that the mean energy of the knock-ons is low (only a 

few times the displacement energy). 

b) Heavy ions. For low-energy heavy ions and primary knock-ons, 

where the energy is below LA in Table IV, considerable uncertainty exists 

as to the correct treatment. The simplest model is the hard sphere approxima

tion in which the atoms are treated as billiard balls, the energy being shared 

randomly between the colliding atoms (assuming they have equal masses). 

Since an atom can only create a new displacement when it has an energy 

greater than 2Ed the average number of displaced atoms is 

where Ε is the initial energy. It is emphasized that this is only the average 
figure and the number of displacements can vary widely from this value 
in individual cases. An alternate approach is the use of the inverse square 
approximation for the potential and in this case the cross-section and mean 

AElZlZ\{Zl + Zt)M1 
M2Ed 

Nd = E/2Ed, 



The application of electron microscopy etc. 397 

energy are: 

n
2
a
2
LAVA 

and E = VAEEd. 

c) Fission fragments. Fission fragments are high energy heavy ions 

(typically Μλ = 96, E1 = 95 MeV and M 2 = 137, E2 = 55 MeV). At such high 

energies the Rutherford collision model is adequate and shows that primary 

recoils are produced at intervals of only a few Â along the track, with a recoil 

energy of (500-^-1000) eV. The vast majority of a fission fragment's energy 

is lost by ionisation however, and this gives rise to some unusual features 

which will be described later. 

d) Electrons. As mentioned previously electrons cannot be treated with 

classical formulae. An approximate solution of the Dirac equation for light 

elements has been given by McKinley and Feshbach (

1 4
) : 

where Em is the maximum recoil energy and a = Z2/137. 

This formula is reasonably accurate for the light elements, but seriously 

underestimates σρ for heavy elements. Oen (

1 5
) has computed the cross-

section by a method which avoids the McKinley-Feshbach approximation 

and has found that in gold the cross-section at 1.7 MeV is over four times the 

McKinley-Feshbach value. 

e) Neutrons. Collisions between neutrons and atoms is a special case, 
since having no charge a neutron does not interact with a nucleus except 
at very short ranges. The available neutron scattering data suggests that the 
collision is then essentially hard sphere, with a cross-section of the order 
3 - 1 0

_ 2 4
c m

2
 at an energy of (1-^-2) MeV. The mean energy of the knock-ons 

is hence 

and, because Ε is typically (1 -i-2) MeV for fission neutrons Ε is large (10

5
 eV). 

An important complication of neutron damage is that in a thermal reactor 
neutrons of all energies are present, and the calculation of the number of 

E=\AE 
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primary knock-ons demands a knowledge of the spectrum in the irradiation 

position (the spectrum changes rapidly as a fuel element is approached). 

In a typical irradiation position close to fuel element in a thermal reactor 

the mean knock-on energy may be —^^l^f i s s/10. 

/) Transmutations. A further complication with neutrons is that nuclear 

reactions are possible with neutrons of all energies, and the cross-sections 

for some of these reactions are very large for thermal neutrons. The cross-

sections tend to increase at lower neutron energies because of the low velocity 

of the neutron and the consequently long time it spends near a nucleus. Typical 

of such reactions are the gas producing reactions: 

6 Li + n_ ^ 3 H +4 He 
and 

i o B+ n- ^ V

7
L i +

4
H e . 

Some of the effects of such reactions will be described later. 

g) (ηγ) reactions. Another complication is the possibility of damage 

production by (ηγ) reactions. These are only of importance in a well ther-

malized flux; in such cases however they can account for the majority of 

the displacement damage. The recoil energy which an atom acquires as a 

result of such an event is typically (100-i-500) eV but the cross section may 

be as large as 2500 b (cadmium). In aluminium however the cross-section 

is only 0.23 b, and in copper 3.8 b . 

h) Summary. Table V is a useful summary of the properties of the 

recoil atoms produced by the main types of radiation. The mass of the struck 

atoms M 2 is assumed to be 50. 

TABLE V. 

Spacing between Track length Mean recoil 
Particle events of particle energy 

(cm) (cm) (keV) 

1 MeV proton i o -

3 
i o -

3 
0.2 

100 MeV fission fragment i o -

7 
i o -

4 
1 

50 keV heavy ion i o -

6 
10~

5 
7 

1 MeV electron 0.1 0.1 0.05 
2 MeV neutron 5 100 160 
Thermal reactor neutron 5 100 10 
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1 3 . Collision cascades. 

In many of the preceding cases, and particularly for neutrons, the primary 
knock-ons are sufficiently energetic to produce many more displacements. 
These primary knock-ons are heavy ions and hence have a short range and 
a high collision cross-section. Also, being heavy, they transfer large amounts 
of energy at each collision, especially as they near the end of their range, 
so producing further energetic knock-ons which produce more displacements. 
The calculation of the number of displacements in such a cascade has 
attracted considerable attention. The simplest possible model is to assume 
hard sphere collisions, when the number of displacements is simply E/2Ea, 
where Ε is the mean primary knock-on energy so that the concentration of 
point defects is 

£ 
Cd = ίφσν —- , for ΛΕ <^Ed, 

where t is the irradiation time and φ the irradiation flux. 
Alternative estimates are, for light ions: 

for heavy ions: 

and fast neutrons: 

2nalMxZ\Z\El ΛΕ 
Ca = tcp In —·· , 

McEEd Ed 

__ t<pn
2
a
2
LA Λ 

ΛΕ 
Cd = ίφσίοίΛΪ- . 

Computer simulations of cascades have been made (
1 6

) , and a feature of 
these is that they enable the spatial distribution of the displacement to be 
seen. In general it is found that the vacancies tend to lie in a compact central 
volume whose centre of gravity is behind that of the interstitials, which tend 
to lie in a larger volume. 

1 4 . Crystal lattice effects. 

In all the preceding the solid has been assumed to be amorphous. The 
crystal has several effects on the radiation damage produced in it. 
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l'A A. Channelling. - Heavy particles fired in specific directions at crystals 

penetrate very much larger distances than similar particles fired in random 

directions. This was strikingly demonstrated by Piercey et al. (

1 7
) who showed 

that the penetration of 40 keV

 8 5
K r ions in aluminium was strongly dependent 

on the orientation, and much greater in low index directions (maximum 

in 110). It was later found by Nelson and Thompson (

1 8
) that the effect 

diminished and eventually disappeared as the bombardment continued. These 

effects were interpreted in terms of the focusing of the bombarding ion into 

the centre of the channel by glancing collisions with the closely packed rows 

of atoms forming the edges of the channel. The disappearance of the effect 

was interpreted as the blocking of the channels by accumulated defects in 

the lattice. Such effects are now well established, both experimentally and by 

computer simulations. Much weaker planar channelling has also been dis

covered for heavy ions (

1 8
). 

Channelling clearly affects the radiation damage produced. Firstly it 

reduces the average number of displaced atoms because a channelled atom is 

less likely to make displacement collisions. Secondly the long range of 

channelled particles spreads the damage over a larger crystal volume. Thirdly 

the rate of damage will be dose dependent, since blocking of the channels 

will return the crystal towards the amorphous behaviour. Fourthly, it will 

introduce a temperature dependence into the damage function as at high 

temperatures the channels will be less perfect. 

Channelling also occurs during electron irradiation, and the effect of this on 

radiation damage will be demonstrated in Sect. 4*3.2. In this case, of course, 

the behaviour must be described in terms of the wave nature of the electron 

beam. The effect of electron channelling on the inelastic scattering has been 

known for many years in electron microscopy, being the reason for the well 

known anomalous transmission effect. 

1*4.2. Focusing. - A further effect of the crystal structure is the possibility 
of the focusing of momentum along close packed directions. This was first 
analysed by Silsbee (

1 9
). This occurs only at low energies (up to a few 

hundred eV). Computer simulations of collision cascades have shown that 
assisted focusing can also occur at energies above the limit for simple focusing. 
These occur by the focusing effect of the rings of atoms surrounding the row 
along which the sequence is passing. It is assisted focusing which enables 
sequences to occur in the <100> as well as the <110> directions in the fee 
and bec lattices. 

Focusing has only a small effect on the production of damage in perfect 
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1*5. Thermal spikes. 

The last question to be discussed in this lecture is the question of « ther

mal spikes », i.e. the local heating which occurs in a collision cascade. As 

the cascade proceeds the energy is distributed between larger and larger 

numbers of atoms within the cascade volume and hence it becomes reasonable 

to think of the local « temperature ». There is now little doubt that high 

local temperatures are attained in the cascades (

2 1
), (see Table VI). 

TABLE VI . 

Metal Recoil energy Τ Radius Duration Metal 
(keV) (°K) (Â) ( 1 0 -

12
 s) 

Au 43 9 1 0 110 3 

Ag 45 530 134 6 

Cu 38 49 130 5 

Zn 39 150 250 1 

Ni 42 600 128 9 

Ge 41 1060 95 3 

The effect of these spikes in promoting point defect recombinations or 
clustering is difficult to establish quantitatively and is relevant only to very 
low temperature irradiations (where the interstitials would otherwise be 
immobile). There is plenty of evidence that at room temperature, for example, 
there is both clustering and recombination occurring between the defects 
within each cascade. Some of the evidence for this will be discussed later. 
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crystals. In defected crystals however, there is a possibility of an enhanced 

damage rate at discontinuities, due to de-focusing. The range of focused 

sequences is short (of the order of 100 Â in gold (

2 0
)) . Focused replacement 

sequences can also occur, in which each atom replaces the atom ahead of 

it in the sequence. Such a sequence produces an interstitial atom when it is 

de-focused. The maximum energy at which a replacement sequence can 

occur, however, is only about half that of a focusing sequence. 
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2. The nature of the damage: Basic effects. 

2*1. General. 

In the first lecture I described how atoms can be displaced from their 

normal sites by irradiation with energetic particles, and how the concentra

tion of point defects produced can be estimated. To progress further we must 

investigate briefly the nature and properties of these « point defects », and 

then, most important of all, how they cluster into groups, for it has been 

found that most of the important radiation damage effects are the result of 

clustered defects, rather than individual defects. It is the ability of the electron 

microscope to reveal the defect clusters which has made it so useful in radiation 

damage studies, and this applies equally to the point defects and the impurity 

atoms produced. It is at this stage therefore that the correlation can be made 

between the macroscopic effects of radiation and the electron microscope 

results. This subject will occupy the next two lectures. The final lecture 
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will be devoted to a related, but more specialised topic, the actual production 
of radiation damage in the electron microscope. (See also Goringe and Hall , 

this volume.) In the majority of materials, displacement effects do not occur 

during electron irradiation until the electron energy substantially exceeds 

100 keV, and hence little has hitherto been heard of this subject in electron 

microscopy. With the advent of high voltage microscopes, however, this 

effect will become of considerable practical importance to electron micro-

scopists. 

2*2. Point defects. 

2*2.1. Energy and properties. 

a) Formation energy. Although the experimental values of Ed, the energy 

required to displace an atom, so creating an interstitial and a vacancy, are 

experimentally found to be of the order of 25 eV, this does not represent 

the sum of the formation energies of the two defects, because to produce 

a stable interstitial-vacancy pair it is necessary to separate the two defects 

by several lattice spacings. If this is not done then mutual annihilation will 

occur immediately, even at 0 °K, due to the elastic interaction between the 

defects. The sum of the formation energies of an interstitial and a vacancy 

is in general only about one quarter of the displacement energy, for this 

reason. It is important to realise that the equilibrium concentration of point 

defects in a crystal is not zero, even in the absence of radiation. The reason 

for this is that defects can be created due to the thermal vibration of the 

atoms. The concentration C of defects so produced is: 

exp Κ •exp [ KT 

where Ef is the formation energy, Τ the absolute temperature and ASf the 
entropy of formation. From this formula it can be seen that a) the concen
trations will be very dependent on temperature, increasing rapidly as the 
temperature is raised and b) they will only be significant ( > 10~

5
) when Ef 

is of the order of 1 eV or less (KT = 0.086 eV at 1000 °K). 

b) Migration energy. In addition to being formed thermally, point 

defects can also migrate due to thermal fluctuations in the crystal lattice. 

This migration appears to require a well defined energy Em, and hence the 
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rate of migration between stable sites, assuming Maxwell-Boltzmann statis

tics, is: 

an 
T, = *exp 

ASn 
K •exp KTj ' 

where ν is the oscillation frequency of the defect, Em is the migration energy 

and ASm the entropy of migration. It is clear that the rate at which an 

excess of defects decays to the equilibrium concentration at any temperature 

depends not only on the rate of jumping άη/at, but also on the number of 

jumps η required to reach a sink. The value of η depends greatly on the 

annihilation process, i.e. whether the defects are mutually combining, or 

migrating to fixed sinks. 

c) Effect on physical properties. Point defects affect the physical prop

erties of crystals. Clearly they must change the volume, there being an increase 

in volume of Ω, where Ω is the volume per lattice site, for a vacancy and 

similar decrease in volume per interstitial. This is modified by the lattice 

relaxation around the defect however, which will be observable as a change 

in lattice parameter a. By a combination of lattice parameter and volume 

measurements it is possible to derive not only the defect concentration and 

the relaxation per defect, but also the state of aggregation of the defects, 

since Δα decreases rapidly as the defects cluster. These measurements are, 

of course, much easier to interpret when only one species of point defect 

is present. 

Another physical property which is affected is the electrical resistivity, 

due to scattering of the conduction electrons. Calculations which take into 

account the wave nature of the electrons show that the resistivity of vacancies 

in copper is (1 -i-2) · Ι Ο

-6
 Ω cm per 1 % defects (

1 > 2
). The resistivity increase due 

to interstitials is expected to be higher than that for vacancies, due to the 

greater strain energy of interstitials, but the situation is complicated by the 

possibility of several stable configurations for the interstitial. 

Another parameter of considerable importance is the stored energy asso

ciated with the defects. If we assume that the total energy in an interstitial-

vacancy pair is ~ 5 eV then with a defect concentration of 10~

5
 the stored 

energy is ~ 0.03 cal g

- 1
, and such a value is typical of a metal irradiated 

to a low dose at ~ 4 °K. In a material like graphite, however, where due 

to the high vacancy migration energy and the layer structure the defects 

do not readily recombine during irradiation at room temperature the stored 

energy due to the defects can be very large (100 cal g

- 1
) when the irradiation 



The application of electron microscopy etc. 405 

is carried out at low temperatures ( < 100 °C). A large part of this energy 

is released on heating to only 200 °C. It can be seen that this situation is poten

tially dangerous, since once the rate of energy release exceeds the specific 

heat in a large mass of graphite, such as the moderator block of a reactor, 

the temperature can no longer be controlled, and may « run away » to very 

high values. This was the source of much trouble in the early days of nuclear 

reactors, when the operating temperatures were low and the reactors were 

air-cooled. Periodic annealing of the graphite was necessary to release the 

stored energy before it became too large, and such operations were some

what hazardous in the large, poorly instrumented reactors of those days. 

In fact during one such operation at Windscale irreparable damage to the 

reactor occurred due to overheating. 

2*2.2. Vacancies. - The formation energy of vacancies can be estimated 

theoretically in various ways. For example in covalent crystals the removal 

of an atom requires the breaking of a given number of bonds, and the energy 

required is hence an estimate of the formation energy. Another method is 

to treat the vacancy as a cavity, and calculate the difference in surface energy 

of small volumes containing equal numbers of atoms a) with a vacancy and 

b) without. This method gives an E
v

f of about 2 eV, which is an overestimate 

since the inward relaxation of the lattice around the vacancy has been 

neglected. When this is included an E
v

f of ~ 1 eV is found. This result is 

closer to the rigid cavity value than might be expected, because the inward 

relaxation introduces strain in the crystal, the energy of which must be included. 

An important result of these models is that the energy of two adjacent vacan

cies is considerably less ( ~ 80 %) of twice E
v

f. Thus there will be a fairly 

strong binding energy between vacancies, and this energy rapidly increases 

as the size of the cavity increases, so that vacancies will show off strong tend

ency to cluster. The most accurate method of calculating E
v

f is of course 

an atomic model, rather than a continuum model, and the calculation is made 

by allowing an assembly of atoms containing a vacancy to relax according 

to an interatomic force law. This method can be applied analytically only 

to small numbers of atoms and for the most accurate results numerical com

putation methods are required. Values of E
v

f have been obtained for a large 

number of metals (for example Fumi (

3
) gives E

v

f as : Li, 0.55 eV; Na, 0.53 eV; 

K, 0.36 eV; Rb, 0.31 eV; Cs, 0.26 eV; and Teword t (

4
) finds Cu, 0.9 eV). 

Values for the common fee metals are given in Table VII. 

The migration energy can also be calculated from the atomic model by 

comparing the energy of the vacancy at a lattice site and at the saddle point 



406 M. J. Makin 

between two sites. Many such calculations have been made, with results of 

about 1 eV. The divacancy migration energy has also been calculated, and 

shown to be lower than E
v

m, (Table VII). 

TABLE VII. - Properties of vacancies in fee. metals. 

Al Cu Ag Au 

E] (eV) C — 
Ε 0.15-0.11 

1.2 
l.l-f-1.2 

1.1 
1.08^-1.09 

1.0 
0.94^0.98 

Ef (eV) 
C 1.3 
Ε 2E

v

f̂ -0.\l 
2£j^0.15 
2£^0 .12 

2.1 
1.8 

1.85 
1.86 

Κ (eV) 

Esd-EJ(QV) 

C — 
Ε 0.63 

0.72 

1.0 
1.08 
0.94 

0.86 
0.85 
0.82 

0.83 
0.85 

Esd (eV) 1.48 2.11 1.19 1.81 

E
2

m

v
 (eV) 

C — 
Ε 0.46 

0.6 
0.67 

0.52 
0.57 0.67 

Αρ per 1% 
(μΩ · cm) 

C — 
Ε 2.2 

1.6 1.7 
1.3 

1.7 
1.5 

The reader is referred to Defects and Radiation Damage in Metals, M. W. THOMP

SON (Camb. Univ. Press, 1969) for a full list of references. C= calculated values, 
Ε — experimental values. 

A very large amount of work has been carried out in an attempt to 
determine E

v

f and E
v

m experimentally. A quenching experiments is in principle 
very simple; the sample being heated to a steady temperature Tq for a few 
minutes until it contains the equilibrium concentration of vacancies, and 
then cooled rapidly ( ~ 1 0

4 o
C s

- 1
) to a temperature T0 where the vacancies 

are immobile. The properties of the sample can then be studied either directly 
or during annealing treatments. For example electrical resistance measure
ments (at 4 °K to eliminate the thermal resistance) as a function of quenching 
temperature enables E

v

f to be determined, E
v

f = — KTq log Δ ρ 0, so that E
v

f 
can be determined from the slope of a plot of logA^0 against l/Tq. Simi
larly, by measuring the resistance at 4 °K as a function of annealing treat
ment it is possible to calculate E

v

m. Although in principle these experiments 
are simple, there are considerable practical difficulties, mainly due to the 
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TABLE VIII. - Vacancies in various materials. 

E

v

f (eV) Κ (eV) 

Graphite 3.5 3.2 
Diamond 4.2 2.0 
Silicon 2.0 1.1 
Molybdenum 5.4 — 
Tungsten 3.3 1.9 
Sodium ~ 0 . 5 0.02 

Another classic experiment in which the lattice parameter and length 

change of Al, Cu, Ag and Au were measured at temperature and used to 

derive E
v

f and ASF are due to Simmons and Balluffi (

6
'

7
) . In the absence of 

vacancies Δ/// = L\a\a as the temperature is changed, where / is the length 

and a the lattice parameter. When vacancies are present Δ/// becomes greater 

than L\aja by: 

1 Δ/ Δα 
— Cv — — . 
3 l a 

An advantage of this method is that Cv is determined absolutely, whereas 

in the resistance experiments an absolute determination requires a knowl

edge of the resistivity of vacancies. Hence, in addition to Ef Simmons and 

Balluffi were also able to determine the entropy AS
V

F, which they found to be 

between Κ and 2K, so that the entropy factor, exp [L\S^/K], is between 3 and 8. 

A summary of the properties of vacancies and divacancies is given in 

Tables VII and VIII. 

2*2.3. Interstitial atom. - The calculation of the energy Ef is more dif

ficult in the case of an interstitial than a vacancy because the energy is dom

inated by the strain energy (for a vacancy the strain energy is only ~ 0 . 1 eV). 

This large strain energy results in the possibility of several configurations 

in fee metals with roughly the same energy. These are: 

difficulty of obtaining high quenching rates (into liquids) without chemical 

attack. To quench a wire rapidly a liquid with a high latent heat of vapor

ization is required (water is very efficient, but attacks many specimens at 

high temperatures). The classic results are those of Bauerle and Koehler (

5
) 

on gold, and they found E
v

f to be 0.96 eV and E
v

m 0.8 eV. More results are 

listed in Tables VII and VIII. 
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i) The body centred interstitial, where the extra atom occupies the 

largest open volume in the unit cell, the neighbouring atoms relaxing out

wards in all directions. 

ii) The dumb-bell interstitial, where two atoms share a lattice site, 

the axis of the pair lying along a <100> direction, and the relaxation occurring 

mainly along this axis. 

iii) The crowdion, in which the extra atom is accommodated over 

several interatomic distances along a <110> direction, there being almost 

no relaxation in any other direction. 

The energies of all these configurations in copper are calculated by the 

atomic model to be about 4 eV per atom, with the crowdion being slightly 

greater (Table IX). 

TABLE I X . - Calculated properties of an interstitial in copper. 

Body-centred Dumb-bell Crowdion 

(eV) 4.0 ± 0.05 3.9 ± 0.05 4.7 i t 0.1 
(eV) 0.05 0.05 0.25 

The migration energies of the three types of interstitial configuration 
have been calculated, and in the body centred and dumb-bell cases are found 
to be very low ( ~ 0 . 0 5 eV, (

8
'

9
)) . The crowdion migration energy is con

siderably higher (0.25 eV, (

9
)). 

Because of the considerable difficulties experienced in calculating the 
interstitial migration energies recourse must be done to experiment, and since 
interstitials have such a high energy, radiation damage is the only practical 
way of introducing interstitials. Since the calculated migration energy is so 
low, however, the irradiations must be carried out at a very low temperature 
in order to preserve isolated interstitials. In copper this temperature is 
below 20 °K, and there are considerable technical difficulties to be overcome 
before this can be achieved. An example of the type of apparatus required 
to carry out such irradiations is the cryostat of Sosin and Neely (

1 0
) , (Fig. 1). 

The essential principles of the apparatus are: 

1) The area of the electron beam is restricted to just that required, 

and the beam tube is cooled to liquid nitrogen temperature. 
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Fig. 1. - Schematic view of liquid helium electron irradiation cryostat. (Courtesy of Cam
bridge University Press.) 

Such equipment enables the measurement of the displacement energy, the 
resistivity of interstitial-vacancy pairs, and the temperatures and magnitudes 
of the recovery stages which occur on annealing. It was soon established 
that the recovery spectrum in copper after irradiation was complex, occurring 
in five main stages, labelled I-i-V, Fig. 2. After electron irradiation stages I 
and III are most important, accounting for ~ 90 and ~ 10% recovery of 
the resistivity respectively. It is tempting to attribute I to interstitial migra
tion and III to vacancy migration. Detailed examination, however, shows 
that stage I consists of five substages, la^Ie (

n
) , whose properties are sum

marised in Table X. The observation of first order kinetics for la, b, c and only 
one jump for annealing, strongly suggested that these are close interstitial-

2) A mechanical valve enables the supply of liquid helium to the cooling 

block to be controlled. For annealing experiments the valve is closed and 

the cooling block is heated electrically. When the helium in the tube has 

evaporated the specimen is thermally isolated from the helium reservoir. 

Opening the valve and switching off the heater enables the specimen to be 

rapidly cooled to 4.2 °K for resistance measurements after an anneal. 
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T e m p e r a t u r e (° K ) 

Fig. 2. - Schematic isochronal annealing curve of resistivity in copper. (Courtesy of Cam
bridge University Press.) 

TABLE X . - Stage I substages. 

la lb le Id le 

Approximate temperature (°K) 
Activation energy (eV) 
Order of reaction 
Number of jumps 

16 
0.050 
1 
1 

28 
0.085 
1 
1 

32 
0.095 
1 
1 

39 
0.12 

2^3 
10 

53 
0.12 
2 

10

4 

vacancy pairs. Stage Id is consistent with the migration of an interstitial back 
to its own vacancy (correlated recombination) and le is consistent with long 
range interstitial migration. The second order kinetics of le is expected 
since the concentration of interstitials and vacancies are equal at all times. 
Stage II is highly impurity dependent (

1 2
) , and on detailed examination is found 

to consist of many separate peaks, each of which is dependent on the con
centration of an impurity. It is tempting to attribute Stage III to vacancy 
migration, since the interstitials responsible for le will migrate to fixed sinks, 
as well as vacancies, so leaving an excess of vacancies. The energy of Stage III, 
however, (0.6 eV) is rather low. An alternative scheme originally suggested 
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2*3. The formation of clusters during irradiation. 

2*3.1. Introduction. - Since electron microscopes have not yet advanced 
to the stage where individual point defects can be observed, it is in the study 
of clustered defects that the technique has had most impact. In fact this 
has not been much of a disadvantage, since almost all the macroscopically 
interesting irradiation effects are due to clustered, rather than point, defects. 
Also, the majority of the important irradiation effects are produced during 
relatively high temperature irradiations. 

by Seeger (

1 3
) postulates two kinds of interstitial, one of which migrates in le 

and the other in III (the crowdion and the dumb-bell). Stage IV then becomes 

vacancy migration. 

It has proved extraordinarily difficult to decide between these two inter

pretations. Many so called « critical » experiments have been devised and 

performed, only to be promptly explained by the proponents of the opposite 

view. The weight of evidence, however, now seems to be on the side of the 

first interpretation, but considerable difficulties remain in explaining the low 

temperature of Stage III, and also the variation in this temperature when 

different bombarding particles are used. Measurements of stored energy, 

length or lattice parameter have not resolved the controversy. 

During irradiations with heavier particles it has been found (

1 4
) that the 

observed number of defects is much less than the calculated values, and 

this discrepancy increased as the recoil energy increases. Neutron irradia

tions suffer from particular difficulties, since not only are low temperature 

experiments particularly difficult to carry out, but also a very wide range 

of primary recoil energies is present, from a few tens of eV for the (ηγ) 

reactions up to ~ 10
5
 eV from 10 MeV fission neutrons. This makes the 

results much more difficult to interpret. For example, after neutron irradia

tion at < 10 °K the first three substages in Stage I merge into a continuum 

which extends down to 7 °K (

1 5
). If the fast neutrons are filtered out, however, 

the proportion of recovery in Stage I increases and the substages emerge. 

The interpretation of this is that there is substantial lattice strain in a 

cascade which affects the migration energies of particular configurations of 

close-pairs. The reduction in Stage I annealing after neutron irradiation is 

probably due to the athermal or thermal spike clustering of both intersti

tials and vacancies in the cascade volume, so resulting in a smaller proportion 

of isolated defects and unannealed close-pairs. 



4 1 2 M. J. Makin 

When the irradiation is carried out at a temperature at which the point 

defects are mobile there are several ways in which clusters may be nucleated. 

The first of these is by nucleation within a cascade. When the primary recoil 

energy is high we have seen that the damage is formed in cascades, within 

which there is a central zone of high vacancy concentration, and an outer 

and more diffuse zone of high interstitial concentration. Thermal migration 

of the defects within these zones may nucleate clusters. In this type of 

nucleation the density of nuclei is, of course, proportional to the dose cpt. 
Secondly there may be imperfections in the crystal, such as impurity 

atoms or precipitates, which have a high binding energy for the migrating 

defects. Hence, once a defect has become associated with such an imperfec

tion, it cannot escape and if there is any excess of diffusion of one type of 

defect to the imperfection a cluster will form. 

Thirdly it is possible for clusters to nucleate homogeneously by the 

chance of meeting two or more migrating point defects. In the absence 

of preferential absorption, this process can only occur when there is excess 

diffusion of one type of point defect, as otherwise there is an excellent chance 

that any nuclei so formed will disappear as the result of the absorption of 

one or more defects of the opposite sign. This type of nucleation does not 

therefore occur during « steady-state » conditions, which are defined as 

Yii = yvv, where yi and y^are the diffusion rates of interstitials and vacancies, 

and / and ν are the defect concentrations. In many practical cases the condi

tions are non steady state, however, either because of the wide disparity 

between the diffusion rates of interstitials and vacancies, or because a large 

proportion of the vacancies cluster within the cascades, so leaving a permanent 

excess of interstitial diffusion. It is a characteristic of this process that it 

nearly always results in the formation of interstitial clusters. 

2'3.2. The morphology and energy of defect clusters. - It is theoretically 
possible for defects to cluster into several different configurations: these 
will be briefly discussed and calculations of the relative energies described. 

For vacancies the simplest possible configuration is the void, or spherical 
cluster. The energy of this can be readily calculated when it is large from the 
surface energy: 

/ 9 T T \ * 

Ευ = 4πήγ = Ν%ΰ*{ — \ γ , 

where Ν is the number of vacancies and γ the surface energy. This simple 

relation breaks down when the void becomes small because of the effect 

of the curvature on the surface energy. 
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Another configuration is the dislocation loop, which is basically a disc 

of vacancies in which the centre has collapsed to remove the exposed surfaces. 

Loops can exist in several forms in fee metals, for example a Frank loop 

is formed when the defects condense on a {111} plane and collapse occurs 

in the < 111 > direction perpendicular to the loop plane, and hence a stacking 

fault is formed since the normal ABC ABC stacking becomes of the type 

ABABC. The equilibrium shape of a Frank loop is hexagonal, with sides 

along <110> directions (

1 6
), although other shapes also occur in practice. 

To a first approximation, the energy of a Frank loop is: 

where μ is the shear modulus, a is Poisson ratio, b is the Burgers vector and 

γ' is the stacking fault energy. A more accurate expression has been given 

by Sigler and Kuhlmann-Wilsdorf (

1 7
) . 

The stacking fault in a Frank loop can be removed by a shear of vector 

ia[112] across the loop plane to form a perfect prismatic loop. The Burgers 

vector of the resulting loop is | a [110] by the reaction: 

The energy of such a loop is approximately: 

and a more accurate value has again been given by (

1 7
). 

Another configuration for vacancy clusters is the stacking fault tetra
hedron. This consists of four equal triangular intrinsic stacking faults lying 
on four intersecting {111} planes so that they form a tetrahedron, edged by 
stair-rod dislocations with a i«<110> Burgers vector. Several mechanisms 
have been proposed whereby stacking fault tetrahedra can be formed. For 
example, the dislocations bounding a triangular Frank loop may dissociate 
into stair-rod dislocations and Shockley partials, which then glide up the 
three intersecting {111} planes to complete the tetrahedron (

1 8
). Alternatively 

a small cluster, probably a tetravacancy, may grow by the nucleation and 
migration of jog lines over the tetrahedron faces (

1 9
) . Jossang and Hirth (

2 0
) 

-α[111] + . α [ 1 1 2 ] - > - α [ 1 1 0 ] . 
3 ο ζ 
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have estimated the energy to be : 

where B 2 =  1.017 + 0.9721> and / is the length of the edges. 

Although interstitials can theoreticallly form equivalent clusters to all 

the above, except the spherical shape (because the strain energy of intersti

tials is so large) in practice only perfect prismatic loops and, very rarely, 

stacking fault loops, have in fact been observed. The absence of the intersti

tial stacking fault tetrahedron is probably because of the higher extrinsic 

than intrinsic stacking fault energy. The common configuration for intersti

tial clusters is the perfect prismatic loop. This can be formed from a stacking 

fault loop by the passage of two partial dislocations across the loop, one 

above and one below the extra plane: 

l
-a[m]+~a[2U]+^a[l2Ï]^^a[U0]. 

Perfect prismatic loops (Burgers vector |a[110]) are not often found 

lying on {111} planes. This may be because either they nucleate directly 

on {110}, or because they can lower their energy by rotating from {111} to 

{110} so as to be perpendicular to their Burgers vector. The latter mechanism 

is suggested by the frequent observation of four sided rhombus loops (

2 1
) 

lying on or near {012} planes. These can form from hexagonal {111} loops 

by the redistribution of defects so as to eliminate the two pure edge sides 

leaving a diamond shape. The dislocations forming the diamond lie on a 

slip cylinder composed of four {111} planes, all of which contain the loop 

Burgers vector. The loop can then rotate so as to minimise its energy. Bullough 

and Foreman (

2 2
) have calculated that they can reduce their elastic energy 

by rotating to approximately {012}. 

The results of the calculations (

1 7 s 2 3
) indicate that although many of the 

observed features can be explained, for example the tendency for voids to 
form in aluminium, and stacking fault tetrahedra in gold, there are many 
anomalies. In particular it would appear that clusters can readily exist and 
grow in metastable states, presumably due to the difficulty of initiating the 
transformation. 

2*3.3. Experimental  results.  -  There is now a vast literature on the clusters 
produced by irradiating different materials with different particles, and instead 
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of attempting to review it all I shall discuss only selected experiments to 

demonstrate the main effects before describing how the defects affect the 

macroscopic properties. 

The basic facts and their interpretation were established in the early work 

at Harwell (

2 4 _ 2 7
)? and it is interesting to see how the subsequent very large 

effort devoted to this subject has confirmed the original interpretation. 

Following the first observation of defect clusters in neutron irradiated 

copper by Silcox and Hirsch (

1 8
) , who interpreted them as vacancy in character, 

a detailed investigation was made by Makin, Whapham and Minter (

2 6
) of 

the size distribution as a function of neutron dose during irradiation at 

~ 27 °C. Considerable care was taken to determine the foil thickness of the 

area being photographed, and it was found that this was essential for accurate 

results, since as the density of defects increased the eye automatically selected 

thinner and thinner areas for photographing. The results are shown in 

Fig. 3 and 4. The density of the smallest defects < 50 Â was virtually linear 

with dose, whereas an approach to saturation was apparent in the larger 

Fig. 3. - The density of defect clusters of various sizes in neutron irradiated copper. 
(Courtesy of Phil. Mag.) 

Ο 25 SO 75 IOO 125 150 175 2 0 0 
ο 

Diameter of Defects in A 
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( > 50 Â) defects. Further evidence which suggested that two types of defect 

were present was the clear grain boundary zone ~ 1000 Â wide observed 

for the > 50 Â defects, whereas no such zone existed for the < 50 Â defects. 

Total Number 
in all S ize 
Ranges 

0 - 2 5 A 

I 2
 3

 2

 4
 I 

Fast Neutron Dose. n/cm. (Units of IO 

2 5 - 5 0 A 

ι— 5 0 - 7 5 A 

-T-75-IOOAo 
IOO-I25 A 

8N 

Fig. 4. - The dose dependence of the density of clusters in neutron irradiated copper. 
(Courtesy of Phil. Mag.) 

Short anneals (i.e. 306 °C for less than 300 min) were found to enhance the 
distinction between the two types of cluster (Fig. 5). It was clear from the results 
that the density of small clusters < 50 Â was approximately proportional 
to dose and hence it was likely that they were nucleated directly in the 
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Fig. 5. - The two types of defect cluster and their grain boundary denuded zones in copper 
irradiated by 2-1018 fast neutrons cm-2 and annealed at 306 °C for 63 min. 

primary knock-on cascades and hence should be vacancy in character. If 
so, then one cluster was nucleated for ~ 10 such cascades. The behaviour 
of the large clusters, moreover, was consistent with that expected from a 
much more mobile defect, such as the interstitial. It is impossible for the 
large clusters to be formed by vacancy diffusion, since the jump rate of 
vacancies at the irradiation temperature is much too low ( ~ 1 per s). This 
interpretation was consistent with quantitative estimates of the relative num
bers of vacancies and interstitials ( ~ 50 per primary knock-on), from which 
it was further deduced that the small vacancy clusters were essentially two-
dimensional, i.e. loops or tetrahedra, rather than voids. The behaviour on 
annealing (2 7) also supported the interpretation, the annealing occurring in 
stages, the first of which has a low activation energy, (l-!-1.5)eV, during 

27 
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which ~ 70% of the interstitials present in the loops > 50 Â in size disappear. 

The second stage of recovery has an activation energy of ~ 2 eV and corre

sponds to the disappearance of the small clusters and the remaining intersti

tial loops. The interpretation of the sense of the clusters was supported by 

experiments on alpha irradiated copper (

2 4
) , in which it was found that during 

annealing the large loops grew, rather than disappeared, simultaneously 

with the appearance of helium bubbles. When helium atoms cluster they 

become centres of very large compressive strain, which can only be relieved 

by the absorption of vacancies. In this experiment therefore, not only were 

the vacancies being emitted from the vacancy clusters going to the gas bubbles 

but the vacancy concentration was so reduced that the interstitial loops 

were emitting vacancies and hence growing in size. 

The formation of the small clusters in copper and gold has been exten

sively studied by Merkle (

2 8
) using protons, deuterons, alpha particles and 

fission fragments, of various energies. The experiments showed that in copper 

only about 1 0 % of the cascades formed from primary recoils with an energy 

of greater than ~ 10

4
eV produced a visible cluster, and that the size of the 

cluster did not increase with recoil energy. It is likely, therefore, that the 

visible clusters are the result of the overlapping of sub-cascades. The behav

iour of gold is somewhat simpler, in that a visible cluster was formed by every 

recoil with an energy of greater than ~ 3 - 1 0

4
e V , and the cluster increases 

in size with recoil energy up to a maximum of ~ 150 Â. Very energetic recoils 

from fission fragments produce groups of clusters, in which each subcascade 

produces a visible cluster. The difference between gold and copper is due to 

the greater « density » of the cascade in the heavier element. 

Analysis of the nature of the small clusters from their contrast has utilised 
the black-white contrast effect which is observed under dynamical two-beam 
conditions. Detailed work using stereo-microscopy showed that only these 
defects close to the foil surfaces showed black-white contrast (

2 9
) . Examina

tion of the clusters showing black-white contrast in several reflections showed 
that the symmetry line was independent of the g vector, and nearly always 
lay along the projection of a < 111 > direction, thus showing that the clusters 
were Frank sessile loops (

3 0
). Calculations of the contrast expected from 

such loops (

2 9
) indicated that the direction of the black-white contrast depended 

not only on the sense of the defect but also on its depth in the foil, reversals 
of direction occurring at ~ ξ9/4 and 3ξ9/4 (Fig. 6). Hence to determine the 
sense it is essential to know the position of the defect quite accurately. Unfor
tunately determinations of the sense by different workers did not always 
give the same result. Wilkens and Riihle (

3 1
) found that they were vacancy, 
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as did Merkle (

2 8
) , who deduced the depth by varying the energy of the 

incident ion. McIntyre and Brown (

3 2
) however concluded that the small 

clusters in neutron irradiated copper were predominantly interstitial in nature. 
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Fig. 6. - Schematic diagram of black-white image contrast from small interstitial defects 
as a function of depth in the foil. 

The experiments is of course a difficult one to carry out, since it involves 
the measurements of the distance between the defect and the surface (decorated 
by gold islands) to an accuracy of ~ 20 Â. (See also Brown, this volume.) 

The effect of irradiation temperature on the nature of the damage is also 
very informative on the nature of the clusters. For example, since it is generally 
believed that vacancies are not mobile below room temperature in copper 
it is clear that loops which show a gradual change in density as the irradiation 
temperature is reduced below room temperature cannot be vacancy loops. 
Such an effect is found for the large clusters observed during room temperature 
neutron irradiations in copper (

3 3
) , hence confirming their interstitial nature. 

Similarly the observation of the small vacancy clusters during low temper
ature irradiations (

3 4
) confirms that these are not produced by migra

tion, but are formed directly in the collision cascades. Although the effect 
of irradiation temperature on the formation of the interstitial loops strongly 
suggests that the interstitial is mobile at very low temperatures, there are 
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some experiments which were designed to test this but apparently give a 

conflicting result. For example Venables and Balluffi (

3 5
) bombarded gold 

containing tetrahedra formed by quenching with 200 eV A

+
 ions at 140 °K. 

These ions displace atoms within ^ 1 0 0 Â of the surface, and loops were 

observed in this layer. Tetrahedra deeper in the foil, however, showed no 

effect until the foil was annealed at ~ 0 °C. This experiment, however, 

does not prove that interstitials migrate at 0 °C in gold, since the arrangement 

of the sinks (i.e. the surface and the loops) for the mobile interstitials produced 

during irradiation was such that very few interstitials would have been 

expected to reach the tetrahedra during the irradiation. Some further impor

tant clustering effects will now be described before passing to the interpreta

tion of the macroscopic irradiation effects in terms of clusters. 

2*3.4. Effect of knock-on energy. - The first of these concerns the energy 

of the primary recoil required to produce a visible cluster in different materials. 

We have seen how in gold a visible cluster is produced per knock-on above 

a critical energy, and in copper how only one knock-on in ten produces a 

visible cluster. In aluminium the situation is quite different since not only 

is the cascade very diffuse for low and medium energy knock-ons, but also 

vacancies are readily mobile at room temperature. Hence in aluminium no 

visible damage is formed during neutron irradiation at room temperature, 

because the density of vacancies within the cascades is insufficient to produce 

clusters and also the dose rate is not high enough for interstitial clusters to 

nucleate during the rather short non-steady state stage in this metal at room 

temperature. Clusters can be produced by very high dose rate experiments (

3 6
) 

and as expected, the density is very sensitive to the dose rate. Also, if a 

gaseous impurity is injected, such as helium, then loops are also observed (

3 7
). 

In this case aggregates of helium atoms act as a strong sink for vacancies 

and so leave a surplus of interstitial atoms, which form loops. It is possible 

to produce the same type of damage in aluminium at room temperature as 

in neutron irradiated copper, but it requires very energetic primary knock-

ons, such as are produced during fission fragment irradiation (

3 8
) . Loops 

of both types form and apparently grow despite the presence of loops of 

the opposite sign. The loops are clearly very mobile, however, and frequently 

slip or climb together to produce both larger loops and mutual annihilation. 

The stress field around loops is substantial (

3 9
) and many cases of loop move

ment due to mutual interaction forces have been observed. 

2*3.5. Effect of purity. - There is considerable evidence that the purity 
of the metal has a marked effect on the distribution of the interstitial clusters, 
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a coarser distribution of larger loops being found in purer materials. This 

behaviour has been observed in copper (

4 0
) molybdenum (

4 1
) and graphite (

4 2
) . 

The effect of boron in graphite has been interpreted by Brown, Kelly and 

Mayer (

4 3
) in terms of a chemical reaction rate theory in which the effect of 

the trapping of interstitials on boron atoms is to reduce the average velocity 

of the interstitials. The theory predicts that the loop density is proportional 

to the square root of the impurity concentration, and that the loop radius 

is proportional to 1/C% where C is the impurity concentration. Both of 

these predictions are in good accord with the experimental results. In such 

a model, increasing the impurity concentration is akin to reducing the tem

perature. The results obtained on molybdenum (

4 1
) show one further effect, 

in that in high purity molybdenum it is possible to obtain distributions of 

predominantly vacancy loops by annealing at 900 °C after irradiations at 

200 °C, whereas after irradiations at 60 °C only interstitial loops are found. 

Presumably the excess density of vacancies arises by the diffusion of a much 

larger number of interstitials than vacancies to sinks during the irradiation. 

At 200 °C the interstitials will be much more mobile than at 60 °C and hence 

there will be a greater zone denuded of interstitials around sinks. 

Other effects of inert gas impurity atoms will be discussed later. 
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3. The nature of the d a m a g e : Technological effects. 

3 1. Introduction. 

In this Section attention is directed away from the more academic aspects 

of radiation damage and towards the interpretation of some of the important 

effects which occur in practice. 
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3*2. Radiation growth in uranium. 

In the early reactors the uranium fuel was incorporated as metal rods, 

usually prepared by casting. It was soon found that rods with initially smooth 

machined surfaces became very rough and wrinkled during radiation. The 

surface roughness was found on about the same scale as the grain size of the 

metal, and it was clear that some unusual changes were taking place in which 

the shape of the grains was changing during irradiation at low temperatures 

( ( 1 0 0 - ^ 2 0 0 ) °C). Single crystal irradiations Q) showed that the crystals were 

growing in the [ 0 1 0 ] direction, shrinking in the [ 1 0 0 ] direction, and were 

not changing in the [ 0 0 1 ] direction. Moreover the effect was very large, the 

fission of 1 % of the atoms producing a final length of 4 0 0 % of the initial 

length (along [ 0 1 0 ] ) . In the temperature range in which the effect occurs 

uranium exists in the α-phase with a very anisotropic orthorhombic crystal 

structure (a = 2 . 8 5 , b = 5 . 8 6 , c = 4 . 9 6 Â ) . The rate of growth at constant 

temperature was found to depend only on the burnup Β (fraction of uranium 

atoms fissioned; Β = σφί), and the instantaneous length /. Hence: 

Δ/ 
— = GdB and / = /0 exp [GBt], 

where G is known as the growth factor. G is a decreasing function of tem

perature varying between 1 0

4
- M 0

5
 at 2 0 °K (

2
) and zero at ( 4 0 0 ^ 5 0 0 ) °C. 

The effect was found in other anisotropic metals but of much smaller magni

tude (G for Cd, Zr, Zn and Ti at 7 7 °K is 7 0 , 6 0 , 2 0 and 15 respectively (

3
)). 

It does not occur in any cubic metals, including cubic alloys of uranium, 

and is almost negligible with particle irradiations in which fission does not 

occur, even when comparable point defect concentrations are formed (

4
). 

The effect is therefore associated with very high energy knock-ons, such as 

occur in fission fragment irradiation. The effect was not recoverable by 

annealing, and showed no tendency to saturate. 

For many years the effect remained a mystery. Several theories were put 

forward (

5
"

7
), none of which very satisfactory. With the discovery of the 

formation of loops in other metals by irradiation, however, it was immedi

ately obvious that growth might result from the accumulation of clusters 

of point defects in particular orientations, the interstitials forming loops 

on ( 0 1 0 ) planes and the vacancies loops on ( 1 0 0 ) planes. Since the total 

area of the two types of loop must be equal, since the vacancy and interstitial 

concentrations must be approximately equal in the bulk of the material, 
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the expansion and contraction must be equal. If Ν atoms per fission event 

per cm3 condense on (010) planes, and the Ν vacancies left condense on (100) 
planes then there are Na2 extra atomic planes in the [010] direction, where a 
is the diameter of an atom and hence a length change of 

Δ/ = Na3. 
Now 

Δ/ = GB 

and Β = a3 when one atom is fissioned, so that G = N. Hence G has the 

direct significance of being the number of point defects which precipitate 

per fission event. It should be noted that several rather unusual effects must 

occur for this model to be correct. Firstly, the interstitial and vacancy loops 

must precipitate on different planes. Secondly, all the interstitials and va

cancies formed subsequently must not diffuse randomly to all the loops, 

since growth then cease. Thirdly, the loops must be able to coalesce to form 

complete planes, since otherwise growth would cease when the loop density 

reached saturation. 

Fig. 7. - Typical brickwork pattern when both types of loop are in contrast in irradiated 
alpha-uranium, after 1.5· 1017 η -cm-2 at 80 °C. (Courtesy of Phil. Mag.) 
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Fig. 8. - Loops aligned in sheets after irradiation at 350 °C to 1.5· 1017 n c r r r 2. (Courtesy 
of Phil. Mag.) 

Clearly there was a need for transmission microscopy of irradiated uranium, 

to check whether the loops followed the required arrangement and were of 

the correct integrated area to explain the phenomenon. Unfortunately the 

work was held up for a long time by the difficulty of preparing thin films 

free from surface oxide films (uranium oxidises readily in the atmosphere). 

This problem was eventually solved by electrolytic cleaning of the electro-

polished foils in a sulphuric acid-glycerol bath (8). It was found (8'9) that 

there were two sets of loops (Fig. 7), one lying on (010) planes with a «[010] 

Burgers vector, and another on approximately (100) planes with Burgers 

vectors of ^Va2jr é2<110>. It was not possible to unambiguously determine 

the sign of the loops, but if it is assumed that the (010) loops are interstitial 

and the (100) vacancy, then the growth predicted agrees well with the macro-

scopically determined values. Furthermore, it was found that at temperatures 

of 80 °C and above, the loops lay in well defined sheets, separated by regions 

containing very few loops (Fig. 8), the loop planes being approximately 
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coplanar with the sheets. The observation that a high density of loops formed 

during irradiation at — 196 °C indicates that the loops are nucleated by 

fission fragment spikes, since this temperature is too low for vacancy migration. 

It was clear that there must be a strong attraction between the sheets of 

loops and new loops nucleated between the sheets. Hudson (

9
) using the 

calculations of Foreman and Eshelby (

1 0
) , was able to demostrate that similar 

loops should be attracted into sheets, particularly when loop movement 

occurred by slip. At high temperatures, where climb is possible, the separa

tion is less complete and this may be one reason why the growth rate decreases 

with increasing temperature. A second, and more probable, reason is that 

the chance of loop nucleation within a cascade increases as the temperature 

is reduced. At high temperatures, for instance, there may be a strong prob

ability of a nucleus dissociating before it has a chance of growing into a cluster. 

This is consistent with the fact that radiation growth occurs only with fission 

fragment irradiation, since it is inferred that only a fission fragment can 

produce a high enough defect density to form nuclei. 

Although many questions remain on the growth of uranium it is clear 

that the mechanism has now been established, and that this is due to the 

application of electron microscopy to the problem. 

This is a good example of the application of the technique, since while 

the results do not enable anyone to solve any specific reactor problems (these 

were effectively solved long before the mechanism was known) the element 

of mystery has been removed and the reactor designer can now discuss the 

growth problem in a rational way and is able to think logically about probable 

growth rates in different alloys. 

3 3 . Radiation hardening. 

The second example of the application of electron microscopy to tech
nological reactor problems concerns the hardening effect which occurs in 
nearly all material during irradiation. Technologically the important para
meter is not so much the yield stress as the ductility of the metal, and this 
becomes even more important in metals which have a ductile-brittle transi
tion, since irradiation increases the transition temperature. 

Considerable attention has been given to irradiation hardening, particu
larly in copper from the point of view of the basic mechanism, and also in 
many steels of use in reactors. 

Experiments on polycrystalline metals shows that the yield strength and 
ultimate strength both increase with neutron dose, the yield strength increas-
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Fig. 9. - The stress-strain curves of copper single crystals as a function of irradiation time. 
(From J. Diehl, courtesy of International Atomic Energy Agency?) 

ing considerably more rapidly however, so that the total amount of work 

hardening which can occur before fracture is reduced. Hence, although the 

work hardening rate is smaller after irradiation the total elongation before 

fracture is reduced. This can cause concern when the dose is high, since 

when the yield and ultimate strengths become almost equal the metal becomes 

plastically unstable and if deformation commences in an area it continues 

locally until fracture occurs, with no increase in stress. It is fortunate that 

radiation hardening generally anneals at a fairly low temperature, so that 

with the general increase in reactor temperatures radiation hardening due 

solely to interstitials and vacancies is less of a problem than hitherto. 

Experiments on the mechanism of the hardening have generally concen

trated on measurements of the deformation characteristics of copper single 

crystals, and in particular of the critical shear stress, i.e. the stress across 

the slip plane in the slip direction. The general effect of neutron irradiation 

on the stress-strain curves of copper single crystals is shown in Fig. 9 (

n
) . 



428 M. J. Makin 

The main effects of irradiation are: 

a) An increase in critical shear stress. 

b) A yield point. 

c) A region of low work hardening following the yield during which 

deformation spreads along the crystal i.e. a Liiders band (Stage I). 

The extent of Stage I strain increases with dose. 

d) A region of normal work hardening (Stage II) the slope of which 

is not appreciably altered by low neutron doses ( < 1 0

1 9
n - c m

- 2
) . 

The dose dependence of the critical shear stress a has been the subject of 

much study and controversy. The early work (

1 2
) showed that a was propor

tional to 99*. This was difficult to understand theoretically, since dislocations 

move on a plane a dependence on 99* is expected, assuming that the number 

of obstacles is proportional to the neutron dose. The φ* relation was later 

supported by various other workers using internal friction breakaway meas

urements and microstraining techniques (

1 3 _ 1 5
) . On the other hand it was 

suggested by Makin and Minter (

1 6
) that the correct expression may be 99* 

plus exponential saturation term to account for the saturation in the cluster 

density : 

a = A[l— exp [— Bcp]f. 

This type of interpretation was supported by Diehl and his co-workers (

n
) . 

Recently it would appear that the controversy has been at least partially 
resolved by modifying the 99* dependence to allow for the variation in disloca
tion line tension with length (

1 7
). The increase in a with dose is not very 

dependent on the irradiation temperature between 4 °K and 300 °K (to 
within about (10-f-20) %) (

1 8
) and recovers only in the temperature range 

(300-^-400) °C (Stage V) with an activation energy of about 2 eV. It is clear, 
therefore, that the phenomenon is not due primarily to point defects, which 
anneal out much below the observed recovery temperature, and it has long 
been thought that defect clusters were responsible. The fact that the hardening 
is almost independent of irradiation temperature further suggested that it 
was the small vacancy clusters found in the cascades which were primarily 
responsible for the effect. The density of these clusters is of course propor
tional to dose at low doses, and hence a or χ (<φίγ relationship should be found. 

This interpretation is completely consistent with the result obtained from 
the observations of defect clusters in irradiated copper (

1 9
) , but since the 
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density of vacancy clusters visible is only ~ (l/10)-th of the number of 

primary recoils it is obvious that electron microscope observations in as-

irradiated copper are not going to establish the true correlation, since a part 

of the hardening must be due to the sub-microscopic clusters. As discussed 

previously, however, it is possible to anneal the majority of the submicro-

scopic clusters very early in the annealing process (

2 0
) . Detailed work on the 

correlation between the density of vacancy clusters and the critical shear 

stress measured at 4.2, 77 and 293 °K (

2 1
) is shown in Fig. 10. These results 

ΜΗ 

Fig. 10. - The correlation between the critical shear stress and the density of small clusters 
after various annealing treatments. (Courtesy of Phil. Mag.) 

show that σ4 2 is directly proportioned to where η is the density of clusters 
below 50 Â in diameter. There is no correlation at all between the critical 
shear stress and the density of interstitial loops. Hence the assumption made 
previously that it was the small vacancy clusters which controlled the critical 
shear stress is shown to be almost certainly correct. Two other points of 
considerable importance emerge from Fig. 10. First the value of the maxi
mum force which can be exerted between a dislocation and a cluster, F m a x, 
is found to be & μο

2
, where μ is the rigidity modulus and b the Burgers 
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vector. Secondly cr77 and o*293 are not initially sensitive to annealing. The 

significance of both these points will be discussed later. 

Any attempt to calculate the critical shear stress produced by a given 

density of clusters must start with an assumption as to the force-distance 

curve for the interaction between a glissile dislocation and a cluster. Several 

such attempts have been made, notably by Seeger (

2 2
) and Fleischer (

2 3 s 2 4
) . 

Seeger assumed rather a « soft » interaction, in which the potential energy 

of a dislocation varied with position x, as : 

Such an interaction gives rise to the relationship: 

σ* = Α(φί)*[1—ΒΤ]*9 

i.e. there should be a linear relationship between a and (99/)% and also between 
a* and T^. The second of these relationship is not in very good agreement 
with experiment, since is only approximately proportional to T* after a 
given anneal. 

Fleischer calculated the long range elastic interaction between a loop and 
a dislocation and assumed that F m ax occurred at a distance of y = d/2 
from the loop, where d is the loop diameter. He neglected the variation in 
the stress tensor across the loop however, a procedure which gives only a 
very approximate result at the y = djl position. Fleischer's theory there
fore gives rather a low value of Fmax which is well below μο

2
. Information 

on the nature of the interaction between a dislocation and an obstacle can 
be obtained by measuring the temperature and strain rate dependence of the 
critical shear stress, a procedure known as thermal activation analysis (

2 5
~

2 7
). 

Three different groups have carried out such measurements on irradiated 
copper, with rather different results. Makin (

2 8
) concluded that neither 

Seeger's theory nor Fleischers accurately represented the experimental behav
iour, but that this was hardly surprising since on other grounds it was clear 
that a spectrum of obstacle sizes and strengths existed in as-irradiated copper. 
Diehl et ai. (

2 9 _ 3 1
) concluded that Seeger's theory was applicable if it was 

assumed that an obstacle spectrum existed. Koppenaal and Arsenault (

3 2 , 3 3
) 

came to the conclusion that Fleischer's theory accurately described the 
behaviour with a unique obstacle i.e. no spectrum. Controversy on this 
point has continued up to the present day. In my opinion, the presence of 
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a spectrum of obstacles is proved by the behaviour on annealing referred to 

previously, viz. the insensitivity of σΊ1 and σ 2 93 to anneals which substan

tially reduce σ 4 2. If a single type of obstacle is present then this behaviour 

is virtually impossible (3 4) , since it implies that the obstacles responsible for 

the high temperature critical shear stress are created during the anneal and 

are not present in as-irradiated material. If this were so then the temperature 

dependence of the high temperature critical shear stress would inevitably 

be altered, which is contrary to the experimental evidence. The alternative 

is that as-irradiated crystals contain obstacles which are effective only at 

low temperatures. These are removed by mild annealing with the result 

that only the low temperature critical shear stress is affected. Furthermore, 

it is found that after substantial anneals the low temperature critical shear 

stress actually become athermal, and the characteristics of the deformation 

change, the slip bands becoming fine, in contrast to the very coarse slip found 

in the thermal region. In the athermal region the obstacles are acting as if 

they were by-passed by the dislocations, rather than being cut by them, and 

the interaction force at which this occurs is ~ μΖ>2. This is the situation which 

exists for all the obstacles during deformation at 4.2 °K. This model, which 

explains the observed behaviour of both as-irradiated and annealed crystals, 

Fig. 11. - Slip bands in irradiated copper deformed at 20 °C. 
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predicts theoretical values of Fmax well above //Z?

2
, and hence is completely 

contrary to the Fleischer theory. 

Another fact of considerable importance which has been established by 

electron microscopy in irradiated crystals is that during the Liiders band 

phenomenon, which occurs in the thermal region of deformation, all the 

defect clusters within the coarse slip bands are removed by the deformation 

Fig. 11 (

3 5
). This implies that during the deformation of each band there 

is an initial softening due to the removal, followed by a hardening up, due 

to the formation of a cold worked dislocation structure. This has a consid

erable effect on the deformation of irradiated material, since it follows that 

each slip band initially forms very rapidly and also that there is no true pre-

yield microstrain, such as occurs readily in unirradiated metals. Both of 

these effects have been verified experimentally (

36 3 7
) . The observation that 

the clusters are removed by deformation suggests that F m ax is actually the 

force required to produce « sweeping up » or removal of the loop. There 

is as yet no calculation of the force required to sweep up stacking faulted 

loops. 

3*4. Impurity effects. 

Of the many elements which can be formed by nuclear transmutation 

processes the ones which have caused the largest effects in metals are undoubt

edly the inert gases. The reasons for this are the inability of these elements 

to combine chemically with other elements in the material, and also their 

extreme insolubility. The inert gases most often result from either

 1 0
B(n,a) 

reactions in nonfissile materials or

 2 3 5
U ( n , fission) in fissile materials. Reac

tions can also occur between high energy neutrons and many other elements 

to produce α-particles which decay into helium atoms, and hence the production 

of small amounts of helium is common in most reactor irradiations. Although 

the concentrations are small ( < 10~

5
) it will be seen that they can cause 

large changes in the macroscopic properties. 

3*4.1. Gas bubbles. - Initially it was thought that inert gas bubbles were of 
importance only in fuels, where the quantity of gas produced is quite large 
( ~ 5 cm

3
 N T P per cm

3
 per 1 % burn-up). Due to the difficulty of handling 

highly radioactive irradiated fuel materials most of the basic work on bubbles 
has been done on model systems, such as α-particle irradiated copper. During 
production at low temperatures, the inert gas atoms are distributed randomly 
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and in the case of helium atoms, probably lie in interstitial positions in the 

crystal lattice. As the temperature is raised there is a considerable release 

of energy associated with the absorption of a vacancy, thereby enabling the 

gas atom to occupy a substitutional site, and a further release associated 

with the formation of gas bubbles. In order to become a gas bubble how

ever, the gas atoms not only have to cluster but also have to absorb a large 

number of vacancies to reach the equilibrium size. It is this absorption of 

vacancies which is of course responsible for the swelling which occurs at high 

temperatures in irradiated fuels. This basic process was soon verified both 

by observing that during annealing the gas bubbles first became visible near 

to discontinuities in the crystal which could act as sources of vacancies (

3 8
) , 

and by measurements of the lattice parameter of copper during annealing (

3 9
). 

In the latter experiment a large increase in parameter occurred during irradia

tion, due to the presence of interstitial helium atoms and, as these acquired 

vacancies during annealing, the lattice parameter decreased and became less 

than normal, due to the relaxation around gas atom-vacancy complexes. 

On further annealing the parameter returned to normal as gas bubbles were 

formed. 

Since during irradiation at high temperatures there is always a plentiful 

supply of vacancies, and hence it is impossible to prevent the formation of gas 

bubbles, interest shifted to the properties of the bubbles. 

In a solid containing gas bubbles and mobile vacancies the bubbles will 

reach an equilibrium size when the work done by the gas pressure in expanding 

the bubble becomes equal to the increase in surface energy. If the bubble 

has a radius r and contains gas at pressure ρ then the volume ν = f π τ

3
 and 

the surface area a = 4nr
2
. If the bubble increases in radius by dr then: 

The work done by the gas in expanding is pdv and the increase in surface 

energy is y da. When these are equal: 

It is obvious that the swelling can be minimised by containing the gas in a 
large number of small bubbles, where the pressure is high, rather than in a 
few large bubbles. The ratio of the number of vacancies to the number of 
gas atoms is easily derived, since for a perfect gas pv = \mkT, where m is 

dv = 4nr
2
dr and da = Snr · dr . 

ρ - 4nr
2
 - dr = γ %nr dr or 

28 
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the number of gas atoms. With ρ = Ιγ/r and ν = | Τ Γ Γ

3
 we get: 

3kT 

The number of vacancies in a bubble of radius r is 

4 j rr

3 
:
3 "fi ' 

where i3 is the atomic volume. Hence the ratio of vacancies to gas atoms 

is n\m = (kTj2Qy)r, and hence increases linearly with r. The scale of nuclea-

tion of the gas bubbles is strongly dependent on the irradiation temperature, 

being much finer at low relative temperatures. There are therefore two basic 

solutions to the technological problem of gas bubble swelling. The first of 

these is to run the fuel at a high relative temperature, so that although the 

bubbles nucleate on a very coarse scale and the fuel swells rapidly it is 

mechanically so weak that it imposes little stress on the fuel cans. Under 

these conditions a large proportion of the gas escapes from the fuel and this 

can be a problem if the fuel cans are not vented. In general the difficulties 

of this approach are such that it is not a very feasible solution. The second 

solution is to choose a fuel in which the operating temperature is relatively 

low, so that the bubbles nucleate on a fine scale and the gas is restrained 

at a high pressure. Such fuels swell very little and are feasible in practice. 

The choice of suitable fuel materials is very limited however, and one problem 

is that high temperature fuels such as U 0 2 or U C have a lower thermal con

ductivity than metallic uranium, so that the fuel pins have to be of much 

smaller diameter in order to keep the maximum fuel temperature down. 

This of course adds to the complexity of the design. In addition to nucleating 

the bubbles on a fine scale attention is required to the feasibility of retaining 

the fine dispersion. There are two processes whereby bubbles can coarsen, 

re-solution and bubble migration. Re-solution of an inert gas is clearly 

very unlikely in the absence of radiation, since the heat of solution is so 

large. Under irradiation, however, there are several ways in which gas atoms 

can be redissolved, the simplest example of which is, of course, being knocked 

back as the result of atomic collisions. The evidence on the magnitude of the 

re-solution process is not yet very certain, although it is claimed that the 

process has been demonstrated experimentally in U 0 2 (

4 0
) , using transmission 

electron microscopy. Calculations of the numbers of gas atoms knocked 
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through the bubble surface are not very helpful, since it is certain that most 

of these will diffuse back to the bubble, and the effect of the local damage 

produced on such an event is difficult to allow for. Bubble migration has been 

demonstrated experimentally (

4 1
) , especially in high temperature gradients, 

in which the bubble always migrates up the temperature gradient, at a velocity 

proportional to \\r when the mechanism of migration is the surface diffusion 

of atoms from the hot to the cold side of the bubble. Bubbles can also 

migrate under the influence of other forces, such as a stress gradient, the 

motion of dislocation lines, grain boundary migration (

4 0
) or simply by 

Brownian motion. The latter is very small however, and can generally be 

neglected. 

It was long believed that one of the most important applications of the 

gas bubble work was in the irradiation behaviour of α-uranium, where experi

mentally it was known that the poor swelling resistance of pure α-uranium 

could be greatly improved by small additions of iron and aluminium. This 

was interpreted as being due to the « anchoring » of small bubbles by the 

precipitates, so preventing migration and coalescence (

4 2
) . The relative tem

perature at which swelling occurred in α-uranium, however, is very low com

pared with the model experiments, and it has since been shown by electron 

microscopy that the swelling does not occur by the formation of dispersed 

gas bubbles, but by grain boundary cavitation (

4 3
) . Due to the irradiation 

growth process the grains in α-uranium are subject to constant plastic defor

mation during irradiation, and in pure uranium this opens up grain boundary 

and twin boundary cavities. Uranium containing Fe and Al additions does 

not show this effect until substantially higher burn-ups have been achieved, 

although in the same conditions the dispersed bubble densities are virtually 

identical (

4 3
) . It has recently been shown that the grain boundary cavitation 

in pure uranium is not formed simply by slow straining, as out of reactor 

creep experiments do not produce it (

4 4
) . Hence it must be an irradiation 

effect which can be inhibited by the addition of Fe and Al. The mechanism 

whereby this occurs is not known. In all of this work electron microscopy 

has, and is, playing a vital role. 

3 '4.2. Irradiation embrittlement. - In addition to the swelling which can 
result when large quantities of inert gases are produced there are also two 
effects of irradiation which require only very small quantities of gas. The 
significance of this is that effects due to gas are no longer confined to the 
fuel, but also occur in the structural materials used in the reactor. The high 
temperature embrittlement effect occurs in steels and other metals containing 
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trace amounts of boron, in which thermal neutrons produce the reaction 1 0
B(na)

7
Li (

4 5
) . The effect is a severe reduction in the elongation to fracture 

(Fig. 12) and in the stress rupture life at temperatures above those at which 
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the displacement damage anneals, and occurs whether the irradiation is 

carried out at high temperature or the specimens are tested at high tempera

tures following room temperature irradiation. Very low concentrations of 

helium are required to produce the effect, in Nimonic PE16 for example, 

an observable effect occurs when the helium concentration is only 3 ·10~

9
. 

The mechanism of the effect is not understood, but it is clearly associated 

with the behaviour of grain boundaries, since the boron in steels is known 

to lie primarily on the grain boundaries. Electron microscopy has been of 

limited use in this problem since the gas concentrations are so low. Bubbles 

have been seen at grain boundaries, however, and it is probable that they 

act as the nuclei of the cracks which lead to the fracture. The detailed 

mechanism is not known. 

3*4.3. Void formation. - Another effect which appears to depend upon 

small quantities of gas is the formation of voids in structural metals during 

high dose irradiations of fast neutrons. The effect is clearly of considerable 

importance to the technology of fast breeder reactors, and is currently the 

subject of much study. The effect was first observed in stainless steel (

4 6
) , 

but has since been found in several other metals, notably nickel (

4 7
) , aluminium 

and copper (

4 8
) . During high dose ( > (10

2 0
-i-10

2 1
) n-cm~

2
) fast neutron irra

diations at temperatures of ~ 0.4 Tm, where Tm is the absolute tempera

ture of melting, the volume of the metal starts to increase and the density 

to decrease. Electron microscopy has shown that this is due to the formation 

of a high density of voids (Fig. 13). Although it is likely that the voids are 

initiated by gas, the gas pressure soon falls far below the equilibrium pressure 

given by ρ — 2y/r9 and this is shown by the fact that on annealing at 900 °C 

the voids shrink to the equilibrium size for the gas contained within them. 

The total void volume increases with neutron dose at a rate proportional 

to ((pt)"
1
'
5
. The void volume at a given dose is also dependent on the irradia

tion temperature, being zero until the temperature exceeds the displacement 

damage recovery temperature and rising to a maximum at about 0.4 Tm 
and then falling to zero again at about (0.6-i-0.7) Tm. The voids are observed 

to be distributed randomly throughout the material, except for a denuded 

zone typically (1000-^3000) Â wide, around the grain boundaries. The void 

density and average size increase with dose at constant temperature. 

Increasing the irradiation temperature results in fewer, larger voids. During 

annealing the smaller voids disappear first, presumably by the evaporation 

of vacancies and the larger voids tend to increase in volume, until they too 

begin to shrink when all the smaller voids have disappeared. 
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Fig. 13. - Voids in heavy ion irradiated face centred cobalt. The void faces are {111} planes. 

The mechanism of the effect must involve some prefential annealing of 
either vacancies or interstitials, since the irradiation temperatures are suf
ficiently high to prevent the displacement damage clusters produced at low 
temperatures from being stable, and in the absence of some extra factors 
complete mutual annihilation of the vacancies and interstitials would occur. 
The extra factors are likely to be : 

a) The effect of helium atoms on stabilising some of the irradiation 
produced vacancies to produce gas bubbles. This leaves some excess intersti
tials which precipitate as interstitial clusters (interstitial clusters are always 
observed associated with the voids). 

b) The slight preferential absorption of interstitial atoms at dislocations 
and interstitial loops (4 9). This will leave a slight excess concentration of 
vacancies, a proportion of which will condense on the gas bubbles so increasing 
their size beyond the equilibrium size. 
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The efficiency of the process varies considerably with material, for example 

in stainless steel only about 0 . 1 % of the point defects produced remain in 

the voids whereas in copper and nickel the corresponding figure is up to 10%. 

3*5. Summary. 

We have seen how studies of radiation growth, radiation hardening, gas 

bubbles and voids have depended very heavily on the transmission electron 

microscope technique for information on the nature of the effect and how 

it varies with the experimental parameters. In addition to providing informa

tion which can be obtained in no other way, however, electron microscopy 

is frequently used to speed up the experimental work. An excellent example 

of this is the use of accelerators to simulate fast neutron irradiations in void 

studies. To quickly reproduce the effect of very high neutron doses a heavy 

ion is usually used as a particle and the penetration of these in metals in only 

a few microns. This poses some difficulties for electron microscopists, who 

have to preparate a specimen from the right depth in the specimen, but it 

would be almost impossible to use such specimens for macroscopic meas

urements. In a similar way the small volume of material which is required 

for microscope studies enables very small specimens of materials which 

become highly radioactive to be irradiated. It is frequently possible to handle 

such specimens in the open laboratory with the minimum of shielding whereas 

the use of macroscopic specimens for physical measurements would be very 

expensive in remote handling requirements and experimental effort. It is 

important to realise that invaluable as microscopy is, it can never completely 

replace the physical measurements, and it is wise to arrange selected com

parisons with bulk properties to check that no gross differences in behav

iour are occurring because of the use of small specimens, or because of the 

limitations of the microscope technique. For example defects which are too 

small to be visible in the microscope can produce large macroscopic effects, 

as for instance in irradiation hardening and in the stored energy work on irra

diated graphite. It is true to say, however, that without electron microscopy our 

knowledge of the nature of irradiation effects would be very much smaller 

and less certain than it is today. Electron microscopy has become, and is 

likely to remain, the major experimental technique in the study of the effect 

of irradiation on the physical and mechanical properties of materials. In 

other areas of radiation damage work, such as the electronic effects in semi

conductors for example, it has made almost no contribution. 
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4. Radiation damage studies in high voltage microscopes. 

4' 1. Introduction. 

It has hitherto been customary to consider the interaction between the 

electron beam and a crystalline specimen only in terms of firstly, elastic 

scattering of the beam, resulting in Bragg reflections, and secondly, inelastic 

scattering in so far as this results in « absorption », i.e. loss of contrast, 

brightness and resolution in the image. At 100 kV no permanent changes 

occur in metal specimen as a result of inelastic scattering. Because of this 

the term « radiation damage » in electron microscopy has come to mean 

the permanent changes in a particular class of specimens which are sensitive 

to ionisation effects, i.e. polymers, biological materials, etc. These effects 

arise because of the sensitivity of these materials to electron displacement 

or excitation events. In a metal, of course, these effects are very transient 

( ~ 10~

15
 s) because the free electron gas rapidly removes any local perturbations 

in electric charge. With the advent of high voltage microscopes, however, a 

completely different type of radiation damage phenomena due to displacement 

of atoms becomes important. The range of materials in which this type of 

damage occurs at 100 kV is very limited, because a 100 keV electron can 

displace atoms of only a few light elements. This arises because the maximum 

energy which can be transferred is proportional to 1/M2, where M 2 is the mass 

of the target material. Hence, as M2 is increased the maximum energy trans

ferred decreases, and since there is a well defined displacement energy threshold 

for an atom to be ejected from its normal lattice position a positive effect 

can be seen in only a very few materials. 
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Because the « atom displacement » process is relatively new to electron 

microscopists there is, I feel, a danger of some confusion if the old term 

« radiation damage » is applied indiscriminately to both electronic and atomic 

displacement processes. The distinction between the two effects is of course, 

well known to workers in the field of radiation effects. The complication 

arises mainly in the biological and polymer fields since in these materials 

there is at high voltages the possibility of both electronic and atomic effects, 

and care should be used to distinguish between the two. In metals we need 

consider only the atomic displacements, since as before, the electronic effects 

have no observable effect on the specimen. 

4 2 . The displacement process. 

It is generally permissible to neglect the effect of the screening electrons 

in calculating the scattering of electrons by atoms. This is an imperfect 

approximation at low energies but for energies of above about 500 keV the 

error involved is small and a simple Coulomb potential can be used. As 

described earlier (Subsect. 1*2.2.) relativistic quantum mechanics are necessary 

since the electron velocity in the energy range of interest is a substantial fraction 

of the velocity of light. An electron of velocity ν has a momentum Ρ = mv, 
where m is the mass of the electron at velocity v. Because of the disparity 

in masses the electron velocity is hardly altered by the collision so that the 

momentum transfer to the struck atom is: 

where θ is the angle through which the electron is scattered. An atom of mass 

M2 and momentum AP will have a velocity of v2, where 

AP = 2mv sin θ/2 , 

M2v2 = AP 
and an energy of 

(AP)
2 

2M2 
Hence 

E2 = 
2m

2
v
2 

Mo 
sin

2
 (9/2. 

The electron energy Ε and mass m are given by: 
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Hence 

= 2 ( „ r = 2<„, : ,„ X„, , „0,r« s i n2 
M 2 M> 

so that 

2E 
M c 2( E + 2m0c*) sin

2
tf/2 

The maximum value of E2 occurs, of course, when sin Θ/2= 1, i.e. θ= 180°. 

Using the values of the displacement energy quoted in Table I of Section 1 
the threshold electron energies are given in Table XI. It will be seen that 

in a 1 MeV microscope it is possible to displace atoms in a wide range of 

elements. In Fig. 14 the value of EmM, where Em is the maximum knock-on 

5000r—'—ι—'—ι—-—ι—•—ι—ι—ι—«—ι—•—ι—'—ι—•—ι—•—ι 

E
 KeV 

Fig. 14. - The relation between the maximum knock-on energy Em and the electron energy E. 
(Courtesy of Phil. Mag.) 
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energy and M the atomic weight, is given as a function of accelerating voltage 

for electron irradiation Q). From this graph the value of Em can be determined 

for any element at any voltage up to 1 MV or alternatively, for any given 

value of Em, for example the displacement energy, the threshold electron 

accelerating voltage can be determined for any element. 

TABLE X I . - The threshold electron energy for atom displacement. 

Element 
Displacement Electron energy 

Element energy Ed (eV) (keV) 

Cu 19 400 
Al 16 166 
Au 34 > 1000 
Pt 37 > 1000 
Fe 24 430 
Mo 37 870 
W 35 > 1000 
Ti 29 440 
Ni 24 450 
Ag 28 790 

4*2.1. The electron current density. - A major difference between the elec

tron beam in a microscope and in a conventional electron accelerator is the 

very high current density in the former. In a well aligned microscope adjusted 

for a maximum beam current it is possible to obtain a current of (0.5-fO.6) μ A 

in a 2 μ spot at the specimen. This corresponds to a current density of 

~ 15 A/cm

2
, or 9· 10

19
 electrons/cm

2
/s, which is ~ 10 000 times greater than 

in a conventional electron accelerator. 

4 '2.2. Displacement cross-section. - For light elements the displacement 
cross-section is given by the McKinley-Feshbach approximation (

2
) as : 

,-M..HH.Zj(i^)(f). 
• {1 + 2πχβ (Ji)'- (-g) [l + 2π«β + (fP + χζβ) (f̂ )] }. 

where α = Z2/137. As stated before (Subsect. l'2.3d), this formula is reasonably 

accurate for the light elements, but underestimates σα for heavy elements. For 

more accurate values in these elements the reader is referred to Oen's graphs 
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Fig. 15. - The displacement cross-sections ad (solid curves) and total cross-sections 
odNd (dashed curves), as a function of accelerating voltage. (Courtesy of Phil. Mag.) 

and tables (

3
), which were computed by a method which avoids the McKinley-

Feshbach approximation. The discrepancy between the computed values and 

those given by the formula increases as the accelerating voltage is increased. 

The total number of displacements produced per primary knock-on is: 

Nd = l + ln{w)' when Em>2Ed> 
and Nd=l, when Em<2Ed. Using this formula and the McKinley-Feshbach 

approximation the values of ad and ύαΝα as a function of accelerating voltage 

are given in Fig. 15. The concentration of displacements produced per second 

is, of course, 

C = cpadNdt. 

For example in aluminium at 1 MV, with an electron current density φ of 
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9* 10

19
 electrons/cm

2
/s the concentration of defects produced per second i s : 

C= l . l x l O -

2
 cm"

3
 s -

1
, 

and the corresponding figure for iron is ~ 3.5 · 1 0

- 3
. These are extremely 

large figures; for example, using Nelson (

4
) estimate for iron for the number 

of defects produced per knock-on, a flux of 10

13
 1 MeV neutrons produces 

a defect concentration of 5.4· IO"

9
 per second. Hence in iron a 1 MV micro

scope is capable of producing defects at a 6.4· 10

5
 times faster than the reactor. 

This can best be appreciated by considering that 1 minute in the microscope 

corresponds to 445 days in the reactor in terms of the point defect production. 

4*3. The effect of electron irradiation at high voltages. 

4*3.1. Theoretical. - Before describing any experimental results it is 

instructive to consider what might be expected in a metal specimen as the 

result of exposure to a high voltage electron beam in a microscope. Because 

of the low primary knock-on energy there are no collision cascades and the 

defects are produced as isolated interstitial vacancy pairs. Dienes and 

Damask (

5
) considered this, and gave the differential equations which, under 

certain assumptions, control the densities of the interstitials and vacancies: 

-~t = K— Kvv — ViZ(v + v0)i 

^ = K— Ki i—viZ(v + v0)i , 

where Κ is the defect production rate, Kvv and K\i are the loss of vacancies 
and interstitials to sinks, v% is the interstitial jump rate, Ζ is the number of 
sites around a defect from which mutual recombination can occur sponta
neously, ν and v0 are the actual and thermal equilibrium vacancy concen
trations, and / the interstitial concentration. It is important to note two 
assumptions made in these equations. The first is that the sinks to which 
the defects migrate are smeared out throughout the crystal, and secondly 
that interstitials do not cluster. We assume that Kv = <χνννλ

2
 and K\ = o w A

2 

where ocv and a* are the sink densities and λ is the jump distance ( A

2
^ I O

- 15
 cm

2
). 

Analytic solutions of these equations are possible only in steady state condi
tions, i.e. when dv/dt = di/dt = 0. The time required to reach steady state 
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can be very long at low temperatures, when the vacancy mobility is low and 

the steady state solutions are of little relevance in these conditions. Despite 

this fault however, the steady state solutions are instructive. In the steady 

state the vacancy and interstitial concentrations are: 

(οαλ* + Ζϋ0) V = —; A 
2Z 

and 

. _ ocvvv(octÀ
2
 + Zv0) l — - * A , 

zociZvi 

A = { - 1 + j / l + a^ r ( a. ; 2 . | _ Ζ Γ ( ) ) 2} ' 

At temperatures where the vacancies are immobile there is no true steady 

state solution, since there can be no vacancy flow into sinks, and hence the 

vacancy and interstitial flows cannot become truly equal (this is a condition 

of the steady state). When the vacancy mobility is finite but low the term 

οίννν{μΐλ
2
 + Zv0)

2
 < 4KatZ and, when OL% = ocv we get 

where 

( z r v)
 a n (

* ' Vi ( Ζ ) 

In these conditions the vacancy concentration is very large and the mutual 

recombination term dominates. 
At relatively high temperatures v% is large and hence 

ocvvv(ociÀ
2
 + Ζυ0)

2
 > 4KociZ 

and 

Koa Κ 
ocv vv(oci λ

2
 + Zv0) OCV Vv λ 

and 

Κ Κ 

Vi(oci?i

2
 + Zv0) am λ

2
 ' 

when oil λ
2
 > Zv0. 

The mutual recombination term is now unimportant , the vacancy and 

interstitial concentrations are low and the majority of the defects migrate to 

the fixed sinks. 
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Some enhancement of the diffusion rate may be expected in these condi

tions. The diffusion coefficients are : 

Κ Κ 
Dv = — and A —, 

OCv OCi 

and the diffusion lengths are : 

Lv = (-Y'n and U 
\0CvJ \0Ci/ 

For example in aluminium at 1 MV with a production rate Κ of 1.1 · I O

-2
 s

_1 

and a sink density of 10

8
 dislocation lines per cm

3
 10

8
), the diffusion 

distance is of the order of 3.3 μιτι after a time of 10

3
 s. The effect of this 

should be experimentally observable at the right temperature. 

At low temperatures the Dienes and Damask model may be unrealistic, 

since it neglects the formation of defect clusters. In the absence of cascades, 

clusters must nucleate by the chance collision of migrating point defects. Since 

the interstitial is the more mobile defect there is a greater probability of two 

interstitials meeting than two vacancies in the early stages of irradiation, 

when the interstitial and vacancy concentrations are roughly equal. If we 

assume that a di-interstitial is immobile and fairly stable at low irradiation 

temperatures then there is a finite probability that a cluster will develop 

from the di-interstitial nucleus by the condensation of more interstitials 

A similar model has been developed by Brown, Kelly and Mayer (

6
) in an 

analysis of the homogeneous nucleation of loops in boronated graphite 

during neutron irradiation, and also briefly applied by Brown (

7
) to electron 

irradiated copper. The density of clusters formed can be simply estimated by 

the following argument (*). If Ν is the saturated cluster density, then associated 

with each cluster there is a volume V, where V— l/N. The point defect pro

duction rate within the volume V is KV, where Κ is the number of defects 

per cm

3
 per s. In the time interval between the formation of individual defects 

in a volume V an interstitial samples a volume vtv'/KV, where υ' is the atomic 

volume and l/KV is the time interval between defect production. Hence in 

the first l/KV s the probability of interstitial-vacancy recombination is 

VfZv'/KV
2
. Assuming that the defects do not mutually annihilate then during 

the second l/KV s there are two interstitials and two vacancies in the 

volume V. The probability of interstitial-vacancy recombination isAnZv'/KV
2 

and \/2viZ
f
v
r
/KV

2
 for interstitial-interstitial combination. Note that Z' is not 

necessarily equal to Z. The assumption is then made that the sum of these 

file:///0CvJ
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probabilities is unity: 

KV
2 

( 4 Z + 1 . 4 Z
,
) = 1, 

or if Ζ = Z
r
 then 

HI 
The cluster density is hence proportional to and vj*. The same propor-

tionabilities, with a different factor, is also given by (

6
). Experimentally, 

higher production rates Κ and lower temperatures (smaller Vi), give higher 

values of N, in qualitative agreement with the theory. The model gives pre

dicted values of the cluster density which are in good agreement with experi

ment, bearing in mind the uncertainty in vi and Z. The theoretical determina

tion of vt is particularly difficult since not only is this dependent on an accurate 

knowledge of E
l

m but it also depends on the impurity concentration, since 

impurity trapping of interstitials will decrease ν ι (

6
). Note that this is a 

homogeneous nucleation model, and that Ν is independent of time. The 

nucleation time will be very short in practical cases ( ~ 10~

5
 s). The model 

can also predict the rate of growth of clusters with time by calculating 

the probability of an interstitial in the volume V combining with either the 

cluster containing η interstitials, or with the η vacancies distributed through

out the volume. This leads to the expression: 

where Z'
r
 is the recombination number between a cluster site and an inter

stitial. The loop radius is therefore: 

Clearly there should be a denuded surface layer in the foil since in the 

nucleation time l/KV the interstitials will migrate a mean distance 

29 
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Hence, within Λ: of a surface or grain boundary the interstitial concentration 

during the nucleation time will be lowered by the proximity of the interfacial 

sink, and no cluster will nucleate. 

It can be seen that the surface denuded layers will affect the threshold 

voltage for cluster nucleation since as the voltage is reduced towards threshold 

the production rate Κ decreases and so χ increases until the denuded zones 

from each surface meet in the centre of the foil. Substituting K= σαΝαφ/ν', 
where φ is the electron dose we get: 

\αΛΝαΖφ) 

Foils of thickness less than h will contain no loops. Using the values of 

adNd given for copper in Fig. 15, λ = 2.55 Ί Ο "

8
 cm, vt = 10

1 3
exp [0.2/KT], 

2 0 0 K 3 0 0 K 4 0 0 K 

O l 2 3 4 5 6 7 8 9 IO 
F O I L THICKNESS I 0

3
A 

Fig. 16. - The apparent threshold voltage to produce loops in copper as a function of foil 
thickness, assuming a true threshold of 394 kV. (Courtesy of Phil. Mag.) 
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φ =z 10
19
 cm~

2
 s

- -1
 and Z= 100 we obtain the curves in Fig. 16. Hence in 

determining the displacement energy from the threshold voltage the effect 
of the foil thickness should be allowed for. 

The model of loop formation given here can also be used to predict the 
vacancy and interstitial concentrations as a function of time and hence the 
enhanced diffusion coefficients from the expressions: 

Dv = νννλ
2
 and D% = iviX

2
 . 

The vacancy concentration is: 

2.05 υ'*Ζ"*Κ* , 

and the interstitial concentration: 

Inserting the relevant numbers into these formulae we find that in copper 

at 300 °K, φ = 10
19
 c m -

2
 s"

1
, etc., we get: 

ϋ = 4 . 6 · ΐ σ -
7
· ί * 

and 

i = i . 2 i - i o -
9
- r

f
. 

The resulting diffusion distances (x = \/T>t) are very small ( ~ 10 Â) and 
hence unless an exceptional sensitive technique is used the effect will not 
be observable. 

4*3.2. Experimental results. - The earliest work which established that 
dislocation loops were formed as a result of exposure to a high voltage beam 
in a microscope was the work of Makin (

8
) on copper and aluminium in 

the Cambridge 750 kV microscope. It was found that dislocation loops 
were formed only in the electron irradiated spot (Fig. 17) and it was shown 
by stereo-microscopy that they extended throughout the thickness of the foil, 
except for the surface denuded layers. The rate of change in the loops with 
time depended on the beam current and there was a clearly defined threshold 
voltage below which damage was not produced. It is clear from these observa-
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Fig. 17. - The distribution of loops within the electron irradiated spot. 

tions that the loop formation is the result of the electron irradiation, and not 

from ion bombardment. Ions produced in the gun and accelerated in the 

accelerator will be distributed fairly uniformly across the whole specimen, 
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Fig. 18. - Cluster formation in copper exposed to the microscope beam for a) b) 5, 
c) 19, d) 32 min at 600 kV. (Courtesy of Phil. Mag.) 

since because of their large mass they are hardly affected by the lens magnetic 

fields. It has been found that ion beams emerge from the accelerator only 

if it is poorly conditioned and hence contains a relatively high gas pressure. 

Once the accelerator is properly conditioned the ion current is negligible. 

Similarly the observation of loops throughout the thickness of the foil elim

inates the possibility that the damage is due to ions knocked into the foil 

as a result of electron collisions in the neighbourhood of the specimen. Such 

ions would have a maximum energy of only ~ 100 eV and hence would 

penetrate only a few lattice spacings. The observation of a well defined 

threshold voltage (8) is also very strong evidence that the damage is due 

solely to the electrons. 

The loop formation characteristics showed the behaviour expected of a 

homogeneous nucleation process i.e. the full density of clusters appeared 

very early in the irradiation and thereafter no new clusters were nucleated 

(Fig. 18). In fact the density of clusters tended to decrease slightly with further 
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irradiation (Fig. 19) and direct observation showed that this occurred by 

a process of coalescence by slip. The clusters were observed to be mainly 

perfect prismatic dislocation loops and hence the interaction forces will 

Time in mins. 

Ο 5 ΙΟ M 15 
Estimated Electron Dose. IO e ^ M2 

Fig. 19. - The total loop area A and the loop density B, as a function of electron dose, 
t is the thickness of the foil. (Courtesy of Phil. Mag.) 

increase as the loop area, whereas the resisting force is proportional to the 

loop perimeter. Hence as the loops grow during irradiation there is an increas

ing probability of slip. 
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Fig. 20. - Grain boundary denuded zones in electron irradiated copper. 

in 3'2. We have already seen how it is virtually impossible for the loops to 

be other than interstitial loops, from considerations of the point defect 

mobilities. This interpretation was further strengthened, (Makin (8)), by the 

observations on the effect of electron irradiations on the known interstitial 

loops in neutron irradiated copper. It was observed that in regions containing 

a high density of neutron produced loops there was no nucleation of new 

loops, but a growth of the existing loops, so confirming that the effect was 

due to the condensation of interstitials. Subsequently, diffraction contrast 

A denuded zone was observed around all grain boundaries and free sur

faces (Fig. 20) but not around twin boundaries, and in copper at 300 °K 

with an electron flux of ~ 1019 c m -2 s _1 this was observed to be about 

1000 Â in width, in agreement with the theoretical value. The loop density 

was also in agreement with the value expected from the model described 
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experiments (9) have confirmed the original interpretation of the sign of 

the loops. 

Attempts have been made (1 0) to use the effect to determine the thresh

old energy for displacement in the principal crystal directions. An example 

of the results obtained in copper in the <100> direction are shown in Fig. 2 1 , 

from which it is clear that in this experiment the threshold was ~ 495 keV, 

which corresponds to a displacement energy of 25 eV. To minimise the error 

Fig. 21. - The apparent threshold energy in the [100] direction. The micrographs are after 
15min irradiation at 1) 490, 2) 500, 3) 510, 4) 520 and 5) 600 kV. 

due to the finite foil thickness, experiments have been made in copper using 
very thick foils, with the following results: fiKlOO), 21.6 eV; <110>, 19.2 eV 
and <111>, 23.6 eV. These results have been previously quoted and com
mented on in Table II of Section 1. 

The behaviour of the loops after very high doses is interesting and unusual. 
Figure 22 shows a typical example of how the initially planar loops become 
complex as the irradiation is continued. The interpretation of this effect 
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is not clear at present. It is possible that the effect is associated with the pres

ence of the vacancies, since in some cases loops are found which contain re

entrant segments which suggest this, but these may well result from loop 

coalescence. The most probable interpretation is that at a particular tem

perature the loop remains planar only up to a certain size (this size will increase 

with temperature), and when this size is exceeded condensation of intersti

tials commences to occur on several {110} planes with the eventual formation 

of a very complex and tangled dislocation structure. When the loops are 

very small presumably the stress due to the loop is too small for this to occur. 

As the loop becomes larger, however, the magnitude of the stress field increases 

Fig. 22. - The growth of simple into complex loops at 600 kV after 10 (left) and 45 min 
(right) irradiation. 

as the loop area, and, due to the Poissons ratio effect there are loop planes 
around the original loop and inclined to it on which precipitation of interstitials 
would relieve the stresses generated by the original loop. The effect probably 
occurs only under conditions of low temperature and rapid condensation ra te . 
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since at high temperatures the rate of jog movement and climb is sufficient 

to ensure that all the defects assume the ultimately most stable configuration, 

viz. the planar loop. 

The loop density changes with  v%  in broadly the manner indicated by 

the theoretical model. The interstitial migration rate can be changed either 

by reducing the temperature (

u
) or by adding an impurity to t rap the inter

stitials. 

One further effect remains to be described in copper, namely the effect 

of electron channeling on the damage rate. From the dynamical theory 

of diffraction contrast it is predicted that the amount of inelastic scattering 

(atom displacement is one of the inelastic scattering mechanisms) will depend 

on the Bloch wave excitation. As a simple example let us consider the two 

beam case. From the dynamical theory the coefficients of the first and second 

Bloch waves are : 

Since in reciprocal space g  —  l/d,  where d  is the interplanar spacing of the 

reflecting planes: 

Hence wave 1) peaks when r  =  d/2  i.e.  midway between the atom planes, 

and wave 2) peaks when r  =  0  or  d,  i.e.  at the atom planes (

1 2
) . Wave 2) 

will therefore be more heavily scattered than wave 1), and hence should 

produce a larger number of displaced atoms. 

The intensity of the electron current at the atom planes for the two waves is : 

wave 1 ) : A
2
 =  c o s

2
^ ( l — sin/?), 

oz ûnngr  and b
i2)
 oz  cos  ngr (at s  = 0 ) . 

b
{1)
 oc sin — and b

{2)
 oc cos 

d 
nr 
d ' 

and 

wave 2) 

The total current at the planes is hence A
2
 +  B

2
 = 1 — sin β cos β where 

ctgjft = w = 5*^. The electron current at the planes is small when β is less 
than π/2 i.e. s>0 and large when β>π/2, s<0. Hence across a bend con-



The application of electron microscopy etc. 459 

Fig. 23. - The variation in damage rate with orientation in copper. Area A shows the 
irradiation orientation and area Β that loops are formed only in the 220 contour. Note, 

however, that the dislocations in the good transmission region become joggy. 

mately two, using the parameters relevant to the 220 planes in copper at 
600 kV. This is, of course, only a very approximate figure since a multiple 
beam calculation should be made and then the atom displacement process 

tour one would expect a variation in damage rate because atomic dis

placement depends on the close approach of an electron to an atom, and 

hence the number of displacements should be considerably greater when 

wave 2) is strong. This effect has been observed in copper (1 0) for both the 

220 and the 111 contours, and an example is shown in Fig. 23. It will be 

seen that the damage rate in the good transmission region is not zero, since 

dislocations in this region show clear signs of the absorption of point defects. 

The ratio of the expected damage rates in the symmetry position (parallel 

to the reflecting planes) and at an angle of 2Θ from the symmetry position, 

where θ is the Bragg angle, is on the two-beam theory a factor of approxi-
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is only one of several possible inelastic scattering processes. The effect of 

absorption i.e. the attenuation of the wave due to inelastic scattering, should 

also be included. Such calculations are in progress. 

The effect of defects on the electron channeling should also be considered. 

If, for example, the channeling properties of a wave are significantly disturbed 

by a dislocation, such as a loop, then once loops are formed the difference 

in damage rate between the good channelling and poor channelling regions 

may become much less. Further work is required on all these effects. 

Damage has been observed in various other materials, notably alumin

ium (

8
), iron (

1 3
) and graphite (

1 4
) . In aluminium there is a threshold current 

below which damage is not observed at room temperature, presumably be

cause the denuded zones occupy the whole foil thickness. In iron-carbon 

alloys it has been observed that small electron doses retard the precipitation 

of carbon in quenched alloys during subsequent ageing. Damage is observed 

in graphite only if the irradiation temperature is greater than about 350 ° C 

Presumably at lower temperatures the clusters are forming on so fine a scale 

that they are not visible in the microscope. Below the interstitial migra

tion temperature clusters will not form at all, of course, except by « statistical » 

clustering at very high doses. 

Electron irradiation in a high voltage microscope has also been observed 

to result in a loss of precipitate coherency, by the formation of dislocation 

loops around the precipitates (

1 5
) . Presumably in this case the coherent 

precipitate strain can be relieved by the condensation of interstitials. 
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Computing Methods 

M . J. GORINGE 

Department of Metallurgy, University of Oxford - Oxford, England 

1. Introduction. 

The problem facing the electron microscopist in the interpretation ο 

micrographs of crystalline materials is, at the present time, similar to that 

faced by scientists in any field where diffraction plays an important role in 

the observations, namely that half the information available in the electron 

beam is usually lost in the recording process ; phase relationships are removed 

as only intensities are recorded. Thus, as in X-ray crystallography, one 

of the most fruitful approaches over the last few years has been to work 

forward from « models » of defects, etc., present in the specimen to calculate 

the expected images ; by comparison with the images actually obtained param

eters in the model may be optimised to obtain a « best fit ». Provided 

the values of parameters obtained by this method are not physically unreal

istic there is hope that the conclusions drawn regarding the nature of the 

defect are correct. Recent analysis (to be discussed in Sect. 7 below) has 

confirmed the uniqueness of images obtained in certain circumstances and 

indicated that in the future it may be possible to work « backwards » from 

a set of micrographs to a full description of the state of deformation of the 

specimen. Other possible ways of obtaining more information from micro

graphs than at present include holography and phase contrast microscopy, 

the latter of which is discussed in some detail by other contributors to this 

school (see this volume, Lenz's, Thon's and van Dorsten's lectures). 

The main par t of the discussion of computing methods which follows 

will be concerned with the calculation of images from models and their com-



464 M. J. Goringe 

parison with experiment. For completeness a number of formulae which 
have been dealt with by other contributors (see Howie's and Brown's lectures) 
will be quoted without proof, the notation used being predominantly that 
of Hirsch et al. (

x
), which should also be consulted for a fuller list of refer

ences to original papers. 

2. Perfect crystals and faults: 2-beam approximation. 

2 1 . Perfect crystals. 

In the 2-beam approximation we are concerned only with a beam emerging 
in the direction of the incident beam, amplitude φ0, and a diffracted beam, 
amplitude φ9, while inside the crystal only two Bloch waves, amplitudes 
and ^

( 2)
 are excited. Under these conditions it is found that as a function 

of depth ζ in a perfect crystal 

<p0(z) = C^V( 1 )
 exp [2πιγ

{1)
ζ] + CJV2)

 exp [ 2 π / 7

( 2 )
ζ ] , I 

0) 
<pg(z)= Cf ψ

{1)
 exp [2πιγ^ζ] + Cf ψ

(2)
 exp [2m7™z], j 

where γ
(ί)
 = kz -— is the z-component of the wave vector difference, as 

shown in the dispersion surface of Fig. 1. C$\ and ip
{i)
 are related con

stants depending on the orientation of the crystal with respect to the in
coming beam such that 

CP = C<

2
> = cos (β/2), C<

2
> = - Cf = sin 05/2), 

ψ
ω
 = cos (ββ), y

< 2)
 = sin (β/2), 

and 

η = *ξ9 = ^ β (3) 

where ξ9 is the extinction distance ( = l / |y

< 2)
 — and 5 the excitation 

parameter (Fig. 1). 
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Fig. 1. - Reflecting sphere construction and dispersion surfaces. 

In general y

w
 is complex, and thus eqs (1) are complex and the ampli

tudes of the beams at the bot tom of a crystal of thickness ζ are 

<pQ(z) = {cos

2
 (β/2) exp [ - iXz] + s in

2
 (β/2) exp [iXz]} exp [—πζ/ξ'0], 

φ9(ζ) = — cos (β/2) sin (β/2) {exp [— /Xz] — exp [iXz]} exp [— πζ/f 01 ·> 
(4) 

where 

7rVl + w
2 

πι 

f Q and | ^ being the absorption parameters. 

Calculation of bright field (φ*0(ζ)φ0(ζ)) and dark field (99*(z)<^(z)) inten

sities for various values of ξρ, ξ'0, ξ', w (hence β) and ζ enable comparison 

Fig. 2. - Co-ordinates used to describe a tapered foil. 

30 
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to be made with experimental micrographs to deduce suitable values for 

these basic properties of the material. Thus, in principle, it is possible from 

measurements on a tapered crystal of known, constant orientation (w con

stant) to deduce values for ξ9, ξ'0 and ξ'9, provided that the wedge angle, δ, 
is known (Fig. 2), and that the column approximation is assumed to be valid. 

Similar information is available from a bent crystal of known uniform thick

ness (z = t constant), and even if absolute intensities are not available in 

this case information is only lost on the value of ξ'0~. (An example of a com

bination of the two situations will be discussed in Subsect. 5*2 below.) 

2*2. Scattering matrix for perfect crystals. 

For computational convenience, which will become more apparent later, 

eqs (1) are often written in matrix form 

(<p0(z)\lC^ Cn/expPrc/yWz] 0 WyM 
\cpg{z)) [c? C f j \ 0 ^ρ[2πίγ^ζ])\ψ^)-

The « wave-matching » which defines the C s and ψ
9
s may be written 

fci" C?>\/V<»\ /WO)' 

In matrix notation premultiplying eq. (6) by C
_1
 and substituting for ψ 

in eq. (5) yields the complex matrix equation 

cp(z) = C{exp [2πίγζ]} C-"kp(0), (7) 

where { } indicates a diagonal matrix. The matrix 

P=C{Qxp[2myz]}C-1

9 (8) 

which relates the incident amplitudes cp(0) and the resultant amplitudes φ ( ζ ) 

is termed the scattering matrix, and in this case is 2 x 2 complex. 

As a trivial example it may be confirmed (after some algebra) that if a 

single slab of perfect crystal is split into two slabs by an imaginary fault plane, 

which does not affect the beams (Fig. 3) then 

q>('i + ia) = 'V
,
i<p(0). (9) 
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Fig. 3. - Waves <pQ, φσ propagating through a composite slab crystal. 

2 3 . Faulted crystals by scattering matrices. 

In this case the fault plane of Fig. 3 is assumed to introduce a phase change 

α = 2ngR, where R is the displacement of the lower slab of crystal. In scat

tering matrix terms the effect of the fault may be summarised as follows. 

Defining 

Hi £)· (io) 

the effect of the two slabs of crystal and the interfacial fault is given by 

<p(h + tj = rp2F
+
PM0), (Π) 

where F~ is similar to F
+
 except that oc is replaced by — oc. 

For a number of slabs of crystal (see Fig. 4) the result is 

<P(0 = F-PJtF-^P^ ... F + F - P 2F + Ρ χφ ( 0 ) , (12) 

where F; is defined as in eq. (10), OCJ being the phase change as measured with 

respect to the first slab. For computational convenience the product matrices 
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FljFj-! may be written as 

= (k=j-l), (13) 

t. 1 

t 2 2 

t „ - i n- l 

t „ n 

Fig. 4. - Diagram of foil made up of slabs of perfect material separated by faults. 

where Fjk is of the same form as eq. (10), α # being the phase difference be
tween slabs j and j — 1 . Thus 

<P(0 = Κ
 P

n^n~l P n - 1 - ^32 * V P ( 0 ) (14) 

and if the phase relationship between φ0 and φ9 is unimportant (e.g. if only 

intensities are required) the matrix F~ may be omitted. Neglecting F~ in 

eq. (14) it may be seen that the effect of each fault is to introduce a phase 

change in the diffracted beam only. It should be noted that eq. (14) applies 

to two situations of considerable interest i) stacking fault separated by slabs 

of perfect crystal all with the same orientation and ii) coherent twin boundaries 

where there is no phase change at the « fault » plane (i.e. Fjjc = I all j , 
where / is the identity matrix), but where the slabs of perfect crystal are dif

ferently oriented (i.e. the values of Q comprising Pj are different; eq. (8)), 

or, of course, to any combination of i) and ii). 

The situation for which it is usually required to calculate image intensities 

is that of faults which are inclined in the foil (Fig. 5), when the components 

I 2 

Fig. 5. - Diagram of foil containing a number of overlapping faults on inclined planes. 
Note that columns 1 and 2 pass through different numbers of faults. 
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of the matrices Pj depend on the position χ of the column considered, as does 

the number of faults encountered. In general, in electronic computation, 

a subroutine is set up to calculate <p' from A and φ , where 

Input 

Orientations of 
j 5labs 

φ== Αφ . 

Program 

Positions of columns 

column selected exp [2ni ytj] 

Fault vectors Rjk _ 

incoming beam 

Q 
φ_ΐΓ at top 

of crystal 

Τ 

if_ 

fault 

if still 

in foil 

if 

slab 

φ'= Αφ 

(15) 

Equation 

(2) 

Output 

(8) 

(10) 

(15) 

W-
if at bottom of foil 

column position 

Pol

2
, κ ι

2 

if more columns required 

Fig. 6. - Schematic program to calculate 2-beam intensities from columns passing through 
a number of slabs of perfect crystal separated by faults. 
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φ and φ ' are 2 χ 1 complex vectors describing the beams in the crystal before 

and after the operation respectively and the 2 x 2 complex matrix A is alter

nately of type Ρ and F. The subroutine is used until the bot tom of the crystal 

is reached, when φ ' is the required solution for the amplitudes. An outline 

diagram of the computational method is shown in Fig. 6. (In certain com

puting languages, e.g. Fortran, complex algebra is available as a standard 

facility, but in most cases it is necessary to write the matrix multiplication 

explicitly in terms of its real and imaginary parts.) 

In simple cases it is often preferable to calculate from algebraic expres

sions for φ0 and φα (such as may be obtained by multiplying out eq. (14) 

by hand) e.g. a single stacking fault (Hirsch et al. Q) eq. (10.10)), a single 

coherent twin boundary (Gevers et al. (
2
'

3
)) , a pair of stacking faults (Gevers (

4
)) 

or a pair of coherent twin boundaries (Remaut et al. (

5
)). However, in the 

last two cases other authors prefer digital calculation from matrix notation 

{e.g. Hirsch et al., p . 226 (

x
), Goringe and Valdrè (

6
)). 

2*4. Moiré fringes. 

Moiré fringes occur (in the simplest case) when two slabs of perfect crystal 

(e.g. as in Fig. 3) have slightly different lattice parameters (parallel moiré), 

or have the same lattice parameter but are rotated with respect to each other 

about an axis perpendicular to the « fault » plane (rotation moiré). Under 

these conditions eq. (11) holds but now the phase angle α is a function of 

position. An example of a moiré pat tern is given in Problem 14 of Goringe 

and Hall : « Typical Problems ... » in this volume. 

2*5. Lattice fringes. 

So-called « lattice fringes » occur when more than one beam is allowed 
to contribute to the image and recently considerable experimental effort has 
been expended by manufacturers to achieve fringes with the closest possible 
spacing to prove the superiority of resolution of their particular microscope. 
There is also considerable interest in seeing very fine detail in lattice images 
and to relate this to atomic positions near defects, e.g. around the core of a 
dislocation. However, as the image is strictly an interference pattern the cor
respondence between image fringes and lattice planes is not direct (see Prob
lem 15 of « Typical Problems ... », this volume) and considerable care must be 
taken in interpreting extra fringes as «extra half planes », etc ... (Cockayne (

7
)). 
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3. Perfect crystals and faults: 72-beam. 

3 1 . Wave matching. 

The /2-beam form of the wave matching calculation summarised by eqs (2) 

in the 2-beam case now becomes 

ACd) =y<*>c<*>, I = 1 , 2 . . . / I , (16) 

where A is an η χ η complex matrix, C

( ï)
 is a column vector whose elements 

are the amplitudes of the f-th Bloch wave, and γ
{ί)
 is the corresponding value 

of γ (see Fig. 1). The matrix A contains the information on the periodic 

lattice potential (expressed here in terms of extinction and absorption distances) 

in its off-diagonal elements and the crystal orientation and mean absorption 

on its diagonal 

^ 0 0

 =
 οΊΓ' ' ^ 9 9

= S
9 o t' ' ^9h

 =
 ^ Ôt

7
 ' 

z
£ o

 Z
^ 0

 z
±g-h

 z
£g-h 

However, complex matrix equations of the form of eq. (16) are time-con

suming to calculate even on an electronic computer, and it is usually sufficiently 

accurate to compute only the real parts of eq. (16), i.e. 

A R C
{i)
 = y<.*>  C

{i)
, i = l , 2 . . . / i , (18) 

and use 1st order perturbation theory to calculate yf^ from 

y& = , · = ι , 2 . . . « , (19) 

where C
{i)
 is the transpose of C

{1)
. 

If the excitations of the Bloch waves at the top of the crystal are denoted 

by the vector ψ and are produced by incoming plane waves φ then the match

ing condition is 

Ci}> = φ . (20) 

However, as in the 2-beam case (eqs (2)) it can be shown that ψ
{ι)
 = C§\ 

An example of a 4-beam wave matching calculation is given in Problem 7 of 

« Typical Problems ... » in this volume. 
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3*2. Perfect crystals. 

The f-th Bloch wave of initial amplitude ιρ
(ί)
 propagates through the 

crystal with wave vector γ(= yr + iyim) in the same way as in the 2-beam 

case. Thus the scattering matrix formulation of eqs (7) and (8) holds; in 

Input 

ξ9 values 

£o, ξ a values 

Orientations 

Program 

Ar off-diagonal elements 

complete 

orientation selected 

Ar diagonal elements 

eigenvectors C
(i) 

eigenvalues y
(

r

i] 

Equation 

(17) 

(17) 

(17) 

Output 

if more orientations 

orientation 

>- thickness 

Fig. 7. - Schematic program to calculate ^-beam intensities from perfect crystals. 
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particular the wave amplitudes φρ(ζ) at depth ζ for a single incident wave of 

unit amplitude are given by 

ψ9(ζ) = Σ <t' Cf V™7
W
 Λ (21) 

i 

(This result follows immediately from eq. (7) using the fact that C
-1

 = C.) 
Thus the problem of calculating the wave amplitudes leaving the bot tom 

of a slab of perfect crystal consists of i) setting up the matrices A R and A IM 
for the particular orientation and reflexions of interest, ii) calculating the 

eigenvectors and corresponding eigenvalues of A R by one of the standard 

subrout ines usually available in computer libraries (e.g. Householder's and 

Jacobi's method) iii) calculating the imaginary parts of γ by matrix multi

plication (eq. (19)) iv) calculating the set of emergent beams φ9 for the various 

values of ζ which are of interest, and hence beam intensities, \φ9\
2
. The same 

set of calculations may then be carried out for the next orientation of interest 

except that in i) only the diagonal elements of A R need to be recalculated. 

Stage ii) occupies by far the largest amount of computer time for large values 

of n, hence the necessity to change orientation the smallest possible number 

of times during a set of calculations. An outline of the calculation process 

is shown in Fig. 7. 

3 3 . Planar faults. 

The equations used in the 2-beam situation may be carried over without 

modification (except increase in size). The beams at the lower face of the 

crystal are described by eq. (14) with the fault matrices of eq. (10) being 

generalised to 

Fjk = {exp [ioc]}jk . (22) 

The method of calculation is similar to that shown in Fig. 2 for the 2-beam 
case, with the calculation of Cj and being replaced by the equivalent 
sections of Fig. 7. 

Other cases (e.g. lattice fringes, moiré patterns, etc.) follow in a similar 
way by analogy with the 2-beam situation. 



474 M. J. Goringe 

3 4 . Modified extinction distances. 

In many cases, however, (e.g. in the case of systematic reflections) we are 

concerned only with the perturbing effect of weakly excited beams on the 

two principal beams φ0 and φ9. Under these conditions only two Bloch 

waves (/ and j) are strongly excited and the main features of the contrast are 

governed by their interference with each other. Thus we have a « principal » 

extinction distance £ ( = l / (y

( î )
—-y

0 )
) ) which may be used in place of ξ9 in 

2-beam calculations with a consequent saving in computing time. The value 

of ξ may be calculated by the «-beam theory of eq. (18) and Fig. 7, or under 

certain circumstances analytically. An example of such an analytical cal

culation is given by Howie (

8
) for the 4-beam symmetrical systematic situa

tion with the incident beam at the Bragg angle for the lowest order reflection g 
(see Fig. 8), the result being 

2k Mc = U,+ U3+ {(g* + ( C ^ - U3)/2Y + (U± + U2ff-

- { ( S
2
- (Ok - U3)/2Y + ( ϋ ί - U2ff , (23) 

I I 

Fig. 8. - Reflecting sphere construction for Howie's 4-beam formula for extinction distance ξ. 

where | = l/Ak, ξ h = K/Uj, (j= \g — h\), U0 and Κ being the modified 
lattice potential and incident electron wave vector respectively. Equation (23) 
is expected to hold reasonably well when U2>U3 and g

2
^\Ug\, i.e. struc

tures with uniform structure factors at not too high energies (Ug increases 
with energy), e.g. for 100keV electrons with g = l l l equation (23) gives values 
of ξ = 507 À and 127 Â for Al and Au respectively, while ten-beam theory 
from eq. (18) (see Fig. 9 for typical graph) yields ξ = 503Â and 117Â, 
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using ξ ηι values of 556 Â and 159Â (and suitable values for the higher orders 

required). It should be noted that the diffraction conditions envisaged here 

are the nearest possible to 2-beam ; the systematic reflections cannot be avoided 

by suitable tilting. 

EXTINCTION 

140 h 

2 U t 8 10 hKJMBER 
OF BEAMS 

Fig. 9. - Graph showing the variation in the 200 extinction distance (1/ΔΚ) of gold as 
a function of the number of systematic beams included in the calculation. 100 keV elec

trons. (D. J. H. Cockayne.) 

The graph shown in Fig. 9 is a typical result for the effect of systematic 
reflexions on strong low-order principal reflections. The decrease in ξ with 
increasing number of beams is not, however, perfectly general; the reverse 
may occur for higher order reflections or in structures with varying structure 
factors, e.g. silicon g = 1 1 1 , 2-beam ξρ = 605 Â, while the many-beam system
atic value is 617 Â (Booker (

9
)). 
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4. Imperfect crystals. 

4 1 . ψο, φ g formulation (2-beam). 

Here it is convenient to turn to the historically earlier description of the 

dynamical theory: the wave-optical formulation. Here the basic 2-beam 

equations for the imperfect crystal are expressed as a pair of complex first 

order differential equations for propagation of waves in the z-direction of 

the form 

d<p0 π / i 1 \ 

(24) 

where 

(25) 

R (x, y, z) is the local displacement from the ideal position. If β'9 is every

where zero we have perfect crystal, and the analytical solutions of eqs (4) 

are produced. Thus, provided β'9 is known for all points in the foil eqs (24) 

can, in principle, be integrated numerically from the initial conditions at the 

top of the foil (φ0 = 1, φ9 = 0) through to the bot tom of the foil. Methods 

of calculation of β'ϋ for several cases are discussed elsewhere (Brown, this 

volume). 

Now numerical integration of this kind is only feasible using a computer, 

the eqs (24) being of the standard form 

suitable for integration by processes such as Runge-Kutta or Nordsieck (

1 0
) 

which are usually available as standard library routines. In all cases the 

integration is carried out by an integration routine which calculates cp(z + h) 
given <p(z), where h is termed the external step length. This routine (see Fig. 10) 

must have available to it a subroutine for calculating /(<p), which, in turn, 
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φ(*) *J integration routine -> φ(ζ + h) 

subroutine for / 

subroutine for β'9 

eq. (26) 

eq. (25) 

Fig. 10. - Schematic program showing operation of integration routine. 

includes calculation of β'09 best carried out in another subroutine. This second 
subroutine will be particular to individual problems while the former two 
are applicable to problems in general. 

The integration routine often integrates numerically to a specified accuracy, 
subdividing the external steplength h into internal steplengths hi in order to 
achieve this. An example of the action of such a self-adjusting routine is 
shown in Fig. 11 where the regions of foil integrated (by a Nordsieck routine, 

0.02 

0.01 

Fig. 11. 

regions integrated using internal steplength 
given value (À). 

..9 3.9 7.8 * 

hj of 

3.9_ . 7 . 8 . . 1 5 . 6 . 

100 200 300 DEPTH IN 
CRYSTAL (À) 

Example of steplength taken by integration routine of Nordsieck for a screw 
dislocation. (D. J. H. Cockayne.) 
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actually integrating equations in the Bloch wave formulation ; see Subsect. 4*3 

below) using hi of the given value are delineated by dotted lines and β
1
 by 

the full line. During the initiation of the routine hi is very small, but after 

a few steps the numerical process is changed and while β'9 is small h% increases. 

As β'g increases hi must be decreased to maintain accuracy, increasing again 

after the peak in β' has been passed. As the computer time used is directly 

proportional to the number of internal steps required it is obviously in the 

interests of efficiency for hi to be adjusted in some manner, and before self-

adjusting routines become available many ingenious devices were used ex-

a) 
φ h = d 

h = d\2 
fixed steplength /; 

throughout column 

check answers Q) ^ Q) 

answer 
d-+d\2 

if inaccurate 

output 

if accurate 

<P(z) ^ steplength /; 

- s tep _ Λ / 2 >»φ^(ζ + h/2). 
^ ψ\ζ + Λ) 

. s t e p Λ/2 >-φ

2
(ζ + Λ) 

Φ check φ · = φ 2 (all e lements to accuracy req.) 

tp
2A

 —> cp

1 
if inaccurate 

h -> h 12 
Λ &

 J 

if column unfinished 

if accurate 

-if column finished ^ • 

c) Calculate (β' + φ 'η advance of each use of routine for φ(ζ)-»φ(ζ -f h) 
and adjust h according to « rules » determined by experience (e.g. by 
method a)) to be appropriate. 

Fig. 12. - Schematic « nonautomatic » accuracy checks on numerical integration routines. 
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ternally to achieve the same effect (e.g. those outlined in Fig. 12). It is also 

apparent that these numerical methods are only feasible where β'ρ is con

tinuous and a reasonably small quantity, certainly not for columns very 

close to the core of a dislocation, for example, where β'9 might become in

finite; nor for faults (see Subsect. 2*3). 

A basic disadvantage of the φ0, φ9 formulation closely related to the varia

tion in computer time with β'9 is that eqs (24) predict appreciable values of / ( φ ) 
(eq. (26)) even in a perfect crystal, particularly if the crystal is not exactly 

at the reflecting position (Λ* = 0). Thus computer time is wasted changing φ0 
into φ9 and vice versa in a manner which has previously been discussed 

analytically (eqs (4)). This disadvantage may be overcome if Bloch waves 

are used, (as discussed in Subsect. 4*3 below) the time required to form the 

Bloch waves at the top of the crystal from the incoming beam and to calculate 

the emitted beams from them at the bot tom being more than compensated 

for by the quicker integration, particularly in thick foils or when there are 

large deviations from the reflecting position. 

4*2. cp formulation (/2-beam). 

It can be shown that eqs (24) may be generalised to the form 

^ c p ( z ) = 2ni[A(z) + {β9(ζ)}]ψ(ζ), (27) 

where A(z) = A + ΔΑ(ζ), A and {β'9(ζ)} being defined by eqs (17) and (25) 

respectively. ΔΑ(ζ) is a matrix with zero diagonal elements, its off-diagonal 

elements allowing the possibility of variations in ξ9 with depth. Thus the 

techniques described in Subsect. 4 Ί may be carried over directly to the 

/2-beam case. However, the disadvantages of the time wasted by integrating 

unnecessary changes are more acute than in the 2-beam case, all the beams 

oscillating with depth and sg unlikely to be small for all g. Hence the Bloch 

wave formulation is definitely to be preferred in this case. 

4*3. Bloch wave formulation. 

If the crystal with continuously varying strain field is imagined as an 

assembly of very thin slabs then the scattering matrix approach of Subsect. 2 '3 

(eq. (14)) and the basic relation between Bloch waves and diffracted beams 
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(28) 

where { g ( z ) }

-1
 is equivalent to Fn in eq. (14). Differentiating eq. (28), substi

tuting for cp and dcp/dz in eq. (27), using the fact that 

Input 

Orientations 

ξη, ξ'α values 

AC = C{y} 

Program Equation Output 
1 

(17) A im 

(29) 

A r and Aim 

A rC = C{yr 

t * * 

Thickness -
accuracy 

parameter" 

Strain 
parameters 

-M18/29) >C,{yr) 

integration routine 
dcf» 

dz 
2π/[...] 

4 • 

ψ(0 
-Jt— 

(30) ψ at desired 

subroutine 

(^ + ΔΑ)(ζ) 

intervals 

(β9 + ΔΑ) at desired 
intervals 

φ ( 0 = {exp [- 2nig-R(t)]}C{exp [Ιπίγΐ]} φ(ί) (28) 

subroutine J?(i) 

φ*(0 
(complex) 

Fig. 13. - Schematic program to calculate rc-beam solution for continuously varying strain 
fields. (D. J. H. Cockayne.) 

(eq. (5)) generalised to the w-beam case combine to give 

φ ( ζ ) = { e i z ^ q e x p [2π/7ζ ]}ψ (ζ) , 



Computing methods 481 

(equation (16) in full matrix form) and rearranging yields 

^ = 2πί {exp [ - Ιπίγζ]} C
 1

 [AA(z) + {β'ϋ(ζ)}] C{exp [Ιπίγζ]} ψ ( ζ ) . (30) 

Equation (30), given by Cockayne (
7
), is a more general equation for Bloch 

wave scattering than that normally derived (Hirsch et al. Q) p. 291), including 
in addition to {β9(ζ)}, the possibility of changes of extinction distance (caused 
by replacement of parts of the crystal by different (but similar) material) 
in the term ΔΑ(ζ). 

The method of calculation in this case is a combination of the «-beam 
perfect crystal calculations of Subsect. 3*1 and the numerical integration of 
eq. (30), which is of the same form as eq. (26), by the techniques described 
for the φ0, ψ9 case in Subsect. 4*1. If the relative phases of the waves are 
unimportant then the factor {Q(z)}~

1
 may be omitted from eq. (28) for 

simplicity. However, in the flow diagram of a general Bloch wave computer 
programme shown in Fig. 13, it has been included, which enables relative 
phases as well as amplitudes to be obtained as output, e.g. for lattice fringe 
calculations. 

5. Comparison of model calculations with micrographs. 

5 1 . Line profiles. 

The traditional method of comparison of the results of calculations on a 
proposed model with actual micrographs is by comparing line profiles (i.e. cal
culations along straight lines in suitable orientations; for typical examples 
see Hirsch et al. (

x
)) with microdensitometer traces from experimental micro

graphs. For many purposes this is quite adequate, particularly if only quali
tative comparison is required. In principle, line traces contain sufficient in
formation in a quantitative sense as well, and in certain cases where inten
sity variations only occur in one direction (e.g. inclined planar faults, wedge-
shaped crystals, dislocations lying parallel to the foil) this information is 
complete. Where there are intensity variations in two dimensions, e.g. 
dislocations threading the specimen from top to bottom, a number of traces 
is required to detect the characteristic « zig-zag » or « spotty » contrast 
(see Fig. 14 and 15). 

31 



\. 14. - Overprinted line printer output simulating image of a dislocation in Fe-34A1 calculated using anisotropic elasticity theory; 
print with characters used to produce grey scale visible, b) print out of focus to simulate a micrograph more closely. (R. C. 

Crawford.) 

-Ρ* 
οο 
Κ) 
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Fig. 15. - Micrographs of dislocations in Cu 10 at % Al with dislayed calculations (out
lined). The figures on the micrographs give the operating reflection. (P. M. Hazzledine, 

H. P. Karnthaler and M. S. Spring.) 
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5 2 . Two-dimensional displays. 

However the errors involved in microdensitometry caused by slight varia

tion in local crystal thickness, for example, and the fact that micrographs 

are « pictures » has led to the use of two-dimensional displays of calculations 

for comparison with micrographs. Early display methods included pen and 

ink contour maps (e.g.  Hashimoto, Howie and Whelan (

u
) ) and pseudo-

micrographs with a strictly limited grey scale formed by photographic super

position (e.g.  Goringe and Valdrè (

6
)). With the increase in computing 

facilities in recent years display methods have been developed considerably, 

two different techniques being now commonly used to obtain pseudo-

micrographs. In the first method a two-dimensional display is produced by 

converting intensities into characters to be printed by the conventional line 

printer used as an output device for most computers. To achieve an adequate 

grey scale it is necessary to overprint certain characters (Head (

1 2
)), the 

choice of characters being dictated by the particular type-face used on the 

printer and the results of preliminary densitometry of photographs of test 

output strips. An example of a calculation for a dislocation threading a foil 

is shown in Fig. 14c) where the characters used in the printing may be distin

guished. Figure 14b)  shows the same output printed out of focus (so that the 

characters cover the paper more fully) in an attempt to simulate a micro

scope dislocation image more closely. However, in this case the grey scale 

has not been corrected for the effects of defocus and thus the gain in image 

quality is not as marked as might be expected. For many high quality examples 

reference should be made to Head (

1 2
) . In the second technique the calculated 

intensities are converted to spot patterns of variable density and brightness 

on a cathode ray tube display (see e.g.  Spring (

1 3
)) which is part of the buff

ered output chain of the computer. Photography of this display, usually 

out of focus by some standard amount, yields exceptionally high quality 

pseudo-micrographs. Examples of computed dislocations superimposed on 

micrographs to which they correspond are shown in Fig. 15. The second 

method (CRT display) is considerably more expensive in operation and for 

many purposes adequate « micrographs » may be obtained by suitable photo-

reduction of line printer output. 
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6. Time-saving techniques. 

As computer calculations are expensive, consideration must obviously be 

given to methods of minimising the amount of unnecessary calculation under

taken (in addition to the filtering-out of worthless calculations!). This point 

has already been touched on in Subsect. 4'3 where the advantages of the Bloch 

wave formulation were discussed. Reference to Fig. \6d) shows how time is 

a) A2 

A
3 ^ ^ C d e f e c t t 

f \ 
r 

Ο I 2 3 m 

Ο 

b) 

t 

1 . 
2 -

' 
i 

t 

m> 
-m-H 

^ 2 m 

^- d e f e c t 

> 

2t 

Fig. 16. - d) Conventional arrangement of (ra+1) columns to calculate contrast from a 
defect in a foil of thickness /. b) Head's single column in a foil of thickness 2/ used to 

synthesize the (m-fl) solutions of a). 

wasted in conventional calculations on defects (e.g. dislocations) threading 
the foil. If calculations are made down columns denoted 2 or 3 then the 
strain field experienced over the section AiBi (i = 2, 3) is identical if surface 
effects are ignored. One method of avoiding this wastage would be to cal
culate the scattering matrices (see Subsect. 2*2 and 2*3) for the distorted 
region AiBi and perfect crystal regions of varying thicknesses and multiply 
out as required for the various columns. A variant of this principle was, 
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in fact, adopted by Head (

1 2
) for the 2-beam case using φ0, φ9 notation 

(Subsect. 4Ί ) . 
Equations (24) are first order differential equations for φ0 and φ9 and thus 

there are only two independent solutions, all other solutions being linear 

combinations. Thus (if surface effects may be ignored) integration of eqs (24) 

through a foil 2t thick with the dislocation at its centre (Fig. 16Z>)) in 2m 
steps using starting conditions « 0 » (φ°0'° = 1,φ°'° = 0) and « g » (φ

9

ο>°=0, 
φ
9,0
 = 1) and storing the solutions (φ°0'

3
\ ψ

0
^ and φ%

3
, φ

9
^) after each step 

enables solutions cp
Q

0, cp
q

g for the g-th column (0<q<m) of Fig. 16a) to be 

found from 

^ = « w + 9 + «K m + 9 > < = « w + i + « K r a + e , (31) 

such that 

<Ψ°ο
9
 + a

9

g<PT = 1 , α%Ψγ + W = 0 , (32) 

or, in matrix notation, 

such that 

Φΐη«*^ = 9Ρ*«*, 02a) 

ο and g being dropped for clarity. Operations in the form of eq. (31) and (32) 

are fast compared with repeated use of the integration routine and, assuming 

that storage of solutions is also rapid, then the time taken to calculate (m + 1) 

columns in a foil of thickness t by this method is only 2x2txT (i.e. two in

tegrations, ο and g, through a foil of thickness 2r, where Τ is the time taken 

to integrate unit thickness, assumed constant) compared with (m + 1) χ 

χ txT for integration of individual columns, i.e. less by a factor 4f(m + 1). 

Of course Τ is only approximately constant, depending on the strain field, etc. 

and is much increased in the former case if the external step length (t\m) 
is less than the internal step length which would give the required accuracy 

(see Fig. 11). Thus the optimum improvement is achieved by making t/m 
approximately equal to an average internal step length. 

In principle the Head technique is immediately extendable to the /7-beam 

case in the cp formulation, eqs (3la) and (32a) now relating nxl vectors 

and nxn matrices. The necessary η independent solutions are found from 

starting conditions cpi n i t i ai = (1, 0, 0, 0 . . .) , ( 0 , 1 , 0 . . . ) , etc. On the same 
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basis as before the ratio of computing times now becomes 2n/(m+ 1), i.e. less 

favourable than in the 2-beam case. Also, as discussed in Subsect. 4*3, the <p 
formulation is not really suitable for «-beam calculations because of the 

oscillatory form of the components of cp. However, there seems no reason 

why the Head technique should not be applied to the Bloch wave formula

tion (with the same favourable time factor 2n/(m + 1)) by the straightfor

ward replacement of cp by ψ in eqs (31a) and (32a) and the use of initial 

conditions of the form *J>i n i tiai = ( 1 A 0 . . .), (0, 1,0.. .) , etc. The only addi

tional requirements are that 4 * i n c i de nt must be defined through an equation of 

the form of eq. (20), i.e. 

^• l ' inc ident = ^ i n c i d e n t (33) 

and the final result cp# through an equation of the form of eq. (28) 

<pff = C{exp [2πίγί]}ψ<ι. (34) 

To the author 's knowledge no work has yet been carried out along these lines, 

but it does appear that the resulting improvement in efficiency accruing from 

the combined use of the Bloch wave formulation and the Head technique 

may become important in situations where many beams must be considered, 

e.g. in high voltage electron microscopy image calculations. 

7. Uniqueness of computed results. 

Recently Head (

1 2 a
) has shown that for certain analytic displacement fields 

(with zero derivative at infinity and such that there is a direction in the object 
along which displacements are constant), e.g. dislocation strain fields, there 
is usually a unique reconstruction of the component of the displacement 
field in the direction of the g-vector from measurements of intensity on one 
micrograph. It follows that three micrographs taken with noncoplanar g-vec-
tors uniquely identify the defect. In a second paper by Head (

1 2 b
) the analysis 

is extended to the «-beam case without reservation and to the case of discon
tinuous displacement fields (e.g. stacking faults) with the proviso that the 
reconstruction may not necessarily be unique. Actual reconstructions from 
experimental micrographs have, as yet, not been calculated and it remains 
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to be seen whether experimental errors can be overcome sufficiently well 

to enable reconstruction calculations to be undertaken with any confidence. 

However the uniqueness proofs do confirm that the process of calculation 

from defect models for comparison with experimental micrographs is a very 

reasonable one; if a good fit between the two is found then it is most likely 

that the model is correct, being the « unique » solution. 

8. Sources of useful parameters. 

In all the preceding discussion it has been assumed that the values of 

ξ09 ξ g suitable for a particular application have been known (or that the 

model, e.g. perfect crystal, was set up to measure them). Early on it was 

found that ratios of ξ'9/ξ9 of approximately 1 0 were suitable for metals such 

as copper and stainless steel, on which much work on dislocation image 

contrast was carried out. The absolute values of ξ9 were calculated from the 

tables of atomic scattering factors, / e, for electrons then available. Hirsch 

et al. Q) quote values of / e for the whole periodic table from Ibers and Vainsh-

tein (

1 4
) and values of ξ9 for various elements using the analytic approxi

mation to fe of Smith and Burge (

1 5
). For more up-to-date data on / e refer

ence should be made to Doyle and Turner (

1 6
) and on absorption parameters 

to Humphreys and Hirsch (

1 7
) and Radi (

1 8
) . 

9. References to alternative formulations. 

In the space available it has not been possible to review computing methods 
based on more than one basic approach (that of Howie and Whelan) to the 
problem of diffraction contrast; in particular no mention has been made of 
the Cowley-Moodie approach (see e.g. Cowley (

1 9
)), or to calculations which 

do not involve the column approximation (see e.g. Howie and Basinski (

2 0
)), 

or to the modified Bloch wave approaches of Wilkens (

2 1
) or Yoffe (

2 2
) 

(see also Problem 20 of « Typical Problems . . .» in this volume). The recent de
velopment of interest in high-resolution « weak-beam » experiments is also 
omitted, being dealt with in some detail in Problem 16 of «Typical Prob
lems. . . » in this volume. 
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Typical Problems in Electron Microscopy 

M . J. GORINGE 

Department of Metallurgy, University of Oxford - Oxford, England 

C . R . H A L L 

Cavendish Laboratory, University of Cambridge - Cambridge, England 

1. Introduction. 

The following problems cover three main topics: i) basic diffraction theory 

(problems 1-11; see A. Howie: this volume), ii) contrast caused by defects 

(problems 12-20; see L. M. Brown: this volume) and iii) radiation damage 

(problems 21-26; see M. J. Makin : this volume). An outline solution is 

appended for each. For further references to basic material the following 

standard texts are suggested: stereographic projection and crystal symmetry, 

Phillips (

x
) ; reciprocal lattice and diffraction, James (

2
) ; electron diffraction 

and electron microscopy, Hirsch et ai (
3
). 

2. Problems. 

Problem 1 - Find the co-ordinates of the points in the reciprocal lattice if 
in the real cell atoms are at positions (see Howie, p . 276) given by: 

i) (0, 0, 0), ( 0 , 1 , J) , ( I , J , 0), ( i , 0, i ) in a cubic cell; 

ii) (0, 0, 0), ( | , | , 1 ) in a cubic cell; 

iii) (0, 0, 0), (2#/3, a/3, c/2) in a hexagonal cell. 

Problem 2 - Index the patterns of Fig. 2.1 which are for: a) fee, b) bec, 
c) hep, d) NaCl . What is the approximate beam direction in each case? 
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(ooo) 

ai) 

(ooo) 

a ii) 

(ooo) 

(ooo) 

bi) b ii) 

c i ) 
Fig. 2.1 

c ii) 
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Fig. 3 i . l . 
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Problem 3 - The two diffraction patterns of Fig. 3.1 correspond to copper 

at 100 keV. Determine the approximate orientation for each and, assuming 

that in order to get from one to the other the crystal is tilted so that the Ki-

kuchi lines, other than the pair passing through the spots, move away from 

the centre of the pattern, find the angle of tilt between them (a = 3.61 Â). 

Fig. 4.1. 

QL ι I ι 1 ι I ι I ι I ι I ι I I 1 ι I ι 1 ι I ι 1 i 1 ι I ι I ι 1 ι I ι 1 ι I I I ι I ι 1 I I I I 

0 0.2 0 Λ 0 .6 0.8 1.0 1.2 
5 , Η Θ / Λ A 

Fig. 5. - Atomic scattering factor (not relativistically corrected). 
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Problem 4 - Calculate the accelerating voltage of the microscope used 
to take the diffraction pattern of aluminium (a = 4.08 Â) shown in Fig. 4.1. 

Problem 5 - Given the graph of nonrelativistically corrected scattering 
factors as a function of sin θ/λ (Fig. 5), calculate the extinction distances for 
the following reflections: i l l , 110, 220, 222, 333, assuming that the ma
terial is: a) fee (a = 4 Â); b) bec (a = 3A A); c) diamond structure (a = 5.2 Â). 
[Atoms in the diamond unit cell are at (0, 0, 0); ( | , | , 0); (0, \)\ ( J , 0, | ) ; (1 1 I V f 3 3 Π . A 3 3 \ . / 3 1 3 \ 1 
U ' 4 5 4 / ' V4> 4 5 4 7 ? V4 » 4 5 4 / ' V4 ' 4 ? 4/*J 

Assume Ε = 80 keV, when λ = 0.042 Â and m/m0 = 1 . 1 6 . 

Problem 6 - The bend contour in the photograph of Fig. 6 corresponds 
to a 111 reflection in Al at 100 kV, the extinction distance for this reflection 
being 560 À. Estimate the thickness at a number of points along the contour. 

Problem 7 - The potential V(r) and the wave function y>k(r) describing an e-
lectron of wave vector A: in a perfect centro-symmetric crystal may be written: 

9 

Wk(r) = Σ
 C

9(V exp [2πι(* +g)-r], 
9 

where the summations extend over the reciprocal lattice vectors g. Derive 
the equations satisfied by the C9(k) and hence find the forms of the four pos
sible waves which are propagated in a cubic crystal when the (220), (200) and 
(020) planes are simultaneously at the reflecting position. Calculate the inten
sity distributions in each of the Bloch waves around the atomic positions. 

Problem 8 - A certain (hypothetical) absorption process gives rise to a 
uniform probability of absorption in a cube of side cud centred on each atom, 
where d is the distance between the Bragg planes and α < 1. What is the 
ratio of the absorption distance of the well-transmitted Bloch wave to that 
of the strongly absorbed wave at the exact reflecting orientation? What 
happens to the ratio as α tends to zero? 

Problem 9 - A crystal of nickel is prepared in the form of a wedge with its 
upper surface parallel to (100) and its lower surface to (110). Electrons of 
energy 100 keV enter through the upper surface and travel in the (001) plane 
perpendicular to the edge of the wedge, falling on the (020) planes at the exact 
Bragg angle. If the extinction distance for this reflection is 250 Â calculate 
the angular splitting of the reflected beam due to refraction as it leaves through 
the lower surface. 



Fig. 6. 
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Fig. 14. 

Two similar lattices rotated by a small angle 8Θ give rise to a rotation moiré 
pattern. If this is misinterpreted by assuming that the lattices have different 
spacings but are parallel (parallel moiré) what lattice parameter difference 
would be deduced? 

32 

Problem 10 - Use the phase-grating approximation (see Howie, this vol

ume) to obtain the intensity distribution produced at the reflecting position 

by two superposed crystals each of thickness / which have potentials in 

the (x-y) plane given respectively by: 

V0 + V1 cos (2ngxx), ν0+ν± cos (2ng2x). 

Problem 11 - A crystal of thickness t has a phase-grating potential given by 

V0 + Vx cos (Ingxx) + V1 cos (2ngyy) + V2 cos (2n(gxx + gyy)) . 

Calculate the intensity on the phase-grating approximation of the diffrated 

beam having g = fe, gy, 0). 

Problem 12 - Draw an edge dislocation in a foil with gb = 1, showing 

the Bragg planes. On which side of the dislocation does the image lie for 

orientations of the matrix such that a) s>0 and b) s<01 

Problem 13 - Draw a coherent misfitting sphere in a foil showing the 

Bragg planes. Why is there a line of no contrast perpendicular to g through 

the centre of the defect? Show that there will always be such a line of no 

contrast for displacements which are symmetrical with respect to the Bragg 

plane through the centre of the defect. 

Problem 14 - Show that the moiré fringe spacing which arises from 

the two spots and g2 as in the diffraction pattern of Fig. 14 is 

1 

\gi — g2\ ' 
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Fig. 15. - Micrograph taken using objective aperture of size and position as in inset dif
fraction pattern (correctly oriented). 

Problem 15 - The micrograph of Fig. 15 was taken using an objective 

aperture of size and position indicated on the inset diffraction pattern (which 
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is correctly oriented). Explain the nature of the closely spaced fringes on 

the micrograph and calculate the size of the unit cell (cubic) of the spec

imen material. [Micrograph courtesy of I. L. F. Ray.] 

Fig. 16.1. - Electron micrograph (negative print) of Cu-10 at % Al taken using an objective 
aperture of size and position indicated in the inset diffraction pattern (correctly oriented). 
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Problem 16  -  The micrograph of Fig. 16.1 of copper-10 a t % aluminium 
(fee) was taken using an objective aperture of size and position indicated on 
the inset diffraction pattern (which is correctly oriented). The micrograph 
(which is a negative print) is of a foil with normal very near [111] and the 
dislocation is dissociated according to the scheme 

* = \ [1Ï0] -*  bi  + A ? = ! [121] +1 [2ΤΓ] (16.1) 

and near A the dislocation line direction u is parallel to [112]. 

a) Calculate g-b*9 g'b\ and g-R for the two partial dislocations 
and the connecting stacking fault. Use the results to explain the visibility 
of both partials and the absence of stacking fault contrast. 

b) Assuming that the dark lines accurately define the positions of 
the partials, estimate the stacking fault energy, γ, of the material from the 
formula 

μΖ>

2
 (2 — ν) Γ 2v cos 2a 

2ΑπΔ (\ — v)[ ~ (2 — v) 
(16.2) 

where μ is the shear modulus, ν the Poisson ratio, Λ the separation of the par
tials, b the total Burgers vector of the dislocation, and α the angle between 
b and u. 

c) Note that eq. (16.2) predicts values of Δ depending on u. Confirm 
this variation by measurements near A and B. 

d) Calculate the value of the deviation parameter s22-0 for the dark 
field beam used to form the micrograph. 

e) Using the co-ordinate system of Fig. 16.2 for the total dislocation 
in edge orientation we have at point Β a displacement R = R* + R\ such 
that 

g R P g'bf I sin20* \ . 

^ Γ + 4 ( ΐ ^ 7 ) ) '

 , = 1
'

2
'

 ( 1 6
·

3) 

The observed positions of the « weak-beam » peaks occur for values of χ 
and ζ where 

j , + (d/<fc)(s ••») = <) (16.4) 
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and 

(d

2
/dz

2
)(g-10 = 0 . (16.5) 

-Δ- B(x,z) 

Fig. 16.2. - Co-ordinate system used in calculation. 

Show that the observed separation Z l o bs is given by 

Aobs = (A* + 4lc*f, 

where 

and 

(16.6) 

(16.7) 

f) Using the results of d) and e) estimate the correction necessary 

to the value of γ calculated in b). 

Assume a = 3.66 Â, μ = 4 · 10

11
 dyne c m

- 2
, ν = J and electron wave

length λ = 0.032 Â. Note that e) entails considerable algebra and only the 

results are required for / ) . 
[Micrograph courtesy D . J. H. Cockayne and I. L. F . Ray.] 

Problem 17 - Calculate: 

a) the maximum density of dislocations that can be observed under 

2-beam bright field conditions in copper (assume foil thickness 2000 Â ; 

100 keV electrons); 

b) the maximum stacking fault energy, y, that can be measured by 

the node method (see Fig. 17) assuming 

yw 1 

JAb*
=
3 ' 
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Fig. 17. 

In copper and gold, no extended nodes are seen. What are the minimum 
values for y Au and y C u? (Data as per Table.) 

Material 
Extinction distances (Â) a μ Material 

111 200 220 (Â) (dyne cm

- 2
) 

Cu 242 281 416 3.608 4 -10

11 

Au 159 179 248 4.070 2.8-10

11 

(See Problem 16 above for an alternative method of measuring γ.) 

Problem 18 - In the light of your answers to Problem 17 do you think 

that the resolution of the electron microscope limits present-day observa

tions in solid-state physics ? 

Problem 19 - A specimen of thickness t contains a small inclusion of thick
ness Δζ which scatters electrons differently from the matrix. The crystal is view
ed under 2-beam dynamical conditions at the Bragg position (s = 0) and the 
effective extinction distances are ξ97η for the matrix and ξ9ι for the inclusion, 
which may be assumed to have the same crystal structure as the matrix. 
Calculate the visibility of the inclusion as a function of a) its depth in the 
specimen and b) the specimen thickness. How would you expect these results 
to be modified if the specimen is not precisely at the Bragg position (i.e. s^0) ? 

Problem 20-a) Show that under 2-beam conditions the change in transmitted 
intensity due to an imperfection is proportional to the real part of the change 
in the well-transmitted Bloch wave amplitude. (Assume that the crystal is 
thick enough to reduce the amplitude of the absorbed Bloch wave to zero.) 

b) Given the equation governing the scattering of Bloch waves into the well-
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transmitted waves (here denoted 

1 Ί 
(20.1) 

d V < 1>
 0 ·Λ' sin

2
 ^ y.

(1)
 — ̂  sin β exp [2m'Akz]ipW 

(see this volume, Howie, eq. (51); Goringe, eq. (30); or Hirsch et al, (
3
) 

eq. (12.25)); by making the following substitutions to eliminate intraband 
scattering, 

and 

ψω = ψω exp [2ni sin
2
 (fi/2)g-R] (20.2) 

Ψ( 2 ) = ψ(2) e xp [2π/cos
2
(^/2)^-i?] , (20.3) 

using the fact that β'9 = (a/dz)(g-R) and integrating (assuming Ψ
{2)

 constant 
over integration), show that the effect of an imperfection at depth z0 is 

ΑΨ(ι) = _ ψ(2)ΠΊ s in β exp [2niAkz0] jβρ(ζ — z0) · 
Z—20=— oo 

•exp [2π/[Δ/τ(ζ — z0) + ^ * ^ c o s ^ ] ] d ( z — z 0) . (20.4) 

Hence show that if β'9(ζ — ζ0) is odd then Re(AîjP
( 1 )

) is proportional to 
cos 2πΔΑ:ζ0 and if β'9(ζ— z0) is even then Re(AlP

( 1 )
) is proportional to 

sin 2nAkz0. 

Deduce the depth-variation in the visibility of c) stacking faults, d) dis
locations and e) centres of strain. 

Problem 21 - Calculate the maximum knock-on energy along a) [111], 
b) [100] and c) [110] that can be transferred to atoms in a copper target 
bombarded along [100] by protons of energy 5 MeV. [At.wt Cu = 63.6.] 

Problem 22 - In copper exposed to a flux of 1 · 10
13
 c m

-2
 s

-1
 of neutrons of 

energy 10 keV calculate d) the concentration of primary knock-ons per year, 
b) their mean energy and c) the total point defect concentration produced, 
assuming the hard-sphere model and that no recombination takes place. 
[Copper is fee, a = 3.608 Â, atomic weight 63.6, displacement energy 
Ed = 19 eV, total neutron cross-section σ = 3 * 1 0

- 24
 cm

2
.] 
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Problem 23 - Calculate the energies of a cluster of 1000 vacancies in copper 

when in the form of a) a spherical void, b) a Frank loop and c) a. perfect loop 

on (111). [Assume surface energy γ'= 1670 erg c m

- 2
, stacking fault energy 

y — 85 erg c m

- 2
, lattice constant α = 3.608 Â, shear modulus μ = 4 · 1 0

η 

dyne c m

-2
 and Poisson's ratio ν = |.] 

Problem 24 - If a copper sample bombarded by α-particles contains 10

15 

c m

-3
 equilibrium gas bubbles 200 Â in diameter at 0°C, calculate a) the volume 

swelling and b) the volume of gas at N T P per cm

3
 of sample. Calculate c) the 

gas bubble density and d) volume swelling if the gas is redistributed into 

bubbles 100 Â in diameter. [Assume helium gas is perfect; surface energy 

of copper = 1670 erg c m

- 2
. ] 

Problem 25 - Calculate the growth factor G if 2· 10~

5
% burn-up in α-ura

nium results in the formation of 10

15
 c m

-3
 interstitial loops 200 Â in diameter. 

[α-uranium is orthorhombic with a = 2.85 Â, b = 5.87 Â and the loops 

lie on (010).] 

Problem 26 - If there are 10

15
 c m

-3
 Frank loops 50 Â in diameter present 

in an irradiated crystal calculate the critical shear stress assuming that the 

strength of each loop intersected exceedsμ£

2
 i.e. the dislocations bow between 

the loops rather than cutting through them. [Assume μ = 4 - 1 0

11
 dyne c m

- 2
, 

a = 3.608 Α.] 

3. Solutions. 

Problem 1 - To find the co-ordinates of the points in the reciprocal 

lattice if in the real cell atoms are positioned a t : 

i) (0, 0, 0), (0, i , ! ) , ( i , i , 0), ( i , 0, i ) in a cubic cell (fee) ; 

ii) ( 0 , 0 , 0 ) , ( I , I , i ) in a cubic cell (bec) ; 

iii) (0, 0, 0), (2tf/3, a/3, cj2) in a hexagonal cell (hep) ; 

Solution. The unit vectors of the reciprocal lattice are given by 

a* = (b χ c)[V, b* = (cx a)/V, c* = (α χ b)/V, 

where V, the volume of the unit cell, is given by a · (b χ c). 
Which points actually exist within this lattice depends upon the space 

group of the real cell, and can be found either by looking in the Interna-
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tional Tables for X-ray Crystallography, vol. 1, or in the case of simple struc

tures, by working out F (Howie, (3), p . 276), the scattering amplitude of 

the unit cell. 

In i) the reciprocal cell is also cubic, and if the edge of the real cell is 

a, it has edge α* = I/a. Taking one allowed point to be at the origin it is 

found that the nearest points are at positions such as (α*, α*, a*), (2a*, 0,0), 

(2a*, 2a*, 0) etc. Thus the allowed points lie on a body centred cubic lattice, 

giving the rule that hkl are all odd or all even in fee patterns. 

Similarly for ii) the edge of the cubic reciprocal cell is again given by 1/a, 

but in this case the allowed points lie on a face centred lattice with co-ordi

nates such as (a*, a*, 0), (2a*, 0, 0), (0, 2a*, 0), the rule in this case being 

that h + k + I is even. 

In iii) the crystal cell is hexagonal, so that the reciprocal cell is also he

xagonal, but is rotated by 30° about the c axis relative to the real cell. 

Application of the above formula gives: 

a* = b* = 2/α\/ΐ, c* = 1/c . 

Using the four co-ordinate representation of points in this lattice (i.e. (hkil) 
where / = — h — k) we find, using the International Tables, volume 1, that 

all values of h, k and / are allowed except those for which (h — k) = 3n 
(n = 0, 1, 2 , . . . ) , when / has to be an even number. Thus the points (0, 0, 

0, c*), (0, 0, 0, 3c*), (0, 0, 0, 5c*), (2a*, — a*, — a*, c*) etc. are absent. Note 

however that reflected beams corresponding to these points are usually pres

ent in electron diffraction patterns as a result of multiple reflection (see 

Problem 2 c). 

Problem 2 - To index the patterns in Figs 2.\d)-d) (which are for a) fee, 

b) bec, c) hep, d) NaCl) and to find the approximate beam direction in 

each case. 

Solution. By measuring the spot separation along principal directions the 
ratio of the corresponding J-spacings and hence, for the cubic materials, 
the ratio of the two values of h

2
 + k

2
 + /

2
 can be found. This must be a 

ratio of two fairly small integers, and the two smallest which fit approxi
mately can be found. That these give the correct values for hkl for the two 
spots can be checked from the angle between the spots and the spacings of 
other pairs of spots in the pattern. The spots can then be indexed in a con
sistent manner, (see Figs 2.2) and the normal (which is the approximate beam 
direction) found as the vector normal to any two directions in the pattern. 

The hexagonal pattern is more difficult, and unless there is any obvious 
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symmetry recourse has to be made to trial and error. A list of the ratios 

of the spacings of the lower order planes and the angles between them is 

a useful aid. Usually in practice the approximate camera length is known. 

The normal to each pattern is denoted [uvw] in the Figures. The spots 

marked as crosses in Fig. 2.2c) ii) are reflections corresponding to points 

absent from the reciprocal lattice but which are present by multiple 

reflection. 

2 0 0 
• _ · 

Τ Τ Τ i n . [oil] 
0 2 2 0 0 0 0 2 2

 L J 

111 111 

2 0 0 

a i) 

4 2 2 4 2 0 4 2 2 

0 0 2 0 0 0 0 0 2 
[ ΐ 2 θ ' 

4 2 2 4 2 0 4 2 2 

a ii) 

Fig. 2.2 
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Τ32 2 2 2 3 Î 2 
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 L 

·' _ · · · 
312 2 2 2 132 

b ii) 

Fig. 2.2 
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1 1 2 0 1 2 

_· · · 
1 0 0 0 0 0 1 0 0 

0 1 2 1 1 2 

[ 0 21~ 

c 0 

0 1 1 111 

TOO 0 0 0 1 0 0 

X · · X 

Τ ι T on 

[ o i î ] 

c ii) 

Fig. 2.2 

Problem S - The two diffraction patterns in Fig. 3.1, Section 2, correspond 

to copper at 100 keV. Determine the approximate orientation of each and 

find the angle of tilt between them (for copper a = 3.61 Â). 

Solution. The two orientations correspond to the beam being approxi
mately parallel to [110] and [211], and the Kikuchi lines have been so indexed 
in Fig. 3.2. The angle between these two directions is 30°. For the 202 
reflection twice the Bragg angle (the spacing of the Kikuchi lines) is 1.63°. 
Hence by measurement the orientation in the upper pattern is found to be 
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• 
• 

• • 
• 002 

Î11 111 

220 000 

η ϊ 

• 002 • 
• • 

d i) 

4 2 0 3 3 1 

Î Ï 1 000 111 

[ 1 2 3

_ 

331 420 

d ii) 
Fig. 2.2 

0.68 of this angle away from the position at which [110] would bisect the 

direct and diffracted (111) beams; i.e.  1.11° away. Similarly in the other 

pattern the orientation is 1.47° away from the position in which [211] would 

lie in this direction. Hence the angle between the patterns is 30°— 1.11° — 

— 1.47° = 27.42°. 

Problem 4  - Calculate the accelerating voltage of the microscope used to 
take the diffraction pattern of aluminium in Fig. 4.1 (a  =  4.08 Â). 

Solution. In Fig. 4.2 the two poles have been identified as [111] and [343], 
which are an angle of 8.0° apart . Hence the separation of the 331 and 331 Ki
kuchi lines are measured to be 2.75°. The ^-spacing for this reflection is 
4.08/(19)* = 0.94 Â. Hence from the Bragg equation the wavelength of the 
electrons is 0.045 Â, and the energy is thus approximately 70 keV. 
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0 0 2 

1 1 1 i n 

• 
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• 
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• 

^ [211] 

• 

2 0 2 

. 2 0 2 

111 m 
Fig. 3.2. 

331 

0 2 2 

2 0 2 

2 0 2 

3 3 1 133 

Fig. 4.2. 

Problem 5 - Given the nonrelativistically corrected graph of scattering 
factor as a function of sin θ/λ (Fig. 5, Section 2) calculate the extinction 
distances for the following reflections: 111, 110, 220, 222, 333, assuming 
that the material is a) fee (a = 4 Â), b) bec (a = 3.1 Â), c) diamond structure 
(α = 5.2 Â). (Atoms in the diamond unit cell are at ( 0 , 0 , 0 ) ; ( | , | , 0 ) ; 
(0, h i ) ; ( i , 0, i ) ; ( i , h i ) ; ( i , i , έ); (έ , h f); (î> έ* Ι))· The energy is 80 
keV, 4 = 0 . 0 4 2 Â . m/m0=\A6. 
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Solution. The extinction distance ξ9 is given by (see Howie, eqs (30) 
and (35)): 

= nVc exp [Mg] 9
 (mlm0)ÀFg 

where 

j 

fj is the scattering amplitude of the atom located at Vj in the unit cell of vol

ume Vc. The effect of thermal vibrations is taken into account by the fac

tor exp[M^]: this is neglected in the present calculations, but it should be 

noted that it can be important, especially in the case of higher order reflec

tions. Substitution of the appropriate f into the above formulae gives: 

111 110 220 222 333 

a) fee 312Â 544 Â 697 A 1290 A 

b) bec — 320 Â 7J0À 1020 A — 

c) diamond 383 Â — 454 A — 1390 A 

Problem 6 - The bend contour in Fig. 6, Section 2, corresponds to a 

111 reflection in Al at 100 keV, the extinction distance for this reflection 

being 560 Â. Estimate the thickness at a number of points along the contour. 

Solution. The simplest method of thickness estimation is to count the 

number of thickness fringes in from the edge of the specimen at the exact 

reflecting position: thus A is at a thickness of about 2 .5ξ9. 
An alternative method makes use of the spacing of the subsidiary fringes 

across a bend contour. On the two-beam dynamical theory light fringes occur 

in bright field at values of thickness t and deviation parameter s given by 

t
2
 = n

2
/(s

2
 + Ι/φ , where /i = 1, 2, 3 , . . . 

Dark fringes occur at positions found by replacing η by (n — J). The local 
value of s can be estimated from the fact that the total change in s across the 
double contour for one of the reflections is given by g

2
/k, which has the value 

0.0066 A "

1
 for the 111 reflection in Al at 100 keV. Thus opposite the point A 
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on the micrograph the next dark fringe in (for which η = 4) is roughly 7/32 
of the way across the contour and hence is at a value of s of about 0.0015. 
Therefore: 

t
2
 = 12.2/((0.0015)

2
 + (0.0018)

2
), 

i.e. t = 2.7ξ9. 
If ξ9 is large enough and g is also large (e.g. a 311 reflection in alumin

ium) then 1/ξ9 can be neglected in comparison with s9 the fringes become 
evenly spaced with a spacing of $s9 and t is given approximately by 

t = l fis. 

Problem 7 ~ The potential V(r) and the wave function \pk(r) describing an 
electron of wave vector k in a perfect centro-symmetric crystal may be written : 

V(r) = Σ
ν
9

 e x
P V*ig ' Λ , V*(r) - 2

 e x
P P™(* + ) · r ] . 

Where the summations extend over the reciprocal lattice vectors g. Derive 
the equations satisfied by the C9(k) and hence find the forms of the four pos
sible waves which are propagated in a cubic crystal when the 220, 200 and 
020 planes are simultaneously at the reflecting position. Calculate the inten
sity distributions in each of the Bloch waves around the atomic positions. 

Solution. We use the simplifying relationships 

Substitution of the trial solution into the wave equation yields another equa
tion in which the sum of a set of complicated exponential terms equals zero : 
putting the coefficient of each exponential equal to zero gives a set of equa
tions of the form: 

(κ*-(k+gf) cg(k) + ΣυΛ cg_h{k) = ο . 

In the present case for convenience we write the Cg(k) as C 0, Cl9 C2 and C 3, 
and using the fact that the end of —k0 lies above the centre of the square 
defined by the four diffraction spots, these equations can be written in matrix 
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form as : 

K*-k
2

z-g
2
/2 

^200 

200 220 

200 

200 

2 

020 {/,« f/5 

U, 220 

i/5 

200 

200 

*

2
- f c

2

2- g

2
/ 2 

C0" 

where g = £ 2 0 0. 
The allowed values of kz are found by putting the determinant of the 

matrix equal to zero. This leads to four values for K
2
—k\ — g

%
\2 which 

are : U220, U220, U220± 2U200. There are also four corresponding column vec

tors of Cn- Because of the symmetry of the problem all the Cn in any one 

vector will have the same magnitude, differing only in phase. The relation

ships between them is more easily found from the fact that a rotation of 90° 

must leave the wave functions unaltered. This rotation multiplies each com

ponent by a factor exp [ΐηπ/2], where η has to be an integer to ensure that 

the function returns to its original form under 360° of rotation. The possible 

solutions are thus : 

η = 0 n= 1 

b 

ib 

- b 

-ib 

n= — l 

c 

— ic 

— c 

ic 

n = 2 

d~ 

— d 

d 

— d 

Matching these to a unit amplitude incident plane wave at the crystal surface 

gives a = b = c = d=l. Substituting these Cn into the original form of 

the solution gives the following x-y dependence of the wave amplitudes: 

η = 0 : cos (2nxfa) cos (2nyja), 

η = 1 : sin (2πχ/α) cos (2nyja) , 

η = — 1 : cos (2πχ/α) sin (2ny/a), 

η = 2: sin (2nxfa) sin (2ny/a). 

The squares of these amplitudes give the intensities in the four waves relative 

to the atomic positions. For η = 0 the intensity is a maximum along the 

33 
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rows of atoms and as scattering occurs mainly in this region this wave is 

strongly absorbed. For η = 2 the intensity is a minimum at this point and 

this wave is thus well channelled. The waves for η = dz 1 are not so strongly 

scattered as the wave with η = 0 but are less well channelled than the fourth 

wave. 

Problem 8 - A certain (hypothetical) absorption process gives rise to a uni

form probability of absorption in a cube of side ocd centred on each atom, where d 
is the distance between the Bragg planes and oc< 1. What is the ratio of 

the absorption distance of the well-transmitted Bloch wave to that of the 

strongly absorbed wave at the exact reflecting orientation? What happens 

to the ratio as α tends to zero? 

Solution. The ratio required is the ratio of the absorption probability 

of the strongly absorbed wave to that of the well-transmitted one. The strongly 

absorbed wave at the reflecting position has the form: 

A exp [2nikzz] cos(πχ/d). 

The probability of this wave being absorbed is given by the product of the 

wave intensity and the local absorption probability, integrated over some 

appropriate volume such as the unit cell. This becomes, since the absorp

tion probability is zero outside the cube of side ad: 

probability ocjyj*^
2
 cos

2
 (πχ/d) dx dy dz = A

2
(ocd)

2
 ^ocd + ^ sin (απ)j . 

cube side ad 

For the other wave this quantity is A
2
(ocd)

2
(ocd— (d\n) sin (απ)). 

The ratio is thus (απ + 8ΐΗ(απ))/(απ — sin (απ)). This tends to infinity as 
α tends to zero, corresponding to strong localisation of the scattering process 
about each atom and hence negligible absorption of the well-transmitted wave. 

Problem 9 - A crystal of nickel is prepared in the form of a wedge with its 
upper surface parallel to (100) and its lower surface to (110). Electrons of energy 
100 keV enter through the upper surface and travel in the (001) plane per
pendicular to the edge of the wedge, falling on the (020) planes at the exact 
Bragg angle. If the extinction distance for this reflection is 250 Â calculate 
the angular splitting of the reflected beam due to refraction as it leaves through 
the lower surface. 
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Solution. We assume that the angles involved are sufficiently small that 

the curved dispersion surface can be approximated by a plane. The relevant 

section through the surface containing the points corresponding to the waves 

excited is thus as shown in Fig. 9: 

Fig. 9 - Section through dispersion surface. 

Upon leaving the crystal through the lower surface waves with wave vectors 
which end upon A and Β are generated. The separation A-B is 4 - 1 0 ~

3
Â

- 1
, 

and as k = 21 Â

-1
 at 100 keV the angular separation of the two reflected 

waves is (4/27) ·10~

3
 r a d = 1.46· IO"

4
 rad. 

Problem 10 - Use a phase-grating approximation treatment to obtain the 

intensity distribution produced at the reflecting position by two superposed 

crystals each of thickness t which have potentials in the x-y plane given 

respectively by: 

V0 + V1 cos (2ng1x) ; V0+V1 cos (2ng2x). 

Solution. The wave at the bot tom of the crystal is given by: 

t 

[ C m 
2ni\ V(x,y,z)dz . 

ο 
Substituting the given potential and expanding the exponential (t small): 

1 H u 2f

 1
 cos (2ngx) cos (nàgx)\, 
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where g = (g1 + g^)/2, àg = g1—g2; expanding the first cos function as the 

sum of two exponentials and picking out the term in exp [2πΐ(χ + g)-r] gives 

for the amplitude of one of the diffracted waves: 

diffracted amplitude = (2mmV1t/h
2
 χ) cos(rcAgx). 

The intensity of the image formed using this beam thus oscillates with posi

tion across the specimen as cos
2
(nkgx), appearing as moiré fringes. The 

direct beam intensity can be found as the initial intensity less the intensity 

in the two diffracted beams. 

Problem 11 - A crystal of thickness t has a phase-grating potential given by: 

V0 + V± cos(2ngxx) + V1 cos(2ngyy) + V2 cos (2n(gxx + gyy)) . 

Calculate the intensity of the diffracted beam having g = (gx,gy,0). 

Solution. At the bot tom of the crystal we write the wave as 

ip(r) = exp [2π/χ · ι · + 2nimV0tlh
2
x]-

[ 2jiim Vt\ t 
(νλ cos (2ngxx) + νλ cos (2ngyy) + V2 cos {2ngxx + 2ngyy)) 

The second exponential is expanded as before except that second order terms 

are now included in order to take account of the scattering to (gx,gy,0) 
via gx and then gy or vice versa. The main terms which can give intensity 

in the beam under consideration are : 

2nimt \v2 cos(27rfex + gyy)) +
 2j

^(VÎ cos (2ngxx) cos ( 2 T T ^ ) ) J . 

Now cos(2ngxx)cos(2ngyy) can be written as 

J(cos (2n(gxx + gyy)) + cos(2n(gxx — gyy))) . 

Hence the coefficient of the cos(2n(gxx + gyy)) term is : 

2jzimt( , nimt \ 
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and the intensity of the diffracted beam is therefore 

( A

2
Z )

2
\

 2
 ( W V ' 

Problem 12 - Draw an edge dislocation in a foil with gb= 1, show

ing the Bragg planes. On which side of the dislocation does the image lie 

for orientations of the matrix such that a) s>0 and b) s<01 

Fig. 12. - a) Schematic section of foil showing reflecting planes near an edge dislocation 
with g-b = 1. b) Local orientation of reflection vector g. c) Reflecting sphere, d) Typical 

bright field rocking curve. 
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Solution. The edge dislocation in a foil is drawn schematically in Fig. 12a), 
where the directions of the electron beam, g and b are indicated. The image 

position may be found by reference to the lower sections of the Figure. 

Figure \2b) shows how the reciprocal lattice varies locally around the disloca

tion, rotating in both directions (positions Β and C) from the matrix orienta

tion (A and D, slightly different due to the insertion of the extra half plane). 

The reflecting sphere (Fig. 12c)), however, is fixed in reciprocal space for 

the particular matrix orientation considered. Thus the effect of the local 

rotation is to increase or decrease the local value of the deviation parameter s. 
Inspection of a typical rocking curve (Fig. \2d)) shows that the dark line of 

the bright field dislocation image occurs for a local orientation corresponding 

to / (s negative). Thus for case a), where s > 0, the image / will be found to the 

right of the dislocation, at C, say, as the sense of the required rotation is 

negative. In case b), where s < 0, the image will be to the left, at B, say. 

Problem 13 - Draw a coherent misfitting sphere in a foil showing the 

Bragg planes. Why is there a line of no contrast perpendicular to g through 

the centre of the defect? Show that there will always be such a line of no 

contrast for displacements which are symmetrical with respect to the Bragg 

plane through the centre of the defect. 

Solution. The Bragg planes through and surrounding a coherent misfit

ting sphere are shown schematically in Fig. 13, where g is in the plane of the 

paper. A typical displacement R is shown. It may be seen that R is zero every

where on the plane A A. As contrast is caused by the displacements R of 

the atoms from their ideal positions it follows that there must be a line of 

no contrast where the plane AA cuts the plane of projection of the image 

(perpendicular to the electron beam direction), i.e. a line perpendicular to g. 
A similar argument follows for any symmetrical strain field; the plane AA is, 

by definition, displacement-free and thus must produce a line of no contrast. 

Problem 14 - Show that the moiré fringe spacing which arises from the 
two spots gx and g2 as in the diffraction pattern of Fig. 14 is 1/|#χ — g2\- Two 
similar lattices rotated by a small angle 8Θ give rise to a rotation moiré pattern. 
If this is misinterpreted by assuming that the lattices have different spacings 
but are parallel (parallel moiré) what lattice parameter difference would be 
deduced ? 

Solution. If the amplitudes of the two beams contributing to the diffrac

tion spots are ψχ and φ2 respectively, then the total dark field disturbance Ψ 
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A 

Fig. 13. - Schematic section of foil showing reflecting planes near a coherent misfitting sphere, 

is given by 

ψ(?) = Ψι exp [2ni(k + &) · r] + φ2 exp [2ni(k + g2) · r] (14.1) 

and the intensity I(r) by 

Ι(τ) = \Ψ(τ)\* = 
= | ^ e x p [2τπ(Α: + ^ ) - r ] ( l + 7?exp [2ni(à + ( f e - f t ) - r ] ) |

2
 (14.2) 

- k l
2
0 + *

2
 + 2 * cos2rc(3 + (g2-gl)r)) , (14.3) 

where exp [i<5] = · 
Equation (14.3) is the equation of fringes of spacing l/\g2—gi\ running 

perpendicular to 8g=g2~g1. The bright field image, being complementary, 
exhibits similar fringes. 
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In the case of a rotation of two similar lattices by a small angle 80, 
8g = g W. If this is misinterpreted as a parallel moiré with lattice parameter 
difference 8a in a, then, since g= I/a, it follows that 8a/a = 8Θ. 

Problem 15 - The micrograph of Fig. 15 of Sect. 2 was taken using an 
objective aperture of size and position indicated on the inset diffraction 
pattern (which is correctly oriented). Explain the nature of the closely 
spaced fringes on the micrograph and calculate the size of the unit cell 
(cubic) of the specimen material. [Micrograph courtesy of I. L. F . Ray.] 

Solution. The fringes are so-called lattice fringes produced under favourable 
conditions when two or more beams (000 and 111 here) combine to form the 
image. If the amplitudes (complex) of the two beams emerging from the 
bot tom of the crystal are φ0 and φ9 then as a function of position r in this 
surface the total disturbance Ψ is (in a similar way to the moiré fringes of 
Problem 14 above) 

ψ
(τ) = Ψο exp [2nik · r] + <pg exp [2m(k + g) · r]. (15.1) 

Hence the intensity distribution I(r) is given by 

l(r) = |¥>|
2
 = |990|

2
(1 + R* + 2Rcos(2ngr + δ)) , (15.2) 

where i?exp[/<5] =φ9/φ0 and r is measured parallel to g. 
Equation (15.2) shows that the intensity distribution is cosine periodic 

with spacing Ar = l/g between maxima, the « lattice fringe » visibility being 
greatest when R=l, i.e. \φ0\ = \φ9\. The fringes in the micrograph of Fig. 15 
have spacing Ar = 0 .01 -10

_ 6
/32m leading to a value for the unit cell side 

a = Ar V 3 = 0.01 · Ι Ο
-6
 x V3/32 m = 5.41 Â, which agrees very well with the 

tabulated value of 5.417 Â for silicon (the specimen material). 
It should be noted that although the periodicity of the fringes accurately 

follows the internal periodicity of the lattice planes the positions of the fringes 
do not necessarily correspond to the positions of actual lattice planes, which 
is a most important reservation when the distortions of lattice planes near 
dislocations, for example, are being considered. The lattice images produced 
by such defects must be carefully computed (see, for example Fig. 13 of 
M. J. Goringe: «Comput ing Methods », this volume). 

Problem 16 - The micrograph (Fig. 16.1 of Sect. 2) of copper-10 at % 
aluminium (fee) provided was taken using an objective aperture of size and 
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(d

2
/dz

2
) t e -* ) = o . (16.5) 

position indicated on the inset diffraction pattern (which is correctly oriented). 

The micrograph (which is a negative print) is of a foil with normal very 

near [111] and the dislocation is dissociated according to the scheme 

b =  \  [110] - > A f + bl  = \  [121] + I [21Ï] (16.1) 

and near A  the dislocation line direction u  is parallel to [112]. 

a) Calculate gb(,  gb\  and g-R  for the two partial dislocations and 

the connecting stacking fault. Use the results to explain the visibility of both 

partials and the absence of stacking fault contrast. 

b) Assuming that the dark lines accurately define the positions of the 

partials estimate the stacking fault energy y, of the material from the formula 

μ& (2 —ν) Γ 2i>cos2a] 
y = 24^'(r-^)Î1_l2^rJ' ( 1 6 2 ) 

where μ is the shear modulus, ν the Poisson ratio, Δ the separation of the par

tials, b the total Burgers vector of the dislocation, and α the angle between b 
and u. 

c) Note that eq. (16.2) predicts values of Δ depending on u. Confirm 

this variation by measurements near A and B. 

d) Calculate the value of the deviation parameter s22-0 for the dark 

field beam used to form the micrograph. 

e) Using the co-ordinate system of Fig. 16.2, in Sect. 2 for the total 

dislocation in edge orientation we have at point Β a displacement R = Rf + 

+ i?2

 s u ch t h at 

'-'·*· «"> 

The observed positions of the « weak-beam » peaks occur for values of Λ; 
and ζ where 

^ + (<1/<1τ)(*·Λ) = 0 (16.4) 

and 
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^obs = ( ^

2
 + 4 / c

2
)

i
, (16.6) 

where 

C = -V[^(1 +
 2 l îb ) ) ] ( 1 6· 7 ) 

and 

f) Using the results of d) and e) estimate the correction necessary to 

the value of γ calculated in b). 

Assume a = 3.66 Â, μ = 4 · 10

11
 dyne c m

- 2
, v = \ and electron wavelength 

λ = 0.032 Â. Note that e)  entails considerable algebra and only the results 

are required for / ) . 

Solution. 

a) * = (l/£i)[220], *ï = ( a / 6 ) [ l 2 l ] , Af = (α/6)[2ΪΓ], Λ = (a/3) [111] 

therefore g - A * - 1, gb\ = 1, #-J? = 0. 

Hence both partial dislocations are visible by kinematical theory and the 

stacking fault is invisible. 

b) Measurements near A yield Δ ^ 120 Â and α = 90°. 

Hence y = 10.4 erg c m

-2
 by substitution into eq. (16.2) 

c) From eq. (16.2) 

Δ(α) oc 2 — ν — 2v cos 2α . 

Near Β, α ~ 45° and near A, oc = 90° 

Δ
Β
 _2-±_5 

/ H ~ 2 + i ~ 7 ' 

Measured values of Δξ^Δ^ are in reasonable agreement. 

d) s^0 = —g
2
fk = — g

2
X = — 1.91 · 10-

2
 À -

1
 (220 is outside the Ewald 

sphere therefore negative sg). 

Show that the observed separation Zlo bs is given by 
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e) For this particular case eq. (16.5) is satisfied for all χ at ζ = z1 by 

inspection, i.e. θ1 = θ2 = 0 and gb{= g-t% (solution a)). Differentiating 

eq. (16.3) with respect to ζ and substituting into eq. (16.4) with these simpli

fying factors yields a quadratic for χ with solution 

x = (2 + cA±V4 + c
2
A*)/2c. (16.8) 

Hence Zlo bs = x x— x 2, yielding eqs (16.6) and (16.7). 

/ ) Note that as s^oo, Aobs->A, χλ->0 and x2->A. In this case 
s = —1.91 Î O ^ Â -

1
, gb

p
=l, v = \ therefore c = 6.85-10-

2
. Thus Δ~ 

~ Z l o b s( l —2/c

2
zJ^b s), i.e. Δ = z 1 o b s( l — 3-10"

2
). Hence the value of γ should 

be increased by 3 %, which is well within the error of measurement. 

Additional notes on computed results. This problem is an example of 

application of the high resolution « weak beam » technique, which has recently 

been discussed by Cockayne, Ray and Whelan (

4
) and Cockayne (

5
). The latter 

has carried out a number of calculations to check the accuracy of the 

image positions, the results being outlined below (figures courtesy D . J. H. 

Cockayne). 

For weak-beam calculations it would be reasonable to apply the kinemat
ical theory of image contrast (Hirsch, Howie and Whelan (

6
)) . Performing 

the kinematical integral φ9 = Jexp [2m(s9z + g-R)]az over a range of columns 
near a dislocation yields curves of the form of Fig. 16.3, from which the 

Κ 

£ = 2nsx "
2 

Fig. 16.3. - Typical kinematical image profile for a screw dislocation (Hirsch, Howie and 
Whelan, (

6
)) with kinematical peak, K, indicated. 

position Κ of the kinematical image may be found. Equations (16.4) and (16.5) 
for the position W of a weak-beam peak near a similar dislocation may be 
explained in terms of the columns of Fig. 16.4. The weak beam only acquires 
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intensity when (sg + (dfdz)(g-R)) = (sg + β'9) = D is small but by the same 

token may not lose any intensity gained when D is again large. For all columns 

to one side of the dislocation (right in Fig. 16.4) D is always large, giving a 

very low intensity in the weak beam. The same is true far to the other side. 

distance fropn 
slip plane (A) 

30 Disîance from 
dislocation line (À) 

Fig. Γ6.4. - The value of β'0 down columns at various distances from a dislocation. Also 
indicated is the value of sg (—2.5· 10-

2
Â

_ 1
) for a typical weak-beam. The weak-beam 

peak, W, is expected to occur for the column PP'. 

Near the dislocation, however, D is sometimes zero. The column for which D 
is small for the greatest depth is the one for which sg + β'9 = 0 at a turning 
point of β', i.e. when (d

2
/dz

2
)(g · R) = 0 and this column (ΡΡ') gives the posi

tion W of the weak-beam peak. The exact theoretical position of the peak 
is found by integrating the «-beam dynamical equations for the orientation 
under consideration (see M. J. Goringe: « Computing Methods », this volume). 
The results of six-beam calculations are shown in Fig. 16.5 for an undisso-
ciated edge dislocation and in Fig. 16.6 for a dissociated edge dislocation in 
copper with partials separated by 50 Â. Inspection of Fig. 16.5 shows that 
the true peak lies between W and K, its exact position depending on disloca
tion depth and foil thickness. In Fig. 16.6 it can be seen that the separation 
of the two calculated peaks is within 7 Â of the separation given by eqs (16.4) 
and (16.5) (peak positions marked W). This last Figure also shows how the 
relative magnitudes of the two peiaks varies with the depth of the dislocation 
in the foil, including, of course, the possibility of zero intensity in one « peak » 
(a possible cause of the varying visibility in the experimental micrograph 
of Fig. 16.1 of Sect. 2). 
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1x10' 

_50 50 Distance from 
dislocation line (Â) 

Fig. 16.5. - g=220 weak-beam images of an undissociated edge dislocation with b=(a/2)  [1Ï0] 
at various depths in a copper foil of thickness 860 Â. ^ 22 0 = — 2.47 · 10

-2
 Â

- 1
, 100 keV 

electrons, six-beam calculation. W  is the weak-beam position from eqs (16.4) and (16.5) 
and Κ the kinematical peak position. 

The weak-beam technique, exemplified by this problem, obviously has a 
wide range of applications in the study of details of strain fields near defects 
(see Cockayne, Ray and Whelan (

4
) for some suggested topics). The 

accuracy achieved using the relatively simple criteria of eqs (16.4) and (16.5) 
is, of course, one of the most attractive features of the technique from the 
point of view of the experimentalist. 

Problem 17 - Calculate: 

a) the maximum density of dislocations that can be observed under 

2-beam bright field conditions in copper (assume foil thickness 2000 Â ; 100 keV 

electrons); 
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D E P T H = 3 2 5 A 

Ι χ 1 ( Π 

D E P T H = 5 4 1 Â / \ 

r1Û0 

W 

> I r-* 
- 5 0 5 0 (Â) 

Fig. 16.6. - As Fig. 16.5 except the edge dislocation is dissociated according to the scheme 
in the text into two partials separated by 50 Â. 

b) the maximum stacking fault energy, 7, that can be measured by 
the node method, i.e.  by applying the formula γ\ν[μ& = \, where w is the 
width of the node as defined in Fig. 17 of Sect. 2, μ the shear modulus and b 

Material 
Extinction distances (Â) a μ Material 

111 200 220 (Â) (dyne cm

- 2
) 

Cu 242 281 416 3.608 4 -10

11 

Au 159 179 248 4.070 2.8-10

11 

Ix lO

4 
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the total Burgers vector of the dislocations involved. In copper and gold no 

extended nodes are seen. What are the minimum values for y Au and y C u? 

(Data as per Table.) 

Solution. Under the operating conditions defined, the width of the image 

of a dislocation image is  ~£ g/3. Thus in both a)  and b)  the best results 

will be obtained if it is possible to work with a reflexion g  =  111. 

a) An absolute upper limit to the dislocation density / ( c m - c m

- 3
) 

measurable in a foil of thickness t  occurs when the dislocation images overlap, 

i.e. when fractional « i m a g e » area = 1. Thus / m a xx r x i m a g e width = 1, 

giving / m ax = 6· 10

10
 c m - c m

-3
 by substitution of / == 2000 Â, image width = 

= l m/ 3 . A more realistic upper limit might be about half this value. 

b) Roughly the node width, w, must be greater than the dislocation 

image width for an extended node to be visible, i.e.  w  >  ξ9β. Thus, if nodes are 

not visible, y m in = μ^/ξ9. In order to make both partials of at least two 

arms of the node visible it is convenient to work with g = 220 (see Problem 16 
above), when the stacking fault is invisible and, being on (111), is perpen

dicular to the beam and hence no geometrical correction factors are required. 

Substitution of values for the two materials yields y m i n( A u ) = 58.5 erg c m

-2 

and y m i n( C u ) = 61 erg cm"

2
. 

Problem 18 - In the light of your answers to Problem 17 do you think 

that the resolution of the electron microscope limits present-day observations 

in solid-state physics? 

Solution. Present-day electron microscopes have a resolution under ideal 
conditions in the region of a few Angstrom units, which is well below the 
resolution limits set by image widths under the diffraction contrast condi
tions employed in studies in solid-state physics. Far more important for 
most studies are the deleterious effects produced by nonideal specimens, 
e.g. energy losses in thick specimens, which degrade the image through the 
chromatic aberration of the lenses. Assuming that the necessary theory 
could be developed to take inelastic scattering into account much more might 
be gained by the development of achromatic lenses of otherwise moderate 
resolution than by refinement of the lens for ideal operation. Of course, certain 
studies in the solid state (and many in biology) require the ultimate resolution 
e.g. lattices fringes (see Problem 15 above) and their use in the study of dislo
cation cores, certain nucleation studies (see e.g. C. R.Hall: « Contrast calcu
lations for small clusters of atoms », this volume), etc. 

Problem 19 - A specimen of thickness t contains a small inclusion of 

thickness Δζ which scatters electrons differently from the matrix. The crystal is 
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φ ι =

 ρ
Φ ( '0> (19.1) 

while the corresponding transmission through column 2 is 

φ 2 = Ρ 3Ρ 2Ρ 1φ 0. (19.2) 

(α) Ο 

I 2 

Î 
Τ 

(b) 

Ο 
Ο 

Fig. 19. - a) Section of foil thickness t containing an inclusion of thickness Δζ at depth tx. 
Columns 1 and 2 considered in the text are indicated, b) Typical bright field thickness fringe 

profile showing position of greatest visibility for « structure-factor » contrast. 

viewed under 2-beam dynamical conditions at the Bragg position (s = 0 ) and the 

effective extinction distances are ξgm for the matrix and ξ9ι for the inclusion, 

which may be assumed to have the same crystal structure as the matrix. 

Calculate the visibility of the inclusion as a function of a) its depth in the 

specimen and b) the specimen thickness. How would you expect these results 

to be modified if the specimen is not precisely at the Bragg position 

(i.e. s Φ 0)1 

Solution. The situation considered is shown schematically in Fig. 19a). 

The amplitudes of the waves transmitted through column 1, which does not 

contain the inclusion are <pl5 where 
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cos ft/2 — sinft/2
N 

sin ft/2 cos ft/2 
(19.3) 

where y = 1, 2, 3, (or blank) and ctgft =  Sji g3- =  Wj. 

For the principal case under consideration 

&3 =  =  Çg=  £gm>  £(Τ2 = fflr*

 a nd
 ^ =

 0
 (

a 11
 J ) · 

Under these conditions ft = π/2 (all 7 ) and the matrices involving trigono

metric function simplify considerably. Multiplying out eq. (19.2) 

/ a a\ /exp [2π/((ί1 + tjy™ + t&P)] 0 \ . 

\-a a]\ 0 e x p M ^ + ^ y f f + i ^ ) ] / 

" " " W o , (19.4) 
α α/ 

where a = sin (π/4) = cos (π/4). Equation (19.1) becomes 

/ a ή / e x p t ^ , ] 0 \ / « -a\ 

\—aa)\ 0 exp βπ/^]/V* β/ 
Equations (19.4) and (19.5) are of the same form, that of perfect crystal, 
but with different thicknesses. Writing t' as the thickness of perfect matrix 
crystal which is equivalent to the composite crystal it can be seen that 

à y mt ' = àyjh + t3) + Δ?ίί2, (19.6) 

where Δγ = \γ
α)
 — γ

(2)
\, or, since Δγ = 1/ξ9 

t > = tl + ta + t J - £ , or , ' = , + Δ ζ ( ^ - ΐ ) . (19.7) 

3 4 

In eqs (19.1) and (19.2) the scattering matrices Ρ (see « Computing Methods », 

this volume) are of the form 

p = I cos ft/2 sin ft/2\ /exp \2niyf /,] 0 

\— sin ft/2 cos ft/2 J\ 0 exp Pray}
1
* ts\ 

file:///2niyf
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Inspection of the typical thickness fringe profiles of Fig. \9b) shows that 
small changes in the effective thickness will be most visible when t\£gm = 
= w ± i> for small values of the integer n. The inclusion will then appear 
darker or lighter than background alternately on opposite sides of thickness 
fringes, the start of the sequence depending on the sign of (igm/Cgi — 1). 
In the condition where s = 0 this « structure factor » contrast is completely 
independent of the depth of the inclusion in the foil. 

When s φ 0 the trigonometric matrices do not simplify as before since 
β = βχ = β 3 Φ β2. So, in addition to the structure factor effect discussed 
above, phase factors are introduced by the inclusion similar to those present 
at a stacking fault. There is thus a depth-dependent contribution to the con
trast of a rather complicated form. 

Problem 20 - a) Show that under 2-beam conditions the change in the 
transmitted intensity due to an imperfection is proportional to the real part of 
the change in the well-transmitted Bloch wave amplitude. (Assume that the 
crystal is thick enough to reduce the amplitude of the absorbed Bloch wave 
to zero). 

b) Given the expression governing the scattering of Bloch waves into 
the well-transmitted waves (here denoted 

^ = 2πίβ^ϊη
2
^ψ^-^ϊηβ exp [ 2 π / Δ £ ζ ] ^ (20.1) 

(see this volume, Howie eq. (51), Goringe eq. (30); or (
3
), eq. (12.25)); making 

the following substitutions to eliminate intraband scattering, 

yd) = ψ<Μ exp [2ni sin
2
 tf/2)g · R] (20.2) 

and 

y( 2 ) = y ( 2 ) e xp [2rc/cos
2
(/3/2)#-i?], (20.3) 

using the fact that β' = (d/dz)(g-R) and integrating (assuming ϊ
/ ( 2)

 constant 
over integration), show that the effect of an imperfection at depth z0 is 

2 - Z 0= c o 

Δψα) = _ ψ(2)ΠΊ ύ ηβ e xp [2jtiM;z0]jfi'jiz—z0) · 
2 - Z 0= - o o 

• exp [2ni [Ak(z—z0)+g'R cos β]] d(z — z 0) . (20.4) 
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Hence show that if β9(ζ — z0) is odd then Re(A!F

( 1 )
) is proportional to 

cos2n Akz0 and if β'9(ζ— z0) is even then Κο(ΔΨ
{1)
) is proportional to 

sin2nAkz0. 
Deduce the depth variation in the visibility of c) stacking faults, d) dislo

cations and e) centres of strain. 

Solution. 

α) ψ0(ζ) = C^tp
 1}

 exp [2π/Α;

( 1 )
ζ] + C & V

2)
 exp \2nik^z\ . (20.5) 

Hence, assuming ψ
{2
\ ^

( 2 )
* - ^ 0 

\φ0(ζ)\
2
κ\ψΜ\

2
, 

i.e. 
Α\φ0(ζ)I

2
 oc ψ™Δ^

(1)
 * + * Α ψ

( 1 )
. 

But in perfect crystals ψ
{1)
 = ψ

{1)
* = = cos/5/2, z.e. real and therefore 

Δ | 9 9 0( ζ ) |

2
χ Δ ^

( 1 )
* + Δ ^

( 1)
 = 2Re(A^

( 1 )
) . 

b) Differentiating eq. (20.2) 

- 4 - = —r- exp \2ni s in

2
 (fi/2)g-R] + 2πή81 sin

2
 (jff/2)y

(1)
 (20.6) 

dz dz 

and substituting from eqs (20.6) and (20.3) in eq. (20.1) yields 

-πίβ'9 είτιβψΜ exp [2ni(Akz + g-R cos ft] . (20.7) 
dz 

Equation (20.4) follows by change of variable z - > z — z 0 and integration, 
assuming that Ψ

{2
\ sin β and Ak are constants, and that the defect is so far 

from the foil surfaces that the limits of integration may be extended to in
finity without error (i.e. the strain field of the defect must be localized). 

Inspection of eq. (20.4) shows that, at the reflecting position (β = π/2), 
the integral is of the form 

CO CO 

/ = ^c(q) exp [2niAkq]aq =^r

g(q) [cos2nqAk + / s in2nqAk\dq , 

where q = ζ—z0. 
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flg odd /^even 

Fig. 20. - Depth variation of contrast as a function of symmetry of β[. 

Note that this question is essentially a proof of the modified Bloch wave 

approach to contrast from defects developed by Wilkens (

7
). 

Problem 21 - Calculate the maximum knock-on energy along a) [111], 
b) [100] and c) [110] that can be transferred to atoms in a copper target 
bombarded along [100] by protons of energy 5 MeV. [At. wt Cu = 63.6] 

Solution. Equating momenta in 2 directions and energy (see Fig. 21) we 

have 3 equations: 

mtm M2c sin Θ = Mxb s i n ^ , 

mtm j Mxa = M2c cos0 + M ^ c o s ^ , 

energy \Mxa* = \M2c* + \Mxb*. 

(21.1) 

(21.2) 

(21.3) 

00 
If β^Ο) is °dd then 1 = i2^'g(q)sinInqAkaq = iP, i.e. imaginary. 

ο 
Hence ΔΨ

{1)
 = — Î P

( 2
W e x p [2màkz0] iP and since, at the top of the crystal 

ϊ * 2 > ( = v( 2 ) ) i s rea l and Ρ is real, R e C A S ^ c c cos2rcAJfcz0. Similarly if fi'g(q) 
oo 

is even then I=2fpJg)co&2itqMcdq = Q and Re iAï

7
*

1
' ) oc sin2:7zAA;z0. 

ο 
As ψ

ω
 = ï

/ ( 1 )
e x p [id],  Re (Ay

( 1 )
) is also of the same form, and hence so 

is the visibility of the defect. 

c) Stacking fault; β'9 even (in the sense that \β'9άζ is nonzero). 

d) Dislocations; (e.g. edge dislocations of Problem 16 above) β'9 even. 

e) Centres of strain; β'ρ odd (gR even, see Problem 13 above). 

Thus the visibilities vary with depth as sin27rA/cz0 (c) and d)) and as 

COS2JZAA;Z0 (e)) as shown schematically in Fig. 20. 
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Pri mary 
mass M| 
velocity g 

Fig. 21. 

Eliminating φ and b from eqs (21.1)-(21.3) yields 

2 M l f l Co s 0 

Hence knock-on energy 

E[uvw] =EtA cos

2
θ , (21.5) 

where = incident energy and Λ = 4M1M2/(M1 + M 2)
2
. The angles θ re

quired in the three cases are the angles between [100] and [111], [100] and 

[110] respectively, i.e. a r c c o s ( l / V 3 ) , a rccos ( l ) , arccos(l/V2). Now Λ = 4 · 

·63.6/(64.6)

2
 = 6 .1 ·10-

2
, and £* = 5-10

6
eV. 

Λ a) ^[111] = ^ y l / 3 = 1.02-10

5
 eV, 

b) £[100] = EiA = 3.04· 10

5
 eV, 

c) £[110] =ΕιΛβ = 2.03· 10

5
 eV. 

Problem 22 - In copper exposed to a flux of 1 · 10

13
 c m

-2
 s

-1
 of neutrons of 

energy 10 keV calculate a) the concentration of primary knock-ons per year, 

b) their mean energy and c) the total point defect concentration produced, 

assuming the hard-sphere model and that no recombination takes place. 

[Copper is fee, a = 3.608 Â, atomic weight = 63.6, displacement energy 

Ed = 19 eV, total neutron cross-section σ = 3· 10~

24
 cm

2
] . 

Solution. 

a) Taking cross-section a = 3* 10~

24
 cm

2
, 

neutron flux φ = 1 · 1 0

1 3
c m ~

2
s

_ 1
, 

time t = 60-60-24-365s , 

atom density η = 4/(3.61 · 10~

8
)

3
 c m

- 3
, 
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Fig. 22. 

_ π/2 π/2 

Hence Ε =^Ε(θ)σ(θ)άθ^σ(θ)άθ becomes Ε%\2 by substitution of Ει cos

2
0 

for Ε(θ) (see solution of Problem 21 above), i.e. Ε = 10

4
· 6.1 · 10-

2
/2 = 305 eV. 

c) The displaced atoms (with average energy E) each cause further 
displacements by collison with other atoms. In this case the « incident » 
and « knock-on » have equal masses, i.e. Λ = 1 and so, on average, the en
ergy is shared equally between the two. Hence, on average, the initial knock-on 
energy will be distributed equally over a number of atoms until the average 
energy falls below 2Ea (where Ea is the energy required to displace an atom), 
after which no additional knock-ons can be created. Hence the average 
number of knock-ons per primary event is E/2Ea for E>2Ea, 1 for Ea< 
<E< 2Ed and 0 for E<Ea. In this case is > Ea and so the concentration 
required is c = σφίη E\2Ea — σφίη EijAEa = 6.45 · 10

21
 cm~

3
. Note that this is 

an unrealistically large defect concentration as the atomic density, n, of the 
undamaged copper is only 8.5 · 10

22
 c m

- 3
, indicating that the assumptions of 

no recombination, etc., are incorrect for such a long irradiation. 

Problem 23 - Calculate the energies of a cluster of 1000 vacancies in 
copper when in the form of a) a spherical void, b) a Frank loop and c) a 
perfect loop on (111). [Assume surface energy — 1670 ergcm~

2
, stacking 

we have for the concentration of primary knock-ons, C p, 

^ = σ ^ = 8.05·10

19
 c m "

3
. 

b) On the hard-sphere model the differential cross-section σ(θ)άθ is 

2asin0cos(9d0, where a = total cross-section (see Fig. 22). 
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fault energy = 85 erg c m

- 2
, lattice constant 3.608 Â, shear modulus = 4· 10

11 

dyne c m

-2
 and Poisson ratio = \ . ] 

Solution. 

a) If Ν is the number of vacancies, rv the radius of the spherical void, 

a the lattice constant and / the surface energy then %nrl=Na
s
/4 (rv = 14.1 Â). 

The total energy of the system is the surface area of the sphere (4jzr

2
) mul

tiplied by γ', i.e. 
Ev = 4nr

2

vy'. (23.1) 

Thus Ev = (9N
2
n/4fa

2
y'= 4.17· 10~

10
 erg ( = 0.26 eV per vacancy). 

b) If γ is the stacking fault energy and b the total Burgers vector of the 

loop (a/2 [110]), μ the shear modulus, ν Poissons ratio and rF is the radius 

of the loop then nr
2

F = Na
2
?>/4 (rF = 42.4 k), (loop is on (111)) and 

[ • » ( ? ) + - ! ] + ^ - ( 2 3 - 2 ) 

= 2.47 · ΙΟ"

10
 + 4.8 · 10"

11
 = 2.95 · ΙΟ"

10
 erg ( = 0 . 1 8 eV per vacancy). 

c) For the perfect loop on (111) rv = rF ( = 4 2 . 4 Â ) and 

= 3.7· 10~

10
 erg ( = 0.23 eV per vacancy) . 

The formulae for EF and Ep are, of course, considerable approximations 

(Kuhlmann-Wilsdorf and Wilsdorf (

8
)) . The number of vacancies chosen 

for the problem was a typical value for a cluster, for which it was found that 

the Frank loop was the most stable configuration. However, this is not true 

for large loops as may be seen from Fig. 23 where the various energies are 

plotted against number of vacancies. 

Problem 24 - If a copper sample bombarded by α-particles contains 10

15 

c m

-3
 equilibrium gas bubbles 200 Â in diameter at 0 °C, calculate a) the 

volume swelling and b) the volume of gas at N T P per cm

3
 of sample. Calculate 

c) the gas bubble density and d) volume swelling if the gas is redistributed 
into bubbles 100 Â in diameter. [Assume helium gas is perfect; surface energy 
of copper = 1670 erg c m

- 2
. ] 
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Fig. 23. - Cluster energies according to eqs (23.1), (23.2) and (23.3) as a function of 
number of vacancies, N9 in the cluster. 

Solution. 

a) Volume swelling = AV/V = N4nr
3
/3 = 4.2· I O

- 3
. 

b) Pressure ρ inside the gas bubble is related to the surface energy γ' 
and the bubble radius r by p = 2y'\r = 3.34· 10

9
 dyne c m

- 2
. Atmospheric 

pressure is p0 = 10
6
 dyne c m

- 2
. Hence volume of gas at NTP c m

-3
 is 

(AV/V)(plp0) = l4cm*. 

c) If n = 5 0 Â then p1 = 2p and (Λ^ 4πΓ
3
/3) -p1 = (Ν4nr

s
/3) -ρ, i.e. 

N± = Nr
z
plr\Pl = 4 · 10

15
 cm"

3
. 

d) AVjV = Νχ4πφ = 2ΛΛ0-*. 

Problem 25 - Calculate the growth factor G if 2 · 1 0
- 5

% burn-up in a-
uranium results in the formation of 10

15
 c m

-3
 interstitial loops 200 Â in 

diameter, [α-uranium is orthorhombic with a = 2.85 Â, b = 5.87 Â and the 
loops lie on (010).] 
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Solution. Interstitial loops lie on (010) and have Burgers vector HUO]-

The increase in length Δ/ perpendicular to (010) is related to the growth fac

tor for G and fractional burn-up Β by Δ/// = GB = Ab010, where A is loop 

area on (010) per unit area and b010is effective Burgers vector of loop perpen

dicular to (010). Inspection of Fig. 25 shows that the effective Burgers vec-

α 

(ΟΙΟ) 

Fig. 25. 

tor j . (010) = b/2 = 2.94 Â. Loop area per cm

3
 = ΙΟ

15
 ·π · 10~

12
 cm

2
 c m

- 3
, i.e. 

there are π - I O

3
 extra planes cm"

3
. Hence Δ/// = π · 10

3
·2.94· I O

-8
 = 9.23· 10~

5 

giving G = 9.23 · 10

_ 5
/2 ·10~

7
 = 462. 

Problem 26 - If there are 10

15
 c m

-3
 Frank loops 50 Â in diameter present 

in an irradiated crystal calculate the critical shear stress assuming that the 

strength of each loop intersected exceeds μ&

2
, i.e. the dislocations bow be

tween the loops rather than cutting through them. [Assume μ = 4Ί0
11 

dyne c m

- 2
, a = 3.608 Â.] 

Solution. Just before the dislocation passes through the line of obstacles 

in its slip plane distance / apart it is semicircular in shape (see Fig. 26.1). 

"Z-L l ^ dislocation 

* î î î T î î î t î î f î f t * 

F obstacle 

Fig. 26.1 

If critical shear stress = xc then force acting on dislocation between two 
obstacles is rcbl, which is just balanced by the dislocation line tension Τ 
(= \μ&) at each obstacle, i.e. 

2T=rcbl 
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(using the fact that F  =  ib 9 where F  is the force per unit length on the 

dislocation in the direction of the Burgers vector  b). 
The calculation of / proceeds as follows: the Frank loops are assumed 

to be randomly distributed on the four {111} planes and only those cutting 

through a number of slip planes, (111), need be considered,  i.e.  § of the total. 

As {111} planes are inclined at 70° to each other the effective barrier density 

per unit area of slip plane becomes f  NdûnlO°  (see Fig. 26.2), where TV is 

the density of Frank loops of diameter d. 

d s 

( I I I) 

Fig. 26.2 

Hence / = (f N  dun  70)"

έ
 = 5.35 · 10~

5
 cm and 

= 1.91 · 10

8
 dyne c m "

2
, 

using b = a/2 [110] and Τ=\μ&. 
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Transfer of Image Information 
in the Electron Microscope 

F . A . L E N Z 

Institut fur Angewandte Physik, Universitàt Tubingen - Tubingen, Germany 

1. General theory. 

The purpose of the electron microscope as that of any other optical or 

electron optical imaging device is to transmit information about properties 

of an object to an image. Therefore, we may consider it as an information 

channel and use some of the concepts and methods of information theory to 

describe the imaging properties of an electron microscope. In order to 

illustrate some of the basic concepts, let us start with the transfer of 

a signal which is a function of one variable only. An example is the transmis

sion of an electrical signal along a telephone line. In this case, the signal 

may be a voltage or current, and the variable on which it depends is time. 

The input signal S0(t) which is entered into the transmission line on the input 

end gives rise to an output signal S^t) at the output end of the line. If the 

transmission line is any good, the receiver at the output end should be able 

to conclude from the output signal S^t) he is receiving on at least some of 

the information contained in the input signal S0(t). In the case of an imaging 

device the input and output signals depend on at least two variables χ and y 
if an object surface is imaged to an image surface, χ and y may stand for 

co-ordinates in these surfaces. If three-dimensional information on the object 

is to be transmitted, the input and output signals are functions of three 

variables. Using vector denotation, an input signal S0(r0) is fed into the trans

mission system at the object (input), and an output signal .^(ΙΊ) is received 

at the image (output). If the imaging device is any good, the receiver at the 

output end should be able to conclude from the output signal 5ι(ΐχ) (the 
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image) on at least some of the information contained in the input signal S0(r0). 
If the transmission system is free of noise, the output signal S1 will depend 

only on the input signal S0 and on nothing else. Noise does not have to be 

audible: In the case of the electron microscope it means the source of any 

part of the output signal S1 which is not due to the input signal S0 but to such 

causes as mechanical vibrations of the microscope column, granularity of 

the photographic emulsion or fingerprints of a technical assistant on the 

micrograph. 

Let us first neglect noise, not because there is not any but because it makes 

the theory simpler. Then there is a unique relation between input and output 

signal. In other words: Two or more different shots of the same object taken 

under exactly equal conditions should give two or more exactly identical 

micrographs. If there is some noise on the transmission line, and one has a 

reproducible input signal, one better records the output signal repeatedly 

in order to be able to distinguish which part of the output signal is real 

information and which part is due to noise. 

We have seen that, neglecting noise, there is some unique relation between 

input and output signal. We call a system linear if this relation is linear. 

In other words, if the response of the system to one input signal S0 is S1 and 

the response to another input signal S'0 is S^, then an input signal χ50+βΞ'0 
would, in a linear system, produce an output signal aS^ + jftSi for arbitrary 

α and β. It is easier to treat linear than nonlinear systems. We shall therefore 

take care to define our input and output signals S0 and S1 so that they are 

related to each other by a linear relation at least to a good approximation. 

The transfer of electrical signals in electrical transmission lines can be made 

well enough linear. If, in an electron microscope, we define input and output 

signals as the amplitudes of an electron wave in the object and the image, 

they are also linearly related. This follows directly from the linearity of 

Schrôdinger's or Dirac's wave equation. If we declare the mass thickness of 

the object as the input signal and the optical density of the developed photo

graphic plate as the output signal, the linearity between input and output 

are no longer self-evident but at best a tolerable approximation. Most transfer 

theories are restricted to the case of linear transfer. 

One function which can be used to describe the relation between input 

and output signals in a linear system is its impulsive response G(r, t') or 

G(
r
i ?

 r
o)> respectively. It describes the response of the system to a short pulse 

S0(t) = ô(t—10) in a one-dimensional transfer system or to an object consisting 

of one point only in an image transfer system, i.e. S0(r0) = d(r0—I*Q). The 

delta function describing the short pulse or the object point, respectively, 
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is defined so that à(t—t0) equals zero for all times t φ t0 but is so large 

for t = t0 that 

jd(t-t0)dt=l (1.1) 

if the interval of integration contains the time t = t0. If the interval of 

integration does not contain t = t0, the value of the integral equals zero. 

Correspondingly, the delta function in two-dimensional space is defined so 

that 

JjVo—*\>)
 dr
o = JpOo—x'o) < K J O — y ' o )

άχ d
y =

 1
 C

1
 ·

2
) 

if the two-dimensional interval of integration contains the point r'0 with the 
co-ordinates x 0, y0. Otherwise, the value of the integral equals zero. This 
definition of the delta function can be extended to more than two dimensions. 
The definition of the delta function implies that 

+ 00 

JA(t')ô(t-t')dt'=A(t); jJA(r'0)d(r0-r^dr'0 = A(r0). (1.3) 

— oo 

In other words: Any arbitrary function A(t) can be written as a linear super
position of delta functions ô(t'—t) with a weight function A(t'). Since we 
have assumed that G(t, t') is the response of the linear system to the input 
signal ô(t— t'), the output signal S^t) of an arbitrary input signal 

+ 00 

S0(t)=js0(OÔ(t-t')dt> (1.4) 

can be written as 

S1(t)=js0(t')G(t9t')dt'. (1.5) 

The transfer properties of a linear transfer system are therefore completely 
described by its impulsive response G(t, t'). Mathematicians and theoretical 
physicists refer to the impulsive response as « Green's function ». For 
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signals with more than one dimension, we have correspondingly 

5 Ί ( « Ί ) = hSofro)G(rlsr0)dr( (1.6) 

where G(r±, r0) is the impulsive response of the linear imaging system to a 

delta function à(r0 — r'0). The integration (1.6) is extended over the object 

surface. 

The transfer properties of a good electric transmission line should not 

depend on time. In other words: If the same message S0(t) is transmitted 

at two different times tx and t2, say today and tomorrow, then the two input 

signals S0(t— and S0(t—t2) should produce the same output signals 

S^t—ti) and S^t—tz), apart from a shift t2 — tx in time. This independence 

of the transfer properties on time can be expressed by saying that the impulsive 

response is a function not of the two separate variables t and t' but only a 

function of one variable, viz. the difference t—t': 

The response to a short pulse at time t = t' will be the same as to a pulse 

at t = t \ only with a time delay of t" —1
!
 between both. If the signal has 

more than one dimension such as in imaging devices, the corresponding 

property of the system would be that the image disk of an object point at 

position r0 = #*Q is the same as the image disk of an object point at r0 = T Q , 
only displaced to another position in the image. The shift in the image may be 

different from r'o — r'0 because the image may be magnified with respect to 

the object. This desirable property of an imaging system that all object points 

at r0 = r0 would produce an image disk of equal shape around the point Mr'0 
(Mis the magnification) in the image plane or in the image space is called iso-

planacy. It can be expressed by saying that the impulsive response is a func

tion not of two separate vectors rx and r0 but only of the difference rx— Mr0. 

The condition of isoplanacy is not precisely satisfied in optical and electron 
optical imaging systems. If the system has aberrations depending on r0 such 
as distortion, third-order astigmatism, or coma, the isoplanacy condition (1.8) 
is violated, i.e. the image disk of an off-axis point looks different from that 

G(t,t') = G(t-t'). (1.7) 

(1.8) 
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of an axis point. Aberrations depending only on the initial direction of an 
electron trajectory such as spherical aberration, defocusing, axial astigmatism 
and axial coma do not affect isoplanacy. If the field of view is sufficiently 
small, the condition of isoplanacy can always be considered to be approxi
mately satisfied. 

In the isoplanatic approximation we can write eqs (1.5) and (1.6) as 

S1(t) = fc0(t')G(t-t')dt' (1.9) 
— CO 

and 
Sl(rd =SJs°(r°)G

 ( ë _ r o ) d r ° • ( U 0 ) 

Integrals of this type are called convolution integrals. To understand the 
physical meaning of the linear relation between the input signal S0 and the 
output signal .S^ the following consideration may be useful. 

The input signal which we have considered above as a linear superposi
tion of delta functions, can, according to Fourier's theorem, also be con
sidered as a linear superposition of sinusoidal functions: 

+ CO 

, ( / )exp[-2^ i / / ]d/ . (1.11) 

Because of the linearity of the transfer system, each Fourier component s
o(f)

QX
P [—2nift] of the input signal corresponding to a frequency / can be 

transformed to the corresponding Fourier component of the output signal 
and then summed up (or rather integrated up). In other words: In the ex
pression 

- f CO + CO 

(/)exp [-2niff] àfG{t-t<)àt' (1.12) ? i ( 0 = [ jty 
— CO —CO 

we can first integrate over t' and then over / . The integration over t' is nothing 
else but a Fourier transform of G: 

+ CO + CO 

Jexp [— 2nift']G(t — t')dt'= exp [— Inift] jexp [2nift']G(t')at'. (1.13) 

3 5 
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Equation (1.12) and (1.13) can be interpreted as follows: The calculation 

of the output signal S x(t) from a given input signal S 0(t) can be performed 

in the following steps: First, the Fourier transform s 0(f) of S 0(t) is formed. 

Then s 0(f) is multiplied by the Fourier transform of the impulsive response G 
to obtain the Fourier transform of  S x(t). The Fourier transform T(f)  of the 

impulsive response G  is called the transfer  function  of the system: 

+ OD 

T(f) =  J*exp [Inift]  G(t)dt . (1.14) 

- co 

According to eqs. (1.12) and (1.13), the product of s 0 with the transfer 

function T(f)  yields the output signal by another Fourier transform: 

+ 00 

S&) =  f J 0( / W ) exp [ -  Tjcift]df.  (1.15) 
— 00 

Let us for a while assume that the input signal is a sine or cosine function: 

S0(t) =  Aexp[-2nif 0t]. (1.16) 

A comparison with eq. (1.11) shows that this is equivalent with a Fourier 

transform s 0(f) of S 0 (an « input spectrum ») 

s0(f) =  AÔ(f-f 0). (1.17) 

As we have seen, the output spectrum s x(f) is obtained by multiplying the 
input spectrum s 0(f) by the transfer function 

s1(f) =  AT(f)ô(f-f 0). (1.18) 

The output signal S x(t) is, according to eq. (1.15), the Fourier transform of 

the output spectrum s x(f): 

+ 00 

£ ( 0 = |* i ( / )exp [-2nifi]df=  AT(f 0) exp [-2nif 0t]. (1.19) 
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In other words : A sinusoidal input function with frequency f0 and amplitude A 
is received at the output as a function of the same frequency but with an 
amplitude AT(f0). A transmission system for which T(f0) equals one for all 
frequencies f0 would be an ideal system because the output signal would 
always be identical with the input signal. According to Fourier's theorem 
any arbitrary input function can be written as a linear superposition of 
sinusoidal functions with different frequencies / and amplitudes s0(f). Each 
of them is transmitted and forms a Fourier component sx(f) = T(f)s0(f) at 
the output. They only have to be linearly superimposed to form the output 
signal Sx(t). 

If the signals are two-dimensional as in image transfer systems the same 
reasoning can be applied. We have, however, to use different variables r0 
and rx in the input and output signals, respectively, because the co-ordinates 
in the object and in the image plane do not have the same meaning. 

Let us define the Fourier transforms of input and output signal and of 
the impulsive response G 

S0(r0) =JJW) exp [ - 2*w/r0] df ; s0(f) = [JS0(r0) exp [2mfr0] dr0 ; (1.20) 

= J ^ i ( / ) e x p [ - ^ A ] d / , sx(f) =ffsi(rd*xp^AJj£, ( 1 . 2 1 ) 

T(f) =jj<K*)
 e x

P V*ift]
dt
- Ο ·22) 

In eq. (1.22), t stands as a substitution for 

' = ] £ - ' · · 0-23) 

As in the case of one-dimensional signal functions it can again be shown 
that it follows from eq. (1.10) that 

Siif)=T(f)s0(f). (1.24) 

The « space frequency » / is now a vector with two components fx and fy. 
The area elements dr0 and arx in eqs (1.20) and (1.21) stand for 

dr0 = d x 0d ^ 0, drx = dx1dy1, (1.25) 
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such as the element d / stands for 

àf=àfxàfy. (1.26) 

The Fourier transforms (1.20) correspond to the expansion of the input 

( = object) signal in a series of sinusoidal components each of which is denoted 

by its space frequency / and its amplitude s0(f). The vector / with the com

ponents fx and fy denotes the direction of the sinusoidal component (plane 

wave) associated with each Fourier component. The vector / is perpendicular 

to the wave fronts of this plane wave, and its length | / | is the inverse of the 

repeat of the sinusoidal component. 

Using the concept of the transfer function, the linear relation between the 

input and output signal can be described by the following diagram. 

Input Signal 
S0(r0) 

~L 
< — Fourier Transform 

Input Spectrum 

s0{f) 
Transfer 

Function 

T(f) 
Output Spectrum 

J, 
<— Fourier Transform 

i 
Output Signal 

If the transfer function or the impulsive response of a system is known, the 
relation between S0 and Sx is uniquely defined, and one can conclude on Sx 
if S0 is known and vice versa. If, on the other hand, the relation between S0 
and Sx were known empirically by taking a great number of micrographs of 
different objects with known properties, one would be able to determine the 
transfer function T(f). 

A 
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2. Amplitude transfer and contrast transfer function. 

In the general theory we have derived relations between input and output 

signals in linear transmission systems but we have not specified what the 

physical nature of these signals is in electron microscopy. Since the image 

is transferred by means of electrons and since the propagation of these elec

trons in space can be described by a linear wave equation such as Schrôdinger's, 

an obvious definition would be to identify the input signal with the wave 

amplitude in the object plane and the output signal with the wave amplitude 

in the image plane. The condition of linearity is exactly fulfilled in this case. 

The transfer function can be derived from a study of the propagation of the 

electron wave through the lenses and apertures of the electron optical imaging 

system. 

The input signal depends on the conditions of illumination and on the 

interaction of the illuminating beam with the object. Let us first assume 

the illumination to be coherent in direction of the optical axis which we 

identify with the ζ axis of a Cartesian or cylindrical system of co-ordinates 

The wave amplitude of the incoming primary wave from the condenser, before 

it enters the object, would be a plane wave exp [Inikz] with a wave number k 
depending on the acceleration voltage U 

In eq. (2.1), h denotes Planck's constant. In high-resolution transmission 
microscopy the object can be considered as nonabsorbing. Practically all 
electrons entering the object from the condenser side leave it again on the 
image side because the probability for all interactions removing electrons 
from the beam, such as backscattering or bremsstrahlung production close 
to the short wavelength limit, is very small. The interaction between the 
primary electron beam and a thin object can therefore be understood as a 
local distortion of the electron wavefronts due to the local variations of the 
electrostatic potential within and between the atoms. Within an atom the 
potential is more positive than in the surrounding vacuum, and consequently 
the local wavelength is shorter than the vacuum wavelength. The resulting 
distortion of the wavefronts may be referred to as phase-shifting, diffraction 
or scattering, three different names for the same physical process. 
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Incoming plane wave Outgoing d is tor ted wave 

Fig. 1. - Interaction of atom and electron wave. 

The amplitude of the distorted wave after passing through the object, 
which, without this interaction, would be a constant, is now 

SoOo > Jo) = exp [ίφο > Jo)] >
 s

o(
r
o) = exp [fyCo)] (2.2) 

a complex function of the co-ordinates x0, y0 in the object plane. S0 is the 
input signal, and η(ν0) is the phase shift. The fact that the object is treated 
as nonabsorbing is expressed by the constance of object current density 

7 ( r 0) - | S 0( r 0) |

a
= l (2.3) 

immediately behind the object. 
For weak phase objects, i.e. if ?y(r0) is small compared with 2π for all r0, 

we have 

t 
0 t t 2jTe/7î2. Γ 2jie Γ 

= h2 <p(x0, y0, z)àz = -j^ J φ(χ0, y0, z)dz . (2.4) 

The integration in eq. (2.4) is extended over the thickness t of the object. 
Equation (2.4) is relativistically correct if the relativistic expressions for m, λ 
and ν are used. 

All information about the object which the electron wave is carrying is 
contained in S0(r0) or η(τ0), respectively. In order to calculate the corresponding 
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output signal S^), i.e. the wave amplitude in the image plane, we have to 

know the transfer function T o r its Fourier transform, the impulsive response. 

The impulsive response G is the response of the imaging system to a point 

source in the object, i.e. the image wave amplitude in the diffraction disk 

which forms the image of an object point. The classical method of deter

mining the wave amplitude in the diffraction disk is the application of Kirch-

hoff's integral formula. If the surface of integration in Kirchhoff's integral 

is the back focal plane of the objective lens, the evaluation of the integral is 

equivalent to the Fourier transform leading from the output spectrum s± to 

the output signal Sx. Kirchhoff's integration is extended only over the trans

parent part of the objective aperture. It has further to take into account the 

phase shift due to aberrations and defocusing. This phase shift is closely 

related to the wave aberration which is defined as the local distance between 

the real wave front and an ideal wave front, i.e. a sphere around the geo

metrical image point. 

Each point in the back focal plane of the objective lens corresponds to 

one space frequency / . If the object were a periodic structure whose object 

signal contained only one or a small number of space frequencies, then the 

wave function in the back focal plane would be zero except for steep local 

intensity maxima, one for each space frequency. In other words, the wave 

function in the back focal plane is the diffraction pattern of the object with 

a diffraction length equal to the focal length of the objective lens. Each space 

frequency / in the object (input signal) corresponds to one Bragg angle, i.e. one 

direction of a diffracted wave in object space. Each direction in object space 

corresponds to one point in the back focal plane. These two statements 

can be combined into one, saying that each space frequency / corresponds to 

one point rB in the back focal plane 

rB = af. (2.5) 

In eq. (2.5) / denotes the focal length of the objective lens (the letter / b e i n g 
reserved for space frequencies). Equation (2.5) should look familiar to people 
who have worked with electron diffraction of crystals where the position 
vector r of an intensity maximum in the diffraction diagram is equal to the 
product of the diffraction length /, the wavelength λ and the reciprocal lattice 
vector / denoting a space frequency (inverse of the spacing of lattice planes) 
in the periodic structure of the crystal. The effect of the aberrations is to shift 
the phase of the wave function in the back focal plane where the phase shift 
depends on rB which, according to eq. (2.5) can be interpreted as a phase 
shift depending on space frequency. 
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Ideal 

Fig. 2. 

The first Fourier transformation transforming the input signal 50(#·0) into 

the input spectrum s0(f) corresponds to the formation of the diffraction pattern 

of the object neglecting lens aberrations and apertures. These are taken 

into account by the transfer function 

n / ) = ^ e x p -
2
™W(f)^B(f) (2.6) 

which describes the phase shift 2nW\X, and the effect of an aperture by the 
aperture function B(f). W is the wave aberration introduced by aberrations 
and defocusing. B(f) is assumed to equal 1 in the transparent parts of the 
aperture, and to vanish for the opaque parts. If the lens suffers from spherical 
aberration, axial astigmatism and defocusing the wave aberration can be 
written as 

Az 
2P

{ 9A 
2 /

2
' (2.7) 

In eq. (2.7), Cs is the third-order spherical aberration coefficient. Its defini

tion is the usual one, i.e. it implies that a geometrical electron trajectory 

leaving the axis point of the object plane under an angle α against the axis 
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Fig. 3. 

ever, be shown that the contrast in the image of a weak phase object is at 
least approximately a linear function of the phase shift η. To show this, let 
us treat the amplitude transfer of a weak phase object. For ^ < 2π, eq. (2.2) 

intersects the image plane in a point at a distance Cs\M\o? + O(oc
5
) from the 

axis. Δζ stands for defocusing in object space. It is counted negative if the 
object is closer to the objective lens than the plane conjugated to the 
recording plane (screen or photographic plate). CA is the coefficient of 
astigmatism. Its definition implies that the geometrical astigmatic lines, referred 
to object space have a distance of 2CA from each other and a distance of CA 
from the geometrical disk of least confusion. Figure 3 shows the dependence 
of wave aberration on spherical aberration and defocusing for zero astigmatism. 

Knowing the wave aberration W(f) and the aperture function B(f) we 
can use the transfer function T(f) to calculate the image wave amplitude 
5Ί(ΐι) if we know the object wave amplitude S0(r0), i.e. we can conclude from 
a given object on the corresponding image and vice versa. But unfortunately, 
wave amplitudes are not observable quantities. What we can observe in the 
image are such quantities as current density, contrast, optical density, etc., 
and they are not linearly related to any property of the object. It can, how-
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can be written as 

S0(r0) = exp [φ0)] = 1 + φ 0) + 0(η*). ( 2 . 8 ) 

The object spectrum follows by Fourier transformation, neglecting second 
and higher-order terms in η, 

s0(f) =js0(r0) exp [2mfr0] dr0 = 0(f) + /Jij(r0) exp [2nifr0] dr0. ( 2 . 9 ) 

y0(/) describes the angular distribution of the wave behind the object. The 
delta function stands for the undiffracted primary beam in axial direction. 
The second term on the right-hand side is the complex scattering amplitude 
of the object. If η(ν0) in eq. ( 2 . 9 ) is replaced by the expression in eq. ( 2 . 4 ) 
one obtains 

Soif) = àif) + ^ JjJ(pix0 ,y0,z) exp [2nifr0] dx0 dy0 dz . ( 2 . 1 0 ) 

We see that the second term on the right-hand side is a three-dimensional 
Fourier transform of the potential distribution within the scatterer. The 
integral on the right-hand side is known as the scattering amplitude of the 
scatterer. In the special case that the scatterer is an atom, it is called the 
atom form amplitude. Its absolute square is the differential scattering cross-
section. Let us introduce an abbreviation Aif) for this quantity: 

Aif) = jWo) exp [2nifrQ] d r 0, ( 2 . 1 1 ) 

so that eq. ( 2 . 9 ) can be written as 

s0(f ) = à(f )+iAif). ( 2 . 1 2 ) 

According to eq. ( 1 . 2 4 ) , the image (output) spectrum sx(f) follows from the 
object (input) spectrum by multiplication with the amplitude transfer function 

*(/) = T(f)s0(f) = Γ(0) 0(f) + iA(f)T(f). (2 .13) 

Performing the inverse Fourier transformation we obtain the output signal 
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(the image wave amplitude) 

S^) = T(0) + iJA(f)T(f) exp - W ^ j d / . (2.14) 

In bright field microscopy, 2?(0) = 1, and it follows from eq. (2.6) that 

T(0) = l/M. The first term on the right-hand side of eq. (2.14) describes the 

bright background of the bright field image whose current density is M~
2 

times the primary current density in the object. The second term describes 

a small modulation of this background. It is small because we have assumed 

the phase shift η is small and because A is defined as the Fourier transform 

of this phase shift. In dark field microscopy, B(0) = T(0) = 0, and the 

background is dark. It is evident from eq. (2.14) that the contrast in a dark 

field image of a weak phase object exceeds that of the bright field image. 

Let us define contrast C in the bright field image by 

«rj =
 lSl(rfIM2

llM2
 = MWx)!2-1 · (2-15) 

Replacing S± in eq. (2.15) from eq. (2.14) and neglecting second order terms 

we obtain 

Cfo) = iMJA(f)[{T(f)-T*(-f)] exp [-2πι/J df. (2.16) 

If the aperture function B(f) = B(— / ) , i.e. if B(f) has two-fold symmetry 

around the optical axis and if further W(f) = W{— f) then we have 

COi) = 2JA(f)B{f) sin W(f)} exp | - 2nif^ df. (2.17) 

Equations (2.17) and (2.11) define a linear relation between the real con

trast C(r^) and the real phase shift η(τ0). If we define a contrast transfer func

tion 

K(f) - 2B(f) sin - W(f) , (2.18) 

this relation can be interpreted as follows: The input signal for contrast 
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transfer is now η(Γ0). Its input spectrum A(f) is multiplied by the contrast 
transfer function K(f) to obtain the output spectrum. The inverse Fourier 
transform (2.17) then generates the output signal, i.e. the image contrast. 
This is explained in the following diagrams. 

Object Wave 
Function S0 

Fourier Transform 
r 

Object Amplitude 
Spectrum s0 

à < 
Amplitude 

Transfer Transfer 

> f 
Function T(f) Image Amplitude 

Spectrum sx 

Fourier Transform 
> 

Image Wave 
Function 

Object Phase 
Shift η 

Fourier Transform 

Object Phase 
Shift Spectrum A 

Contrast 
J 

Transfer Transfer 

Function Κ y f 
Image Contrast 
Spectrum KA 

> < 

Fourier Transform 

Image Contrast 

While phase contrast can be understood and explained only using wave 
optical aspects, another type of contrast has been discussed since the early 
days of electron microscopy, the so-called scattering absorption or amplitude 
contrast. It can be explained without using wave-optical concepts by saying 
that the atoms in the object scatter a fraction of the incoming electron cur
rent by scattering angles large enough to be intercepted by the objective aper
ture. The characteristic features of this type of contrast can also be explained 
in terms of the amplitude transfer theory. Let us suppose that the phase shift 
η(ν0) is so large that it makes sense to continue the expansion (2.8) by an 
additional second-order term: 

S0(r0) = exp [φ0)] = 1 + ί η^ ) - ^ ψ + 0(η*). (2.19) 

Let us, for the sake of simplicity, consider a sinusoidal variation of phase 
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shift ^(r0) with the space frequency fx=f0; fy = 0: 

Ψο) = Vo cos (2nf0x0). (2.20) 

Then the object wave function is 

So(
r
o) =

 1
 + [ ^ P [2πι/0χ0] + exp [~2nif0x0]] — 

[exp [4mf0x0] + 2 + exp [-4nif0x0]] + 0(η1) . (2.21) 

The corresponding object spectrum is 

*>(/) = Ô(f)  +^V 0è(fy) [è(f x +f 0) +  -/„)]-

- J à(fy)  [è(f x + 2/o) + 2ό(Λ) + - 2/0)] + 0(η%). (2.22) 

Let us now assume that the space frequency is so high, and the objective 

aperture is so narrow that T(f0,0) and T(2f0,0) both vanish. In this case 

we have an image spectrum 

Siif) = T(f)s0(f) = 10(f) (l -
1
-ηή (2.23) 

and 

^ ) = 1(ΐ-\νή. (2-24) 

The effect is a uniform reduced background intensity, and the space frequency 

f0 is not resolved. An example is a thin foil of some amorphous material 

imaged under conditions at which the atoms or other local variations of 

potential are not resolved. Then regions containing many such atoms or 

potential variations appear darker in the image than regions containing less 

scatterers. This type of « area » contrast is compared with phase contrast in 

the following table. 
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Space frequencies 

/ο and 2/0 intercepted 

by aperture 

T(f0) = T(2fQ) = 0 

2/0 intercepted, 

f0 not intercepted 

Γ(/ο) * 0; T(2f0) = 0 

f0 and 2f0 not 

intercepted 

T(f0) Φ 0; T(2f0) ^ 0 

η small N o contrast Phase contrast linear Phase contrast linear 

sin η «C 1 in 77, / 0 resolved in η, f0 resolved 

η
2
 < 

larger Amplitude contrast 

proportional with η

2
, 

f0 not resolved 

Nonl inear phase con

trast containing higher 

harmonics. Loss in 

background intensity, 

fo resolved 

Example: Image of a phase edge. 

Let us assume that an object consists of two half-planes each of which 

is homogeneous, but because of a difference in thickness or in mean inner 

potential they produce different phase shifts: 

I exp [— ίφ/2], for x 0< 0 , ( 2
·

2 5) 

exp [ιφ/2], tor x0> 0 . 

In order to simplify the problem let us assume that 

[ 1 , for | / | < / 0, 

π f ι , ι /•

 ( 2
*

2 6) 

0 , for | / | > / 0. 

This corresponds to a circular objective aperture within which the wave 

aberration is negligible. 

The object spectrum is 

s0(f) =js0(r0) exp [2nifr0]âr0 = d(fy)^ô(fx) c o s | — -ί- s in ' (2.27) 

Multiplication with the contrast transfer function (2.26) and Fourier transfor-
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mation yields the image wave function 

SW-«.(?) + f < 2 , 8 , 

where 
u 

C sin il 
Si(w)= — dv (2.29) 

ο 
is the « sine integral ». For the image contrast we obtain 

Fig. 4. - Contrast in the image of a phase edge. 

3. Zonal plates and other interventions in the back focal plane of the objective. 

Let us apply the contrast transfer theory to the case of a phase shifting 
point in the object, and let us ask the question how the aperture function 
B(f) must be chosen if we want to achieve maximum bright field contrast in 
the image of this point. If the phase shifting interaction in the object is as
sumed to be localized in a point we have 

V(ro) = Voà(r0). (3.1) 

The corresponding phase spectrum is 

Af) = Mr0) exp [2nifr0]dr0 = η0. (3.2) 
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Multiplying by the transfer function we obtain the image contrast spectrum 

A(f) K(f) = 2VoB(f) sin W(f)} . (3.3) 

By Fourier transform we obtain the image contrast 

C(ii) = 2VoJB(f) sin(Ç W(fj) e x p [ - 2 7 « / § 

The contrast C(0) in the center of the image disk is 

C(0) = 2VoJB(f) sin W(f)} df. 

df. (3.4) 

(3.5) 

When the integration over the space frequencies / is performed, which is 

equivalent to an integration over the back focal plane where the objective 

aperture is arranged, there will be positive and negative contributions from 

different bands of space frequencies. Space frequencies for which the sine 

-2 

2 sin 2rcW 

Fig. 5. - Contrast transfer function without aperture, B(f) = \. 

function in the integrand has a positive value, add to C(0). For other space 
frequencies the sine function has a negative sign, and they will cancel at 
least part of the contrast. Hoppe's idea of using annular ring systems to 
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improve the electron microscopical image amounts to dimensioning the 

apertures so that either all negative contributions or all positive contribu

tions to C(0) are intercepted by the aperture stop. Figures 5 ~7 show the con-

- 2 h 

Β (f) 

- t 

Β (f) 

- t 

Aperhure f u n c h o n 

Fig. 6. - Contrast transfer function for maximum positive contrast, B(0) = 1. 

trast transfer functions Κ and the aperture functions Β for the case that the 
wave aberration is given by eq. (2.7) with CA = 0 and Δζ = — 2\/CsX. 
Figure 5 shows the contrast transfer function ^ i f no aperture is used (B= 1), 
Fig. 6 for an aperture which leaves through all positive contributions to con
trast, and Fig. 7 the same for negative contributions. The aperture system 
which helps to image an object point with maximum contrast is not neces
sarily ideal for all other types of objects. Apertures consisting of a system of 
concentric rings leave through some bands of space frequencies and intercept 
others. If an observer is interested in properties of an object which are mainly 
in some fixed space frequency region, then it would be unwise to intercept 
a frequency band in this region. For example, if an observer is interested in 
atomic distances of the order of 1 Â, his objective aperture should be trans
parent in the region of space frequencies around 1 Â

-1
 which corresponds 

to an aperture radius of rB = lKkr
x
 according to eq. (2.5). 

36 
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Fig. 7. - Contrast transfer function for maximum negative contrast, B(0) = 1. 

As we have seen, the Hoppe zonal plate is the aperture which optimizes 

the contrast of a point object in a bright field image. Let us now consider 

the effect of zonal plates on a dark field image. According to eq. (2.14) the 

wave amplitude Sx in dark field is 

SM) = iJA(f) T(f) exp [ - ^ fr, j df. (3.6) 

According to eq. (3.2) we have for a point object A = η0. In the geometrical 

image rx = 0 of this point we have 

SM = iVoJT(f)d/= Jexp [ - Ç ^ ( / ) ] £ ( / ) d / . (3.7) 

As in eq. (3.5) we have again an integrand whose real and imaginary parts 

are changing their signs. If different space frequency intervals are not to 

cancel each other's contributions to the absolute value of 5Χ(0), B(f) must 

again be chosen so that only ring-shaped areas of the objective aperture are 

transparent for which 

W 1 
η + c< — + η integer, c arbi t rary. (3.8) 
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4. The effects of illumination on image transfer. 

We have so far restricted ourselves to coherent illumination in the direc

tion of the optical axis. Even when dark field images were discussed, it was 

assumed that the primary beam had axial direction, and the aperture was 

symmetric with respect to the axis. In practical dark field microscopy, how

ever, conditions are often different: The primary beam is inclined with 

respect to the axis so that it does not intersect the back focal plane of the 

Fig. 8. - Oblique coherent illumination. 

For c = 0, this is the same condition as for maximum positive bright field 

contrast. For c = \ it coincides with the condition for maximum negative 

bright field contrast. Since in dark field microscopy the phase relation of the 

diffracted electrons with respect to the primary electrons does not matter, 

any other value of c in the condition for the ring radii would also be accept

able. The most important conclusion is, however, that a Hoppe zone plate 

designed for maximum contrast in the bright field image of a point object 

will also maximize the intensity in the center of the dark field image of the 

same point object. 

Most other interventions in the back focal plane such as a filament across 

the center intercepting the primary beam or narrow circular apertures sur

rounded by a phase shifting ring may have the effect of increasing contrast 

in the image of an object but not necessarily in the space frequency region 

in which the observer is interested. In order to design an optimum aperture 

one must know the space frequency region of main interest. Then one can 

design an aperture which produces a maximum of the amplitude or contrast 

transfer function around this space frequency of main interest. Having done 

this, one may expect to find this space frequency in all image areas cor

responding to object areas in which this space frequency occurs, even if it 

does so only as a second or higher harmonic of a lower space frequency. 
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objective lens in its axis point but in another one. If the objective aperture 

is opaque in this point, the primary beam is intercepted, and a dark field 

image results. It is obvious that oblique illumination introduces a preferential 

direction in the image. In this case the transfer function is not a function 

of only the absolute value of the space frequency / but it also depends on its 

direction. 

The oblique coherent illumination produces an additional phase shift 

2nkr0 in excess of the one given in eq. (2.4) describing the interaction of pri

mary beam and object. If we assume that the object is so thin that its thickness 

times the angle between k and the axis is smaller than the smallest details we 

want to observe we may treat the object as infinitely thin, and we have in

stead of eq. (2.4) 

η ( * , Γ 0) = 2π*τ0 + η ( 0 , Γ 0) . (4.1) 

In eq. (4.1) and in the following we may treat A; as a vector with two com

ponents kx and ky only, because r 0 lies in the object plane which we have as

sumed to be perpendicular to the axis. This is because η{1ί, r0) contains all 

information about the object which enters the transfer system, and because 

^k,r0) does not depend on kz. We can now apply the transfer theory to 

determine the image contrast, replacing ^(r0) by η(1ί, r0). Equation (2 .8) 
reads now, in the case of oblique coherent illumination 

S0(k, r0) = exp [»j(A:, r0)] = (1 + /i?(0, r0)) exp [2nikr0]. (4.2) 

The object spectrum becomes 

sQik, f) =jso(k, r0) exp [2nifr0]ar0 = 

= à (k + / ) + ïjrç(0, r0) exp [2ni(k  +  f )r0] d r0 . (4.3) 

Using the abbreviation (2.11) we have now 

*o(*.  f)  =  Kk  + / ) +  iA(k  + / ) . (4.4) 

The physical meaning of this equation is that each point in the diffraction pat
tern of the object in the back focal plane has been shifted from  r B =  IXk  to 
rB =  lX(k  + / ) . The primary beam ( / = 0) no longer corresponds to the axis 
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point in the back focal plane but to Ilk. The axis point (rB = 0) corresponds 
now to the space frequency / = — k. If we now multiply the object spec
trum s0(k, f) by the amplitude transfer function T(f) we find the image spec
trum 

φ , f) = T(- k) ô(k +/) + iA(k + f)T(f). (4.5) 

Performing the inverse Fourier transform we obtain the image wave amplitude 

S1(k9r^ = T(—k) exp A(k + f)T(f) exp - 2 π ι / ^ df. (4.6) 

If B(—k) = 0, i.e. if the primary beam is intercepted by the aperture stop, 

we have dark field imaging with a preferential direction, and the image wave 

amplitude becomes 

Ï 1( * , r 1) = /J*. A(k +  f )T(f)exp df. (4.7) 

If, on the other hand, B( —k) = 1 we have a bright field image with a wave 
amplitude 

S'i(*,r1) = - ^ e x p 
2m 

'Ί, 

" J -

+ 

i\A(k+f)T(f)exp df. (4 .8) 

It is not self-evident that coherent illumination always yields the best images. 
It can be shown that even for an arbitrary incoherent illumination a con
trast transfer function can be defined as long as weak phase objects are imaged 
and the isoplanatic approximation holds. The illumination is called in
coherent if the condenser aperture α is large so that the beam can no longer 
be called parallel. If the variation in wave vector k within the primary beam 
is so large that the phase differences 2nkr0 (compare eq. (4.1)) vary by an 
amount comparable to or larger than 2π9 then the phase relations between 
two points in a distance |r0| from each other are destroyed, and two such 
points are « incoherently illuminated ». If, on the other hand, the variation 
of k is so small that the phase differences 2nkr0 vary by less than ± π/2, 
then two points at a distance \r0\ from each other are « coherently illuminated ». 
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Whether some illumination is coherent or not, depends not only on the con
denser aperture but also on the size |f0| of the object details one wants to ob
serve. 

According to eq. (4.2), the object wave function for an incoming electron 
with wave vector k can be written as 

S0(k9 r0) = S0(09 r0) exp [2nikr0]. (4.9) 

According to eq. (1.10), the corresponding image wave function can be writ

ten as 

S^k, r,) =jso(09 r0)θ{^~ r0) exp [2nikr0] d r0 . (4.10) 

The image current density is, apart from an irrelevant constant factor 

Ι$ι(*, .Ι)!
2
 =JJS0(0, r0)SÔ (0, rJ)G r0) G*(§~ 'ό) · 

• exp [2mk(r0 — r^)] dr0di*o . (4.11) 

For incoherent illumination, all the current densities corresponding to dif
ferent k vectors occurring in the primary beam are superimposed upon each 
other incoherently. The image current density becomes 

J'ih) =j\S1(k9r1)\*F(k)dk =jjjs0(09r0)St(09riy 

'
G
{M~

V
°)
 G

* ( M ~ ^ )
 M C XP

 [
2
^ o - ^ o ) ] d r 0d ^ d ^ . (4.12) 

F(k) is a distribution function describing the angular distribution of the primary 
beam from the condenser. It is defined so that F(k)dk = F(kx, ky)akxaky 
is the probability that an incident electron has a direction such that the χ 
and y components of its wave vector lie within the intervals {kX9 kx + dkx) 
and {ky9ky + dky}. This distribution function is assumed to be normalized 
so that 

F(k)âk = \ . (4.13) 

The integration over k in eq. (4.12) can be performed if we introduce the 
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Fourier transform of the distribution function F(k): 

Φ ( Γ 0) = exp [2nikr0] àk. ( 4 . 1 4 ) 

Then we have 

M) =jjs0(0,r0)S*o(O,u)G ( § - ' o ) G* ^-r̂0(ro-ri)droar^ . ( 4 . 1 5 ) 

Let us now assume that we have a weak phase object, i.e. that SQ(0, r0) can 

be expressed by eq. (2.8) 

5 0( 0 , r 0) = l + ^ ( r 0) . ( 4 . 1 6 ) 

Replacing S0 from ( 4 . 1 6 ) in ( 4 . 1 5 ) and neglecting second-order terms in η we 

obtain for the image current density 

-ijjn(rU0(ro-rUG^-r^ G*  r'^àr Qàr'0. ( 4 . 1 7 ) 

In eq. ( 4 . 1 7 ) ,  j B is an abbreviation for the background current density 

JB =JI <Hr0-rï)G ( ^ - ' ο )

 G
* ( ê - ' ^ o d r i . ( 4 . 1 8 ) 

If we again define contrast C{r^)  by 

C(ri)=
J(ri)

.
 J b

, ( 4 . 1 9 ) 

JB 
we have 

C(r1)=|î ?(.-0)r(r1,r0)di-0, (4.20) 

where the impulsive response Γ is given by 

·φ-*)σ·(£-'·)Η (4·21) 
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Substituting a new variable of integration 

it can be shown that the impulsive response Γ is a function not of rx and r0 
separately but only of the combination r-JM—r0. In other words: The iso-

planacy condition is not destroyed by incoherent illumination. (4.20) can 

now be written as 

This is again a convolution integral so that we can define a transfer func

tion for the Fourier transform of Γ. If the impulsive response G^JM—VQ) 
for coherent amplitude transfer is known, Γ can be calculated from eq. (4.21) 

for any arbitrary angular distribution F(k) of the illuminating beam. The 

Fourier transform of Γ takes into account not only the electron optical 

properties of the imaging system behind the object but also the conditions of 

illumination. C, η and Γ are real functions. It should, however, be noted 

that, in the case of partial coherence, the linear terms in η may not be large 

compared to the second order terms. 
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Phase Contrast Electron Microscopy 

F. T H O N 

Siemens AG - Berlin, Germany 

This material has been contributed from the standpoint of an electron 

microscopist, who experiments in the high resolution field. It deals basically 

with the information which can be gained from a high resolution phase 

contrast image. 

A discussion of the mechanism for obtaining phase contrast with conven

tional objective lenses in Sect. 1 leads to the demand for better transfer-

conditions. 

In Sect. 2 we investigate, how contrast transfer is influenced by differently 

shaped apertures in the back focal plane of the objective lens. Also these 

interventions cannot establish optimum transfer conditions. 

The prospects for realizing phase contrast transfer, which could be called 

ideal from the theoretical standpoint, will be discussed in Sect. 3. Some 

principal experiments into this direction will be described. 

Finally, in Sect. 4 we shall introduce some methods which allow one to 

improve the quality of electron microscopic images by subsequent light-optical 

reconstruction. The general aim will be : improvement of the information 

transfer conditions of the electron microscope in order to achieve interprétable 

images. Except in Sect. 1 we report recent investigations within the scope 

of the course. 

1. Conventional phase contrast imaging. 

1 Ί . Introduction. 

By conventional phase contrast imaging we understand imaging by means 

of a high-performance electron microscope, using high magnifications, where 
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the objective aperture is sufficiently large and circular. Thus, our subject 

is phase contrast in the high resolution field and our aim is to outline how 

this phase contrast is dependent on the wave aberration of the objective 

lens. 

There is no doubt that phase contrast is also present and useful in defo-

cused images of medium or even low resolution. But in these cases things are 

much less complicated, since phase contrast then is just a means to enhance 

details, which are anyhow visible due to strong scattering absorption contrast. 

It is mainly in the range below 10 Â where phase contrast becomes the 

dominant contrast mechanism. 

The imaging properties in the high resolution field with special emphasis 

on phase contrast have been thoroughly investigated in recent years theoret

ically and experimentally by several authors (

1 _ 1 8
) . A summary of the results 

will be given in this Section as far as they are of importance for present 

practical work. The chosen way of treatment seems to be the most appropriate 

one to describe conventional phase contrast imaging and also the special 

techniques, which will be discussed in the following Sections. A more com

plete theoretical treatment of the basic problems can be found in the contri

bution of Lenz in this book. 

It should be mentioned that most of the basic problems and methods 

to be discussed in the following Sections are, in a modified way, also valid 

for scanning microscopy. 

1 2 . Theory. 

We have to deal with the mechanism by which information about object 
properties is transferred to the electron microscopic image. Let us assume 
our imaging system to be linear and the illumination of the object to be 
coherent. If the object is a weak phase object, the image contrast is at least 
approximately a linear function of the phase shift introduced by the specimen. 
When dealing with linear systems, it is useful to decompose a complicated 
input, i.e. our object properties, into a number of more simple inputs, to 
calculate the response of the system to each of these « elementary » func
tions, and to superimpose the individual responses to find the total response. 
In other words: we can assume our object g(x) (one-dimensional treatment) 
to be composed of a large number of sinusoidally varying transmission 
gratings, each with a different period length Λ or spatial frequency 1/Λ ==F. 
The spatial frequencies of these gratings vary from zero up to some maximum 
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To make use of the principle of Fourier decomposition, we can formally 

write 
+ CO 

g(x) = [G(F) exp [—2niFx]dF, (1) 

so that 

G(F0) exp [— 2m-F0x] (2) 

describes a single grating of spatial frequency F0 and amplitude G(F0). 
In a next step we look at one of these elementary gratings with a period 

length or reciprocal spatial frequency Λ (Fig. 1). When a plane electron 

Τ 
f 

Fig. 1. - Imaging of a periodic specimen (schematically). 

wave is incident on the object plane, this grating gives rise to a diffracted 
wave at an angle Θ to the optical axis according to the fundamental grating 
equation, which can be written in a simplified form 
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in the case of small angles used in electron microscopy, λ denotes the electron 

wavelength. 

Introducing the focal length / of the objective lens and a radius r in the 

exit pupil of this lens, where all waves diffracted at the same angle are fo

cused, we may write: 

A = ^f. (4) 

This means that each point in the diffraction plane of the objective lens, 

this plane in a first approximation being identical with the back focal plane 

of the lens, corresponds to one specific diffraction angle θ and, consequently, 

to one certain reciprocal spatial frequency Λ or frequency F. 
Thus, in the case of periodic objects, only very limited regions of the 

objective lens take part in the imaging process. Most of the advantages 

present in lattice plane imaging are due to this fact. 

In the case of an amorphous object, we have a number of elementary 

gratings with different period length At and we have a lot of partial waves 

diffracted at different angles, thus the wave vectors hit the back focal plane 

of the lens at different points given by: 

This means, each spatial frequency contained in the object function is 

transformed to one specific point within the lens aperture, as it is for the 

one-dimensional case schematically drawn in Fig. 2. The superposition of 

all the diffracted waves in the image plane finally yields an image intensity 

distribution, taking account of amplitudes and phases. This description is 

valid in the case of coherent illumination. It is one key point for under

standing the interventions in the back focal plane, which will be discussed 

later in Sect. 2 and 3. 
There is one complication in electron microscopy due to the fact that at 

least high resolution objects have to be considered as nonabsorbing. The 
interaction between the primary electron beam and the specimen leads to 
phase shiftings of the electron waves. Thus, the objects behave like phase 
objects in light microscopy, and the elementary gratings discussed above are 
phase-gratings. 

As a consequence, a focused electron image would not show any contrast, 
if the objective lens possessed no aberrations and the aperture were suffi-
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Fig. 2 . - Imaging of an amorphous specimen (schematically). 

ciently large. The reason is the same as in light optics, it is in a simplified 

form demostrated in Fig. 3 : in the case of a weak phase object, we can assume 

a diffracted wave with a small amplitude and a phase difference π/2 compared 

Fig. 3. - For explanation of phase contrast. 

to the primary wave. The both waves mentioned are represented by the 
straight-line oscillations on top in Fig. 3. The interference of these two waves 
results in a wave with the same amplitude as the primary wave, only the 
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phase position of it is a little bit different (dotted line). Due to the fact that 

the amplitude is unaltered, there will be no variation of intensity and conse

quently no contrast in the image. To achieve contrast, we have to introduce 

an additional phase shift which brings the primary and the diffracted wave 

either into equal or into opposite phase position. Then, the interference of 

the primary wave and the diffracted wave will result in a wave with increased 

or decreased amplitude, as shown in the center and the lower part of Fig. 3. 

Consequently the image intensity will be altered and phase contrast arises. 

These conditions were already recognized in 1947 by Boersch (

1 9
) and 

he suggested several methods to introduce the necessary phase shift. How

ever, they are combined with extremely high experimental difficulties. We 

will return to this point in Sect. 3. 
The common way to introduce phase shifts in order to get phase contrast 

is to make use of the wave aberration of the objective lens. Wave aberration 

is defined as the local distance between an ideal wave front and a real wave 

front, which is aspheric due to spherical aberration and defocusing. It can 

be expressed by the corresponding phase shift γ depending on the diffraction 

angle θ or the reciprocal spatial frequency Λ. 
According to Scherzer (

2 0
) (modified for thick lenses) : 

where Cô denotes the coefficient of spherical aberration and Δζ the defocus 

value, i.e. the distance between the real object plane and the plane which is 

actually imaged. The function γ(θ) is plotted in Fig. 4 for a number of Δζ 

values. It is clearly to be seen that the phase shift due to aberrations of the 

objective lens depends strongly on the co-ordinates in the back focal plane. 

Therefore, it is different for each spatial frequency. 

Assuming that phase shifts 

: : ^ · ( 0 · Θ

4
- 2 Δ Ζ 9

2
) , (6) 

γ = (2n — \)·π/2 , n = ±l,±2,..., (7) 

lead to maximum phase contrast, we find from (6) with (7) 

Δ ζ \

2
 (2«—1)ΛΊ*]-* 

(8) 

Equation (8) describes the dependence of phase contrast on spherical aberra-
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Δζ: ,1000 ,700 t 500 450 400 t | | | [ nm 

1 2 3 4 5 6 7 8 9 Î0 Ϊ1 Ϊ2 1 3 :1 0

-3
 *

Θ 

tî Ϊ85 1^3 0,93 0,74 0,62 0,53 0,46 0,41 0,37 0,336 0,308 0,285 Π m *

A 

Fig. 4. - Phase shift γ due to defocus Δζ and spherical aberration in dependence of dif
fraction angle Θ and reciprocal spatial frequency Λ according to eq. (6) with CG- = 4 mm 

and λ = 3.7-10-

9
mm. 

tion and defocusing (

6
). With Cô = 0, which is impossible in practice, fol

lows 

We call a graph according to ( 8 ) a phase contrast transfer characteristic. 
Figure 5 shows one with Q == 4 m m , A = 3 .7-10~

9
mm and n= + 10.. . —16. 

The dotted curves correspond to (9) with n = 0 and η = + 1. The com
parison shows that under the chosen conditions the influence of spherical 
aberration is negligible, when Λ> 1.2 nm. 

From a phase contrast transfer characteristic, one can immediately read 

which reciprocal spatial frequencies Ai are transferred with maximum phase 

37 
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Fig. 5. - Defocusing dependence of the reciprocal spatial frequencies Λ according to eq. (8) 
(solid curves) and eq. (9), where Cô = 4 mm and λ = 3 .7Ί0

-9
 mm. 

contrast at a given defocus value Δζ. At each defocus value, including Δζ — 0, 
always several specific spatial frequencies are transferred simultaneously. 
It follows from theory that adjacent frequency bands are transferred with 
opposite sign of contrast. A phase shift — π/2 gives positive phase contrast. 
Negative phase contrast arises by phase shifts of + π/2. Multiples of 2π 
are equivalent. 

The contrast goes down to zero with phase shifts γ = ηπ. A curve system 
analogous to (8) can be calculated from (6). The curves lie between the curves 
of Fig. 5. 

Good contrast for relatively large frequency bands is to be expected in 
the vicinity of the vertices Sn with n<0. From (8) we get the co-ordinates 

sn - { + 0 ~
 2"f '^'cl> + o - 2nYl·λ1

 '
 C
D · 0 0 ) 

The dotted horizontal lines in Fig. 5 mark the influence of a limitation of 
the objective aperture for two certain values. For all A values smaller than 
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indicated by such a line, the diffraction orders are intercepted by the objec

tive aperture. Consequently these frequencies are not transferred to the 

image. 

For reasons of simplicity we have been discussing one-dimensional speci

mens only. The results are also valid in the two- or three-dimensional case. 

For example we can define Λ the period length of a two-dimensional spatial 

frequency with the components (w, v) and α the azimuthal angle. Then : 

If the lens field shows exact rotational symmetry, the defocusing is independent 

of α and is again given by ( 8 ) . 
In practice there is never an ideal rotational symmetry, so an axial astigma

tism has to be taken into account. This can be done in the following way (

1 7
) . 

It is sufficient to consider first order axial astigmatism. Then two planes 

with a maximum defocus difference can be found, these planes being per

pendicular on each other, and both containing the optical axis. These planes 

are hatched in Fig. 6, their defocus values are Δζχ and Δ ζ 2, respectively. 

A = + (u

2
 + i ?

2
) - * , 

u 
oc = arctg - . ν 

( Π ) 

Objec t 
plane 

ΔΖ 
ο 

Image p l a n e 

Fig. 6. - For derivation of eq. (16). 

We call 

ΔζΑ=(Δζ1 — Δζ2) (12) 

the astigmatic defocus difference. 
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The defocus value of an intermediate plane, marked by α = 0 is 

Δ ζ 3ί = (Δζ1 + Δ ζ 2) / 2 . (13) 

The azimuthal dependency of defocus Δζ can be written 

Δζ(α) àzM + (àzA-sm2cc)/2. (14) 

The phase shift now is 

2-ΑζΜθ
2
—ΑζΛΘ

2
 sin2a)/2A . (15) 

Finally, we get 

Λ = +λ 
2ΑζΜ + ΔζΛ·ύη2α Γ \2ΔζΜ + ΔζΑ·sin2α]

2

 | (2κ— 
(16) 

This equation enables us to calculate the azimuthal dependency of the spa

tial frequencies with arbitrary values of ΔζΜ and ΔζΑ. 

1*3. Experimental demonstrations. 

For experimental demonstration of the theoretical statements it has been 

proved extremely useful to investigate high resolution images of thin carbon 

foils by means of a light optical diffractometer (

n
) . 

It turned out that carbon films have approximately a white frequency 

spectrum, that means all spatial frequencies, which are of interest in high 

resolution imaging, are contained in the specimen. Thus, one can check the 

transfer conditions of a lens by considering the frequency spectrum of a 

carbon foil image, which was taken under definite operating conditions. 

Additionally, these techniques give information about imaging parameters. 

To evaluate the frequency spectrum of an image intensity distribution, 

i.e. the power spectrum, a light optical diffractometer is most convenient. 

It is not absolutely necessary to use exact parallel illumination for this pur

pose (

u
) . A simple arrangement, as proposed in 1969 by Mulvey (

2 1
) and 

schematically shown in Fig. 7, also allows one to determine the most impor

tant parameters of the image, e.g. the defocus difference Δζ and the astigmatic 

defocus difference ΔζΑ, with completely sufficient accuracy. As a light source 



S one should use in any case a laser ( ( l - H O ) m W ) to have sufficient inten

sity. As a condenser C a light microscope objective lens may be used. The 

size of the effective source should be limited by an aperture A of about 

10 μηι in diameter. A camera lens L (f & 100 mm) works as a diffraction 

lens, focusing the rays diffracted by the object O, i.e. the optical density distri

bution on the electron plate, in a plane D. Thus, a two-dimensional Fourier 

transformation of the electron image can be performed. Registration of the 

intensity distribution in plane D yields knowledge of the power spectrum 

of the electron image. The electron plate may be placed immediately against 

the lens or at another convenient place between L and D. This enables one to 

vary the scale of the Fourier transform, which is extremely useful if different 

electron optical magnifications have been used in taking the electron micro

graphs. 

Figure 8 gives an example for the evaluation of a phase contrast electron 

image. At the bot tom left-hand corner, a section of the image structure to 

be examined is shown, and above the light optical diffraction pattern of the 

structure. This pattern clearly proves that actually only selective frequency 

bands are transferred, and not the whole frequency spectrum. The radii rL 
in the diffraction plane correspond to reciprocal spatial frequencies Λ of 

the electron microscopic object according to the equation 

where XL is the wavelength of the laser light, fL is the focal length of the dif

fraction lens, and V the electron optical magnification. 
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Fig. 8. - Example for the evaluation of phase contrast image structure. 

Equation (17) is valid in the case of parallel illumination of the specimen, 
if the diffraction lens is arranged behind the specimen. In the case of the 
simpler arrangement described by Fig. 7, A becomes dependent on the posi
tion of the electron plate with respect to the diffraction plane D. 

In both cases it is useful to calibrate the arrangement, using a grating 
with known period length. 

The A values corresponding to the diffraction maxima in the horizontal 
direction of the pattern are marked at the scheme on the right hand side of 
Fig. 8. This combination of A values fits exactly at a defocus value 
Δζ = + 678 nm to the phase contrast transfer characteristic, a section of 
which is shown. 

An evaluation in the vertical direction of the slightly elliptic pattern 
yields somewhat different A values. The corresponding defocus value is 
Δ ζ = + 6 4 0 n m , thus revealing an astigmatic defocus difference Δζ^ = 38 nm. 
The accuracy of the method is much higher compared to others known 
before. And it is essential to know the exact values of defocus and axial 
astigmatism for any further interpretation of the image structure. Fig
ure 9 demonstrates, how the image structure, and, correspondingly, the 
diffraction patterns vary with different defocus. Four special defocus values 
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have been used for the 4 micrographs shown. The first (from left) corresponds 

approximately to Gaussian imaging, Δζ = 0. The others are close to the 

vertices S0, &_ι and S_2 in terms of Fig. 5. 

Δζ = 0 gives a very poor imaging as there has been only one small frequency 

band (n = 1) transferred to the image, as a consequence of the finite illu

minating aperture. The optimum defocus according to Scherzer (2 0) provides 

in case of a lens with C0= 4 mm, as used in the experiments, a frequency 

band from about 5 Â to 15 Â to be transferred with observable contrast. 

If the objective aperture has been chosen appropriately, then only one rela

tively wide frequency band contributes to the image. This seems to be the 

only reasonable way to use phase contrast for the investigation of unknown 

specimens, if a circular aperture is used and no special means for the evaluation 

of the micrographs are available. Clearly, this frequency band is not wide 

enough for all applications. And the resolution attainable is not very high. 

The transfer limit can be shifted toward higher frequencies or smaller 

Λ values by using a lens with a smaller coefficient of spherical aberration. 

This will be combined with a further decrease in width of the frequency 

band. 
If we want to expand the transmitted frequency range, we have to defocus 

the lens more. But then gaps in the frequency spectrum occur, as can 
be seen from micrographs 3 and 4 from the left in Fig. 9, and adjacent 
frequency bands are transmitted with opposite phase position. Without 
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any interventions in the back focal plane, as will be discussed in Sect. 2 and 3, 

it is advisable to use the Scherzer optimum defocus. 

The experimental values following from the evaluation of a whole focusing 

series are in excellent agreement with theory as demostrated by Fig. 10. 

-500 4 0 0 -300 -200 -100 0 700 800 900 1000nm 

Fig. 10. - Defocusing dependence of the transmission of reciprocal spatial frequencies Λ , 
as measured from two focusing series, in comparison with the theoretical curves. 

In cases of η = 0 and n = l, not the diffraction maxima but the band-

widths were determined from the patterns and plotted together with curves 

(dot-dashed), calculated from 

Λ= +λ 
Δζ 

C, 

Δ ζ \

2

+( 2 « — 1 ± 0 . 6 μ 

Ce 
(18) 

Equation (18) has been derived in the same way as eq. (8) but using 

y = ( 2 n — 1 ± 0 . 6 ) π / 2 , (19) 

instead of eq. (7). The term 0.6 has been established from experimental 

results (

1 8
) . 
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According to theory, adjacent frequency bands are transferred with con

trast of opposite sign. Consequently when going from positive to negative 

defocus there is a contrast reversal and vice versa. This is demonstrated 

in Fig. 11. This figure shows images of the same area of a carbon foil, taken 

Fig. 11. - Image structures of a carbon foil at different defocus values Δζ. There is a 
complete contrast reversal from the micrograph at the left to the micrograph in the middle. 
The micrograph on the right hand side is a photographic negative from the middle one. 

at Δζ = — 940 nm (left) and Δζ = + 960 nm (centre), respectively. A com

parison of the two images confirms the theoretical predictions. The micro

graph on the right-hand side is a photographic negative of the centre one; 

this makes the comparison easier. 

Fig. 12. - Image structure of a carbon foil taken with an axial astigmatism AzA = 364 nm. 
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Equation (16), which describes the influence of axial astigmatism on phase 

contrast transfer, has been checked experimentally in the following way (1 7). 

Figure 12 is a section of an image structure taken with a relatively highly 

astigmatic objective lens. The astigmatic defocus difference amounts to 

AzA = 364 nm. This is large enough to be set in experiments with sufficient 

accuracy. 

Figure 13 shows the corresponding light optical diffraction pattern. It 

looks quite different from the pattern shown in Fig. 8, although the astigma

tism of the latter is only about a factor of ten less. This demonstrates the 

high sensitivity of the method. 

Fig. 13. - Light optical diffraction pattern of the image structure shown in Fig. 12. 

For a calculation of a two-dimensional frequency spectrum according 
to eq. (16) we need besides of AzA the value AzM or one of the main defocus 
values. The only way we can get it with sufficient accuracy is to take it from 
the optical diffraction pattern. From Fig. 13 follows Az1 =+ 358 nm in 
the vertical direction. Using this value, we calculated from eq. (16) the 
azimuthal dependency of the reciprocal spatial frequencies Λ > 5 Â with 
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Fig. 14. - Calculated power spectrum according to eq. (16), where AzA = 364 nm and 
Δζχ = + 358 nm. 

ΔζΑ = 364 nm. The calculated Fourier transform (Fig. 14) is in good agree

ment with the experimental one. Equation (16) obviously describes the 

influence of first order axial astigmatism correctly. 

It is now necessary to consider the influence of the finite illuminating 

aperture since our theoretical considerations were based on the assumption 

that the illuminating aperture was exactly zero. In practice, however, its 

value is in the range of 10~3 to 10~4rad. It is usual to consider an object 

detail of size d to be illuminated effectively coherent even in the case of an 

extended source, if 

d ™ λ , (20) 
π-αΒ 

where ocB is the illuminating aperture. With λ = 3.7· 10~9 mm, as used in 
experiments, we have d & 10 Â to 100 Â, when ocB = 10~3 to 10~4. There
fore, with α ΰ̂ 5 · 1 0 ~ 4 the illumination should be effectively coherent for 
all details of interest. 

It should be pointed out, however, that the coherence condition (20) 
is not satisfactorily applicable in the case of defocused imaging using a lens 
with spherical aberration. 
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The diffracted intensity of each spatial frequency fills a finite angle of 
approximately 2<xB. If the phase shift according to the wave aberration of 
the objective lens is strongly varying within such a range, the phase contrast 
will be destroyed. This means, the value of ocB, which can be tolerated, depends 
on the defocus value of the objective lens. 

In experiments, an increase of ocB from 2 - 1 0 -4 to 2 - 1 0 -3 had little effect 
in the vicinity of the first vertex S0 of the transfer characteristic (Fig. 5), 
whereas phase contrast for high spatial frequencies was completely destroyed 
at defocus values about three times stronger, using the higher illuminating 
aperture. 

Finally, Fig. 15 demonstrates the influence of a limited objective aperture. 
If the + 1 and — 1 diffraction order of an elementary grating are inter
cepted by an aperture, this grating cannot be transferred to the image. 

J Z « -160 +32 +212 -160 +32 +212nm 

Al* -160 +28 +208 -160 +28 +208nm 

c*o = 9,6-10-3 50=3,810-3 Z/A = 100KV , lOnm, 

Fig. 15. - Image structures of a carbon foil (left) and corresponding diffraction patterns 
(right), taken with two different limitations of the objective aperture a0 and â0. 

Accordingly, with the values used in experiment, transfer limits result at 
Λ = 4Α (upper row) and 10 Â (lower row), respectively. In agreement with 
the diffraction formula for partially coherent illumination 

0.77λ 
(21) 
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where a 0 is the objective aperture and δρρ can be considered a point-to-point 

separation, no image details closer than about 7 to 8 Â appear in the micro

graphs shown in the lower row. The decrease in resolution can clearly be 

seen from the light optical diffraction patterns on the right-hand side of 

Fig. 15. A comparison with the transfer curves of Fig. 5 makes it under

standable, why phase contrast is almost totally eliminated with a defocus 

value of A z = + 2 8 n m (lower row in Fig. 15). This reveals a possibility 

to separate phase contrast and scattering absorption contrast components 

by appropriately choosing the objective aperture and the defocus value. 

Summarizing, one can say that the conventional method to produce phase 

contrast by defocusing is very unsatisfactorily, if circular apertures are 

used. With a defocus value close to the vertix 5 0 of the transfer charac

teristic, which value corresponds to the Scherzer optimum defocus, only 

one relatively wide continuous frequency band is transferred if the objective 

aperture has been chosen appropriately. But the resolution, which can be 

obtained under those conditions, is restricted to values lower than desirable. 

With stronger defocus values, higher spatial frequencies will be transferred 

but, due to the occurrence of selective frequency bands and a reversal of 

contrast, the interpretation of the micrographs becomes complicated or even 

impossible. 

Therefore techniques, which improve the phase contrast transfer proper

ties, are urgently needed. Those methods will be subject of the following 

Sections. 
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2. High resolution microscopy using special apertures. 

2 1 . Introduction. 

In this second Section we are going to discuss how contrast transfer can 

be influenced and possibly improved by inserting special apertures into the 

back focal plane of the electron microscope. Common to all methods to 

be discussed is the fact that a certain amount of the electron beam after having 

passed the object is intercepted completely while the remaining part will 

pass uninfluenced. 

Only when applying the first method (zone correction plates) is phase 

contrast in its direct meaning still employed. Image contrast is, as pointed 

out in Sections 1, attained by interference of the primary beam and the 

± 1st diffraction orders. 

By inserting an asymmetric aperture into the back focal plane (semi

circular aperture) we can show that the value of contrast no longer depends 

on the wave aberration of the objective lens. Thus the frequency dependence 

of contrast is eliminated, too. On the other hand further complications 

arise as will be shown. With the third method (dark field) the intensive 

zero-diffraction order is intercepted completely. As in high resolution elec

tron microscopy dominantly coherent illumination is used, this method may 

lead to quite intricate imaging conditions. 

2*2. Zone correction plates. 

Since the contrast of adjacent spatial frequency bands changes its sign, 

as pointed out in Section 1, the chance of interpreting high resolution images 

becomes quite small. 
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ι 1 1 1 1 1 1 1 1 1 1 5" 

oo 19 10,8 8,2 6,8 5.9 5,2 4,6 4,1 3.3 2,9 A 

ι 1 1 1 1 1 1 ζ ο 

0 2 4 6 8 10 12 X10 — • θ 

Fig. 16. - Phase contrast transfer function of an electron objective lens with C\. = 4 mm 
at a defocus value Δζ = + 500 nm (accelerating voltage 100 kV). The real CTF is oscil
lating between positive and negative values. The contrast has to exceed a value of about 

0.6 to become perceptable in the electron micrograph. 

from zero up to the highest relevant spatial frequencies. The real conditions 
when imaging with a circular aperture are quite far from this. 

More favourable transfer conditions than in the case of the circular 
aperture could be attained according to a proposal of Hoppe Q), if only 
equiphase waves were admitted to the imaging process while intercepting 
the waves of opposite phase direction. This means that only certain ringlike 
sections of the objective lens are to transmit waves while the others have 
to be opaque. A detailed theoretical treatment of the effectiveness of the 
method has been given by Hoppe and Langer (

2
). 

In the diagram of Fig. 16 such a zonal intervention could be illustrated 
by cutting off the negative values of the function K(A) thus giving rise to 
additional gaps in the spatial frequency spectrum. According to the calcula-

The function Κ(Λ) describing contrast transfer oscillates between positive 

and negative values, according to the local variation of the wave aberration. 

An example for such a function, which can in principle be derived from the 

Fig. 4 or 5, is shown in Fig. 16. 

The dotted line in the diagram stands for an ideal contrast transfer func

tion. Such an ideal transfer function is supposed to be of constant value 
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tions of Hoppe and Langer (

2
) for the case of imaging single atoms this should 

result in a positive effect on the shape of the image point intensity 

distribution. 

There were two main difficulties which had to be overcome in trying to 

realize Hoppe 's idea. 

First of all, new techniques of preparing such zone correction apertures 

with their extremely minute dimensions had to be found. Second an extraor

dinary high experimental skill had to be applied while working with these 

correction plates in the microscope. The problems connected with the prep

aration of the plates have been solved by Môllenstedt and colleagues (

3
). 

The method of plate preparation by means of an electron optical demagnif-

ication system was published elsewhere (

4
). An example of a zone correc

tion plate produced by these authors is shown in Fig. 19 in the top left hand 

corner. The diameter of this plate is about 60 μηι, the axial thickness is less 

than 1 μηι. 

To understand where the experimental difficulties in applying these plates 

arise from, let us discuss Fig. 17. This shows the transfer characteristic of 

0 0 oo 

-100 0 100 200 300 400 500 600 nm 
—:Al 

Fig. 17. - Phase contrast transfer characteristic of a special objective lens with Q,=1.35 mm. 
The intercepting effect of a zone correction plate is indicated by the broad dark lines at 

Az = + 300 nm. 
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Fig. 18. - Field curve B(z) and electron path S(z) in the case of the special lens for use 
with the Elmiskop 101. The position of the zone correction plate is indicated. 

In Fig. 18 the electron optical conditions in the case of the special objective 
lens mentioned above are schematically shown. 

The field curve Β is indicated by a dotted line. The electron path S, which 
enters parallel to the optical axis, determines the back focal plane at point F. 
The electron path U, which is parallel to the optical axis at the position of 

38 

a special objective lens for use with the Elmiskop 101. The coefficient of 

spherical aberration in this case amounts to 1.35 mm. For practical reasons 

the diffraction angle θ and the co-ordinate in the aperture plane are plotted 

linearly, instead of the reciprocal spatial frequency A. Therefore this represen

tation looks a little bit different from that used in Fig. 5. At the defocus 

value Az = + 300 nm, those frequency bands which are intended to be elimi

nated by the zone plate of the employed type, are indicated by broad dark 

lines. The elimination of every second frequency band ensures that only 

frequency bands of identical sign of contrast are transferred to the image 

plane. The transfer limit for the reciprocal spatial frequencies determined 

by this plate is 2.1 Â. According to the equation for point to point resolu

tion in the case of partially coherent illumination, as indicated in Fig. 17, 

a true resolution of 1.6 Â should be possible. 

From Fig. 17 it is quite obvious that the quality of imaging with zone 

plates is very sensitive to deviations from the calculated defocus value, to 

small amounts of axial astigmatism and demands accurate alignment of 

the plate in respect to the optical axis. 
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the object, determines the entrance pupil Ee and the exit pupil Ea. The zone 

plate should be arranged in the diffraction plane of the objective lens a t £ " a. 
In the case of strong lenses, this plane is always located inside the lower pole 

piece bore. It is therefore inconvenient to position the zonal plate at this 

point. The plate however, can be located in the gap between F and Ea, pro

viding the plate dimensions are correspondingly altered. If one follows the 

electron path γ1 which is stopped by the plate, and γ2, which passes through 

an opening in the plate, it can be clearly seen that the dimensions must be 

reduced. The axial position for which the zonal plate has definitely been 

calculated, must be kept to within a tolerance of not greater than 100 μηι. 

The requirements governing the lateral augment are far more severe. In order 

to obtain a correct elimination of the intended spatial frequencies, the plate 

axis must not deviate more than 0.5 μηι from the optical axis. Furthermore, 

the astigmatic defocus difference of the objective lens should be less than 

4 nm. 

Currently known methods do not enable such an accurate compensa

tion of the axial astigmatism to be made to within any degree of cer

tainty, and it is purely by coincidence, when it so happens. The defocus 

value, for which the zonal plate is calculated, must likewise be set within a 

tolerance of about 4 nm. This could be met in the case of the arrangement 

employed, because it was possible to produce focusing series with defocus 

intervals of 3.9 nm. Further requirements are: The illuminating aperture 

must be less than 4 · 1 0

-4
 rad ; the relative fluctuations of the lens current and high 

voltage must be less than 2 - 1 0

- 6
. The plate must naturally be completely 

free from electrostatic charging during the whole investigation. The require

ments on the whole are quite difficult to meet. 

Nevertheless the effect of zone correction plates could already be demon

strated in experiments, using carbon foils as testing objects (

4
'

5
) . Figure 19 

shows a micrograph taken with a zone plate. The plate is shown in the top 

left hand corner, it was shadow photographed while in the diffraction plane 

of the objective lens. The image structure of the carbon foil looks more 

uniform than in the case of a circular aperture at the same defocus. The 

light optical diffraction pattern in the bottom right hand corner clearly 

shows intensity for Λ values as low as 3 Â. That means, in practice a point 

to point resolution of 2.3 Â is attained. Details with such distances and with 

distances even slightly smaller are actually contained in the image. 

The effect of the zone plate on the transfer properties can be better recog

nized by comparing electron images and their corresponding light-optical 

diffraction patterns, the images taken with and without a zone plate at approx-
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imately the same defocus value under identical operating conditions. The 

result of such an experiment is shown in Fig. 20, it was made using an 

ΔΖ: +480 ~ + S 0 0 η m 
10 nm 

I f 

Fig. 20. - Comparison of carbon foil images and of the corresponding light optical dif
fraction patterns in case of circular objective aperture (left) and zone correction plate (right). 

Elmiskop IA. The comparison of the diffraction patterns shows, that in the 
case of the zone plate (right) the transfer properties, especially for higher 
spatial frequencies, are remarkably improved. The 2nd, 4th and 6th fre
quency bands have been eliminated, but therefore the remaining bands are 
broader than the corresponding bands (1st, 3rd and 5th band) in the case 
of the circular aperture (left). Additionally, diffraction intensity is indicated 
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for another band, that does not occur in the image taken with a circular 

aperture. 

In principle, zone plates of the type used would enable one to achieve a 

point to point resolution of 1.6 Â. Up to now it has not been possible to 

attain this value. 

The cause for this could be due to difficulties in applying the zone plates 

but also other limitations, for instance anomalous energy distributions of 

the electron beam can have affected the imaging process. It is also possible 

that the objects used did not fulfill the necessary requirements. In any case 

the recent experiments confirm in principle the possibility of the application 

of zonal correction plates in high resolution electron microscopy. 

The big experimental difficulties in applying zone plates initiated experi

ments for zonal filtering in light optical reconstruction. This technique is 

an alternative to zonal correction in bright-field phase contrast only. Within 

the microscope itself zonal correction plates for dark-field microscopy are 

also applicable. Still there has not been a convincing demonstration of the 

effectiveness of zone plates applied to high resolution imaging of real objects. 

2*3. Semicircular apertures. 

If either the + 1st or the — 1st diffraction order is eliminated from 

the imaging process, then the contrast of a spatial frequency is no longer 

dependent on the wave aberration of the objective lens. A theoretical treat

ment has been published by Hanszen and Morgenstern (

6
) for the case where 

this asymmetrical elimination of diffracted intensity is achieved by oblique 

illumination of the specimen, using a circular objective aperture. In principle, 

this technique allows the whole frequency spectrum to be transferred simul

taneously. This would be classified as an ideal condition. Unfortunately, 

this asymmetrical intervention causes lateral phase shifts, which are again 

dependent on the wave aberration of the objective lens. It means that dif

ferent displacements of the individual spatial frequencies occur in the image 

plane. This has no consequence, as long as only one single frequency is 

relevant to the imaging process, such as in the case of lattice imaging. In 

the case of amorphous objects, it leads to a decisive limitation. 

According to calculations made by Hanszen (

6
) for a one-dimensional 

object, a better resolution should be obtainable even with amorphous objects, 

if balanced conditions in respect of illumination angle, wave aberration and 

size of aperture are met. In the actual two-dimensional case, however, the 
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azimuthal dependency of the aperture limitation produces a negative effect, 

as demonstrated recently (7). 

The azimuthal dependency of the aperture limitation and of the transfer 

conditions is excluded, if the necessary elimination is attained by intercepting 

one side of the aperture using a special semicircular aperture (7'8). The illu

mination, of course, has to be axial. Figure 21 shows schematically (on the 

right-hand side) the shape and the arrangement of this type of aperture. 

Fig. 21. - Carbon foil image, taken with a semicircular aperture. Shape of the aperture 
and data used in the experiment are shown on the extreme right. 

The open area is not a correct semicircle, there is an additional small open 
area which allows the primary beam to pass through. This has been found 
necessary for experimental reasons. The carbon foil image shown in Fig. 21 
has no preferential orientation, the structure details correspond to distances 
less than 3 Â in the object plane. The light optical diffraction pattern in 
the top left hand corner shows a rotational symmetry and a continuous 
distribution of diffraction intensity, as expected from the theoretical considera
tions. There are still three-beam interferences indicated in a very small ver-
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Fig. 22. - Focusing series on carbon foils and corresponding light optical diffraction pat
terns in case of circular aperture (top) and semicircular aperture (bottom). The defocusing 

range is about 320 nm in both cases. 

tical region of the pattern. This is a result of the aperture not having been 

exactly centered. 

It is surprising, how little the appearance of the image structure is altered 

with relatively large changes of the defocus value. This is demonstrated 

by Fig. 22. The upper row shows a focusing series taken with three-beam 

interference conditions, that means using a circular aperture, over a range 

of 305 nm, and the corresponding light optical diffraction patterns above. 

The total as well as the detailed image structure changes quite drastically. 

The series below were taken with a semicircular aperture. Here the defocus 

range is extended to 330 nm, and we notice very little change in the structure. 

For example identical details with distances of about 0.5 nm can be detected 
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over the whole defocus range. In the case of three-beam interference, as 

in the upper row, details of this size would not be identifiable due to a multiple 

contrast reversal. 

Thus, the transfer properties seem to be quite ideal in the case of semi

circular apertures, but we still have to take into consideration the lateral 

phase shifts which are included in this method. Further considerations on 

this subject will be made in the near future. 

Very recently a new method for reconstruction of complex image functions 

has been suggested by Hoppe, Langer and the author (

9
). Two consecutively 

taken exposures using complementary arranged semicircular apertures enables 

one to reconstruct the Fourier coefficients of a complex image amplitude 

with equal weight for all Fourier components. 

Also very recently Hanszen (

1 0 , 1 1
) pointed out that an image taken with 

a semicircular aperture can be considered a single-side band hologram. A 

micrograph of this type can be perfectly reconstructed using a matched light 

optical reconstruction system. From a theoretical point of view, this recon

struction method is almost ideal. 

First experiments suffered from insufficient quality of the electron micro

graphs due to axial astigmatism which was introduced by the semicircular 

apertures. We are now going to provide means which should prevent the 

apertures from being contaminated. 

2 '4. Dark field methods. 

H. Boersch (

1 2
) introduced dark field imaging into electron microscopy 

in 1936. This technique has been proved extremely useful in some types of 
investigations. During the last years Dupouy (

1 3
) has shown excellent dark 

field images in the field of medium resolution. He used dark field apertures 
with a central stop, thus maintaining axial illumination of the specimen. 

In the high resolution field, however, there seem to be some restrictions 
on the applicability of this technique. The reason lies probably in the fact, 
that the high degree of coherence usually present when working under high 
resolution conditions, is disadvantageous in dark field electron microscopy. 

In imaging carbon foils with dark field apertures of the type shown in 
Fig. 23 on the right hand side, we got image structures with details in the 
3 Â region (

7
). The question arose, whether these structures are due to real 

dark field contrast analogous to scattering absorption contrast in bright 
field imaging, or whether they are results of an interference between the 
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Fig. 23. - Dark field images of a carbon foil; resolution test. 

+ 1st and the — 1st diffraction orders. In the latter case the image struc

ture would show half-spacings, which would be most unfavourable for inter

pretation of the images. 

Half-spacings, however, should not occur, if in addition to the zero 

beam one half of the aperture plane is also intercepted by a special aperture of 

the type shown in Fig. 24 on the extreme right. Figure 24 allows a comparison 

of the two experiments under discussion: In case of the semicircular dark 

field aperture the transfer limit is lower compared to the two-sided case. 

This seems to indicate that half-spacings really have been eliminated. Obvi

ously we do have to take interferences between several diffracted waves into 

account in those cases, where the strong zero order does not any more control 

the contrast. As a result of one-sided interference we cannot exclude the 

possibility that even differential frequencies contribute to the image structure 

under the given coherent illuminating conditions. 

One should therefore be very careful in interpreting high resolution dark 

field images, when they have been taken with a coherent illumination of the 

object. This is supported by results of Hanszen (1 4) who made light optical 

experiments analogous to ours. 
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Fig. 24. - Two different types of dark field imaging. 

Dark field microscopy in the high resolution field has therefore still to be 

investigated further. For this reason there is again enhanced interest in 

methods which make use of the phase contrast mechanism, but avoid the 

disadvantages of circular apertures or even of zone plates. A method, which 

theoretically fulfilles these requirements, will be discussed in the next Section. 
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3. Prospects of high resolution microscopy using phase plates. 

3 1 . General aspects. 

From the previous Section we know that even by applying zone correc

tion plates, semicircular apertures etc., the contrast transfer conditions of the 

objective lens can only be improved to a certain degree. Also these tech

niques do not provide that all spatial frequencies contained in the object 

are transferred to the image with maximum contrast simultaneously, or they 

cause lateral phase shifts. Thus, they do not really provide optimum condi

tions, i.e. a phase contrast transfer function which is constant in the frequency 

range from 0 up to the highest relevant frequencies. 

The purpose of this Section is to discuss, whether better conditions could 

be achieved by not only using the phase shifting effect of the objective lens 

itself and intercepting parts of the electron waves, but by introducing addi

tional phase shifts. 

In light optics an ideal phase contrast imaging is possible by inserting 

a phase shifting plate of constant thickness into the imaging system according 

to the Zernike method on condition that the object is in focus and the objec

tive lens spherically corrected. 

In electron microscopy phase shifting can also be attained. According 

to a proposal of Boersch Q) electrostatic fields or material foils with an inner 

potential should be suited to produce phase contrast. Corresponding experi

ments were done by Kanaya et al. (
2
) and by Fert et al. (

3
). We will discuss 

their investigations later. 

A decisive complication in electron phase contrast microscopy, especially 

in the high resolution field, arises from the wave aberrations of the objective 
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lens which are caused by the unavoidable spherical aberration and by defo

cusing, if any. In consequence the profile of an ideal phase shifting foil to 

be inserted in the back focal plane of such an objective lens has to be quite 

complicated in order to achieve the desired correction for each point of the 

exit pupil, i.e. for all spatial frequencies of the object. In principle, however, 

a foil of suitable material with suitable variation of thickness should be able 

to establish the required conditions as Hanszen (

4
) pointed out in 1965. 

If phase contrast electron microscopy is to be realized by phase shifting 

plates of this type, two questions are mainly to be discussed: 

1) Is it possible to prepare such complicated plates? 

2) How far will the scattering of electrons within such a plate increase 

the background intensity and diminish the image contrast of small 

object details? 

3*2. Preparation of phase plates. 

Let us start with a discussion of the first question : Fig. 25 shows at the 

top a sectional drawing of a carbon phase plate calculated for a special objec

tive lens of the Siemens Elmiskop 101. The accelerating voltage is 100 kV, 

the nominal defocus value chosen is + 283 nm and the calculated resolu-

t 

Fig. 25. - Profile of a phase plate thickness / in dependence of radius r in the back focal 
plane of the objective lens (top), phase shift γ by spherical aberration and defocusing for 
two different defocus values (centre) and scheme of a zone correction plate (bottom). 



Phase contrast electron microscopy 605 

F l y i n g - S p o t - P h o t o m e t e r 

Transmission 

Fig. 26. - Principle of a speed-controlled electron optical microrecorder. 

t ion limit for point-to-point separation is 1.6 Â. Notice that in the vertical 

direction a 1000 times enlarged scale is used compared to the horizontal 

axis; thus the radial variation of thickness is exaggerated. In fact, the diam

eter of the plate is 60 μπι, the central hole is about 7 μιη in diameter, and 

the thickness varies between about 200 Â and 1200 Â. 

Below the plate profile in Fig. 25 is plotted the phase difference γ 
between the diffracted waves and the undiffracted beam in dependence of the 

radius r in the back focal plane, this phase shift being introduced by spherical 

aberration of the objective lens and a defocus value of Δζ = + 283 nm (upper 

curve) and Δζ= + 300 nm (lower curve), respectively. In order to attain the 

desired additional phase shift for maximum phase contrast at each point 

of the exit pupil, the thickness of the plate has to vary in the manner shown 

above. If possible, the thickness should be kept small because of the inherent 

scattering. That is why drops of phase at values of 2π are used, thus building 

up the plate stepwise. A central hole has been chosen to avoid an interaction 

of the very intense undiffracted beam and the plate, which certainly would 

produce undesired effects caused by electrostatic charging, etc. Below the 

plotted phase shift γ a Hoppe-type zone correction plate for a calculated 
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defocus value Δζ = + 300 nm is schematically drawn with the same lateral 

scale. The analogy is quite clear. 

With a high degree of probability it will soon be possible to prepare such 

complicated plates with sufficient accuracy. Mueller (

5
) described how to use 

a Siemens Elmiskop 101 as a speed-controlled microrecorder. As a writing 

material he used the contamination layer which grows upon a specimen 

which is irradiated by electrons in a normal residual gas atmosphere. Figure 26 

demonstrates the idea in principle: the transparency value of a pattern 

is transformed into an electrical signal by a flying-spot-photometer. Here 

capital Ε is used as an example. A steering-logic adjusts the sweep velocity 

of the scanning beam proportional to the optical density at any point of the 

pattern. Synchronized with this is an electromagnetic deflection system 

above the objective lens of the electron microscope. The deflection system 

controls the position and velocity of a very minute electron probe scanning 

on a carbon foil which is arranged in the back focal plane of the lens by 

means of a special specimen cartridge. As the probe has a diameter of less 

than 100 Â, contamination traces grow up very rapidly on top and bottom 

of the irradiated parts of the foil. The thickness of the contamination layer 

at each point of the foil depends on the local velocity of the scanning beam, 

on the diameter of the probe and on the partial pressure of the hydrocarbon 

molecules. The diameter of the probe and the distance of scanning lines 
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Fig. 27. - Some examples of microwriting. 
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can be controlled. A semiconductor detector monitors the thickness of 

the contamination layer continuously by measuring the electron density 

variation. In this way the growing of the contamination layer can be super

vised. 

Some applications of such an electron optical microrecorder are shown 

in Fig. 27. The recorded examples including the magnification scale were 

written on a carbon film, using a line distance of 500 Â (top) and 280 Â 

(bottom). 

Fig. 28. - Half-tone picture produced by an electron optical microrecorder. The size of 
the micro-picture was (5 x 5) μηι2. 

To prepare phase plates, the microrecorder must be capable of producing 
continuously varying thickness distributions. This condition is met by the 
speed controlled type. Figure 28 shows as an example the first half-tone 
picture ever produced with an electron optical microrecorder. The size of 
the record is 5 X 5 μηι2. The line distance was 300 Â, the half-width of the 
probe about 50 Â. 

For the preparation of specimens with rotational symmetry it is conve
nient to control the writing process using polar co-ordinates. Such a steering-
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logic is under construction. It is only a matter of time until phase plates as 

described will be available for first experiments. 

It may be mentioned that the use of phase plates in the microscope 

demands special care to preserve the profile of the plates from contamination. 

The vacuum conditions have to be so good that an increase in thickness is 

negligible. 

3 3 . The self-scattering of phase plates. 

The second question in discussion concerns the effect of electron scattering 

caused by a phase plate on the contrast of fine image details. There are 

actually no experimental results known with respect to this problem. 

Kanaya et al. (2) and Fert et al. (3) did some experiments concerning phase 

contrast microscopy about ten years ago. Kanaya inserted a perforated 

film into the back focal plane of the objective and let the zero beam pass a 

central hole of about 10 μηι in diameter. Thus he prevented the image from 

being destroyed by electrostatic charging. 

Fig. 29. - Electron micrograph of a phase plate of uniform thickness with a centre hole. 
The marks indicate the radii at which the diffracted orders corresponding to the noted 

reciprocal spatial frequencies pass the aperture plane. 
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Fig. 30 Image structures of a carbon film. The micrograph was taken using the phase 
plate of Fig. 29. 

3 9 

With a central hole of 10 μηι in diameter, however, only diffracted waves 

corresponding to object details smaller than about 10 Â could be affected 

by the phase shifting foil. But such a resolution could normally not be 

achieved in electron microscopy at that time. Therefore these experiments 

cannot give an answer in respect to the application of phase plates in the 

high resolution field. 

For this reason some basic experiments were done by the author (6) : 
a 60 μηι hole in a metal foil aperture was covered with an evaporated carbon 

film. The thickness was determined by measuring the scattering properties, 

it was about 1400 Â. A central hole was burnt in by electron irradiation in 

presence of oxygen. An electron image of such a plate is shown in Fig. 29. 

The average diameter of the central hole is 3.2 μηι in this case. This means, 

all dt 1st diffraction orders corresponding to reciprocal spatial frequencies 

smaller than 30 Â are shifted in phase by this plate. In Fig. 29 for some 

reciprocal spatial frequencies the distances from the centre are marked, where 

the wave vectors of the diffracted waves hit the back focal plane. 

This plate was used in imaging thin carbon films under high resolution 

conditions. It is clear that these experiments with plates of even thickness 
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are only to answer the question whether the contrast of fine details is con
siderably decreased or even totally destroyed when diffracted amplitudes 
go through phase shifting material of such a thickness. 

After some experimental difficulties, especially caused by charging, it was 
possible to attain image structures including the 3 Â region with good contrast. 
An example is shown in Fig. 30. Figure 31 shows the corresponding light 
optical diffraction pattern. The attenuation in diffraction intensity which is 
indicated for the innermost maximum is due to the fact that the phase shift 
close to the edge of the central hole was especially strong since a contamination 
layer had been grown there during the oxidation of the centre area. Figure 31 
proves that the spatial frequencies of the object are transferred to the image 

Fig. 31. - Light optical diffraction pattern of the image structure shown in Fig. 30. 

in the usual manner. Only the combination of frequency bands is different 
from that which would normally occur at the chosen defocus value as a con
sequence of the additional phase shift introduced by the plate. 

In addition, the contrast of 5 Â details in micrographs was measured. 
There was almost no difference in contrast of image structures taken with 
a phase plate of the type described or taken with an open circular aperture. 
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3 '4. Interferometry with the electron microscope. 

Here a first result of another possible application method of phase shifting 

in the back focal plane of an electron objective lens will be discussed. This 

method also has imaging of carbon foils and subsequent light optical diffrac

tion at the image structures as its basis. 

Fig. 32. - Electron image of a perforated foil, which was used for a basic experiment in 

interferometry. 

The measured intensity modulation was in both cases about 2 5 % compared 

to the background intensity. 

In the meantime, Badde and Reimer (7) calculated the influence of a 

scattering phase plate on the electron image. The authors determined the 

decrease of the coherent part of the electron beam intensity which is expected 

to be caused by a phase plate with a profile like that shown in Fig. 25. Their 

results can be summarized as follows: In the case of an objective lens with 

a coefficient of spherical aberration Q = 1.3 mm, using 100 kV electrons, 

the contrast attainable for a Pt-atom (C-atom) should be 15.5% (3.1%) 

without any phase plate under optimum defocus conditions. Having an ideal 

phase plate without any inherent scattering, the contrast should amount 

to 4 8 % (11%). And finally, using a real phase plate as described above, 

32% contrast should be attainable in the case of a Pt-atom, and 7 % in case 

of C-atom. This is about twice as much as under optimum conditions 

without using a phase plate. These results are very encouraging. A com

parison between these calculations and experimental results will be possible 

in the near future (8). 
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Fig. 33. - Image structures of a carbon foil. The micrograph was taken using the per
forated film of Fig. 32 as objective aperture. 

A basic experiment for testing the method was done using a perforated 

foil which is shown in Fig. 32. In a vertical direction a certain area is uncov

ered at least on one side. When inserting this foil into the back focal plane 

the image structures shown in Fig. 33 result. The light optical diffraction 

pattern of the image structures (Fig. 34) reveals a corresponding alteration 

of the frequency spectrum in the vertical direction. From this the inner 

potential \J% of the foil can be calculated, if the thickness t is known: 

rτ _γ·λ·υ0 

where λ is the electron wavelength and U0 the accelerating voltage. If the 

inner potential is known then the thickness t of the foil can be determined. 

A rough estimation shows that these quantities may be determined with a 

tolerance not larger than ± 5 %. This is comparable in its accuracy with 

other, much more complicated methods. 

According to a proposal of Hoppe (9) interferometry using the electron 

microscope should be possible in the following way. The material to be 

examined is mounted on an aperture in such a way that only a sector of the open 

area is covered. Thus, in imaging a carbon film, only in a certain azimuthal 

range an additional phase shift γ due to this material occurs. This gives 

rise to an azimuthal dependency in the frequency spectrum of the image 

structures which can be used to determine the additional phase shift and 

the inner potential Ui of the material. 
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Fig. 34. - Light optical diffraction pattern of the image structures shown in Fig. 33. 
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4. Spatial filtering in optical reconstruction 
of high resolution phase contrast images. 

4* 1. Introduction. 

The main aim of the investigations described in this Section is the improve

ment of phase contrast information in high resolution electron images by 

application of coherent spatial filtering techniques in optical reconstruction. 

Similar techniques were first proposed and used by Maréchal and 

Croce (*) in light optics to remove undesired defects in photographic images 

due to incorrect imaging. 

Optical filtering of electron micrographs has been very successfully applied 

to the investigation of biological particles with spatially extended periodicity 

by Klug and Berger (

2
) and by Klug and De Rosier (

3
). In this case an im

provement in interpreting image details of stained specimens has been achieved 

by eliminating phase contrast and admitting scattering absorption to the 

reconstructed image only. In addition to this the image is reconstructed 

by using only the relatively strong diffraction orders caused by periodic 

image details. So it is even possible to extract the image of one side of a 

particle from a two-sided image. However the staining does not allow a 

resolution better than about 20 Â. In order to get a higher resolution it seems 

to be necessary to avoid staining and to make use of phase contrast information. 

Further investigations with optical reconstruction devices have been pub

lished by Hanszen (

4
). He compared the transfer function of a defocused opti

cal imaging system with spherical aberration with the imaging properties of an 

electron objective lens. The correspondence between the two systems may 

also be used to get a better quality of electron micrographs by reconstruction. 

Here recent experiments of Thon and Siegel (

5
) are to be discussed. The 

aim of these investigations is to improve the information obtained from high 

resolution phase contrast electron micrographs. The basic procedure consists 

of zonal filtering with a Hoppe-type zone correction plate (

6
) and not applied 

within the electron microscope as realized by Môllenstedt et al. (

7
) but in 

a subsequent optical reconstruction step. 
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4 2 . Theoretical considerations. 

We assume the isoplanacy condition to be satisfied and the electron 

microscopic specimen to be a weak phase object. Thus the intensity distribu

tion d(x, y) in the image plane of a defocused objective lens with spherical 

aberration may be written 

d(x9y) = F(V'K)+l9 (22) 

where F stands for Fourier transformation, φ is the scattering amplitude of 

the object and Κ is the contrast transfer function 

K = 2BM-unW. (23) 

Here the function BM accounts for apertures and filters in the back focal 

plane of the electron objective lens. W is the aberration function for the 

case of defocusing and spherical aberration. 

The amplitude distribution D(u, v) in the back focal plane of the aberra

tion-free diffraction lens in a light optical reconstruction apparatus can be 

written 

D(u, v) = F(d) = 2φ >BM BL· sin W + δ , (24) 

where δ is Dirac's delta-function and BL takes account of a filter in the dif

fraction plane. As BM and BL can be exchanged in this equation, the appli

cation of apertures and filters within the electron microscope and within 

the light optical reconstruction apparatus is equivalent under the conditions 

noted above. 

4*3. Arrangements. 

The above mentioned method of zonal correction is intended to allow 

the passage of only equiphase waves and to obstruct the passage of those 

waves of opposite phase position (

6
). The use of zone correction plates in 

the microscope has proved to be extremely difficult due to the minute dimen

sions of the plates and the most critical demands regarding lateral alignment, 

compensation of axial astigmatism and accuracy of focusing. According to 

the theory the same correction effect should be achieved by taking the elçç-
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tron micrograph using a circular aperture and subsequent zonal filtering of 

the image structure using an optical diffractometer. 

If the reconstruction arrangement is properly dimensioned and no serious 

imaging defects occur, zonal filtering should be much easier to handle this 

way than in the electron microscope. But, in fact, several difficulties can arise, 

since even at highest magnifications the interesting details in high resolution 

electron micrographs are comparable in size with the granulation of the photo

graphic plates and the contrast of the finest details is quite weak. Special 

care has to be employed in selecting the lenses for the reconstruction device 

as even small aberrations can falsify the image structure completely. 

Fig. 35. - Two arrangements for optical filtering, schematically. 

Figure 35 a and b shows schematically two possible arrangements for fil
tering techniques. The upper one (a) allows a very short length of the apparatus : 
the coherent light coming from the effective source A is collimated by 
lens Lv Thus a parallel beam illuminates the object O, i.e. the photographic 
plate with the electron micrograph. Its primary Fraunhofer diffraction pat
tern in the back focal plane Dx of lens L 2 is enlarged by lens L3. The plane 
D2 of the enlarged diffraction pattern is the plane of symmetry of the whole 
optical arrangement. Here the filters are inserted. The amplitude distribution 
behind the filter is transformed by the field lens FL and the lenses L 4 and L 5 
into the image distribution / . This arrangement fulfills all requirements for 
the application of exact Fourier transformation to the imaging process. 
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Fig. 36. - Device for optical filtering. Top: registration of the Fourier-transform. Bottom: 
reconstruction set-up. 

Figure 36 shows an arrangement according to the principle described above, 

which was partly used for the experiments. The upper photograph shows 

how the diffraction pattern is registered, the lower one shows the actual 

reconstruction apparatus. As a light source a He-Ne laser of 15 m W power 

was used in this case. Other experiments were performed using 5 or 8 mW 

lasers. In Fig. 36 only an attachment to the laser is visible on the left-hand 

side. This attachment combines an expanding lens, a spatial filter and a 

collimating lens. The next carrier holds a neutral density filter for attenuation 

of the very intense beam during the adjustment of the set-up. Another carrier 

takes the diffracting object, i.e. the electron micrograph. It is arranged 

exactly in the front focal plane of the diffraction lens (camera l e n s / = 135 mm). 

A microscope objective (10 X , / = 18 mm) enlarges the Fourier transform and 

projects it on the registration plane of a Polaroid camera body, in front of 
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which is a shutter. It has been proved useful to take a Polaroid sheet film for 

registering the diffraction pattern, since it is quite convenient also in our 

case to cut the filter masks directly from the film. The diffraction pattern 

is about 30 mm in diameter, and its outermost diffraction maximum corre

sponds to 3 Â details at a magnification of 250000 in the electron microscope. 

The lower photograph in Fig. 36 demonstrates the reconstruction set-up. 

The Polaroid back was replaced by a mask-holder with a rotatable cross-

table and a field lens. After this the lenses are symmetrically arranged to 

the filtering plane as mentioned above. Finally the reconstructed image is 

photographed by a 35 mm camera body. The lengt h of the diffractometer 

from the object plane to the registration plane of the first Fourier transform 

is about 50 cm, thus the total length from the object to the reconstruction 

plane does not exceed 1 m. This is remarkably short compared to other 

reconstruction devices the total length of which amounts to 4 or 5 meters. 

In general one can say there are much higher demands in the accuracy 

of adjustment with this reconstruction apparatus than with a mere diffrac

tometer. Lens aberrations, especially those of the microscope objectives, 

have a very critical influence on the quality of the reconstructed images. 

It is absolutely necessary to test the performance of the device very carefully 

with a suitably chosen test object before starting real reconstruction experi

ments. 

A more simple arrangement, which was used for another part of our 

experiments, is schematically shown in Fig. 35b. Here a weakly converging 

illumination of the object was chosen, so that only three instead of six lenses 

were needed. This arrangement also meets the requirements for Fraunhofer 

diffraction but it has the disadvantage of a larger total length of about 2.5 m. 

4*4. Experiments. 

First the arrangement was tested without any filtering. Figure 37 demon

strates the quality of the reconstructed images of four micrographs of a carbon 

foil taken at different defocus values of the electron microscope objective lens. 

On the left hand side sections of the original electron images are shown. 

All sections show the same area of the specimen. The centre row gives the 

corresponding light optical diffraction patterns of these image structures. 

On the right hand side the reconstructions of the original micrographs are 

shown. Each detail of the original plates is accurately reconstructed which 

proves the reliability of the arrangement. The images even have a better 
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Fig. 37. - Originals, Fourier-transforms and reconstructions (right) of four different dç-
foçused micrographs of identical sections of a carbon foil, 
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Fig. 39. - Reconstruction using the same frequency range of two different defocused mi
crographs of a carbon foil. Left: originals. Centre: Fourier-transforms. Right: recon

structions. 

quality than the original micrographs since the noise of the photographic 

emulsion has been eliminated due to the limited size of the apertures used. 

Figure 38 shows, as another experiment, the decomposition of the 

image structure of the third micrograph from top in Fig. 37. Starting 

with the original micrograph the upper row continues with the reconstructed 

image admitting all spatial frequency bands contained in the electron image. 

The next image is a result of the zero order alone with slight disturbances 

as a consequence of experimental difficulties. On the right hand side only 

the zero and first frequency bands contribute to the reconstruction. In the 

lower row the second, third, fourth and fifth frequency bands, consecutively 

each combined with the zero order, are contained in the reconstructed image. 

It is clearly seen that the image structure is determined by the selected fre

quency band, and the details are uniform in size. This proves that linear 

modulation transfer is guaranteed. 

Figure 39 illustrates a practical attempt at a reconstruction, a) and b) 
are micrographs of the same area of a carbon foil taken with widely different 

defocus values, c) and d) show the corresponding diffraction patterns. The 

two reconstructions, e) a n d / ) , show identical image structures since the same 
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range of frequencies were used in the two reconstructions. The range used 
besides the zero order corresponded to passing the frequencies of the third-
frequency band in c), or part of the second-frequency band in d). This 
procedure is a first step towards the total reconstruction of an image 
from a number of different defocused micrographs. 

45. Zonal filtering. 

The experiments described above were to demonstrate the capability of 
the reconstruction arrangement in principle. The next step implies zonal 
filtering. But first some comments on the experimental skill that has to be 
applied for zonal filtering within the electron microscope on one hand and 
in the reconstruction apparatus on the other hand. Figure 40 shows a corn-

Fig. 40. - Geometrical dimensions of a zone correction plate for use within the electron 
microscope (left) and one used in optical reconstruction (right). The latter one is 500 χ 

larger than the one used in the microscope. 

parison between a zone correction plate for use within the electron micro
scope (left) and one used in optical reconstruction especially in respect to 
their geometrical dimensions. Unlike the most tricky preparation of the 
minute plates to be used in the electron microscope (8) the light optical plate 
can easily be cut from the photograph of the diffraction pattern in a few 
minutes, since it is about 500 χ larger than the miniature one. The micro-
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scopic zone plate has to be calculated for a special defocus value ; this defocus 

value has to be met within a tolerance of 40 Â. In addition, the axial astig

matism of the objective lens has to be compensated almost completely. Other

wise the zone plate would be effective only in a certain azimuthal direction 

due to its rotational symmetry. The macroscopic plate has not to be calcu

lated, the mask can be prepared from the diffraction pattern of an arbitrary 

micrograph of any given defocus value. Within the electron microscope the 

zone plate must be aligned within an axial tolerance of 100 μηι and a lateral 

tolerance of 0.5 μπι to the optical axis. Using the reconstruction arrangement 

the mask can be adjusted within a few seconds by observing the diffraction 

pattern. Of course also other kinds of filters, for instance phase shifting 

masks could be inserted into the system. 

Fig. 4 1 . - Top: electron micrograph of a carbon foil taken with a circular aperture and 
its Fourier-transform. Bottom: reconstruction of the micrograph with zonal filtering and 

corresponding Fourier-transform. 

The effectiveness of zonal filtering will be shown by some examples. 
Figure 41 shows in the upper row an original micrograph of a carbon foil, 
taken with a circular aperture, and its Fourier-transform. The bot tom row 
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shows the reconstruction of this micrograph with zonal filtering having been 
applied. From the corresponding diffraction pattern of the filtered image 
structures, finally, it can easily be seen that certain frequency bands have 
been obstructed and that the zone correction mask was properly adjusted. 

As an example for a micrograph taken with a zone corrected electron 
objective lens Fig. 19 can be taken. It demonstrates that the image structure 
is in the same typical way different from that taken with a circular aperture. 
The optical diffraction pattern is quite similar to the corresponding pattern 
in Fig. 41, too. 

A comparison of micrographs showing the same object field, taken with 
a zone corrected objective lens on one hand and taken with a circular aper
ture with subsequent light optical zonal filtering on the other hand, would 
be desirable for further confirmation of the results. Because of the high experi
mental requirements to be met when taking the electron micrographs under 
high resolution conditions (zone plate and circular aperture have to be changed 
without disturbing the compensation of astigmatism to any degree) this step 
has not yet been realized. 

Figure 42 finally shows a first application of zonal filtering to a biological 
object. A defocused image of a r4-phage tail with superimposed phase struc
tures (left) was reconstructed after zonal filtering (right). By comparing these 
two pictures there does not seem to be a great improvement by the zonal 
filtering applied. But we cannot expect to see much effect on the relatively 

Fig. 42. - Micrograph of a r4-phage-tail (left) and its reconstruction with zonal filtering. 
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coarse structures of this stained specimen. There is, however, a remarkable 

change in the behaviour of very fine details visible. Our experiments are still 

in progress, and at the moment we are looking for specimens which are more 

adequate to check the usefulness of this type of zonal filtering. 
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Contrast Phenomena in Electron Images 
of Amorphous and Macromolecular Objects 

A . C. VAN DORSTEN 

Laboratory of Electron Microscopy, University of Amsterdam - Amsterdam, Holland 

1. 

Γ 1 . Introduction. 

In the context of this lecture the word amorphous is used to describe 

electron microscope objects of noncrystalline nature, the structural param

eters of which are in general nonperiodic or only statistically determined. 

This class of objects includes irregular objects as well as ordered structures, 

such as macromolecular particles or fibrous material. 

1*2. Information theoretical aspects. 

Although obtaining high resolution in electron micrographs is of con
siderable theoretical and practical importance, there are fields where con
trast in extended areas, exceeding the theoretical resolution limit by a factor 
of 10 or even 20, appears to be decisive for the contribution the electron 
microscope can be expected to make for extending knowledge about struc
ture. Macromolecular objects are a typical example. 

Before entering into a discussion of the more specific aspects of the subject, 
a survey will be given of some very general aspects of microscopical observa
tion, which is, in fact, a communication process. Communication, in this 
instance, can be defined as the collecting and handling of physically or other
wise detectable signals by an individual. 
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The different parts of a communication process form a communication 
chain. A typical chain is the observation chain, which can be represented 
as follows: 

observer 

signal 
source 

signal 
transmission 

system 
peripheral central 

transmission 
system 

peripheral central 

coding decoding 

More spécifie for the electron microscope: 

electron £ 
object 

microscope 
imaging system 

eye brain 
beam > 

object 
microscope 

imaging system 
eye brain 

coding decoding 

In the transmission microscope the object codes information onto the 

beam. The observer has some control over the coding process by adjusting 

the beam, e.g.  by changing the degree of coherence or the accelerating voltage. 

The imaging system transmits and decodes the signals, converting it into a 

visual signal the perception of which can be related to the object. Part of 

the signal, however, cannot be related to the object and is regarded as noise, 

by analogy with the transmission of acoustical signals through electrical trans

mission systems first investigated basically. The noise can enter the chain 

at various points at which energy is supplied to the system, or where time-

dependent irregular interaction occurs. 

The signal is a carrier of information and is supplying itself the energy 

for its detection (« live » information, Brillouin (

1
)). In electron micro

scopy, however, it is customary to store the information in micrographs as 

« dead » information, a scalar function of the two place co-ordinates de

fining the structural  information,  and the intensity (or density) for each point, 

defining the metric  information.  The output signal can thus be identified 

with the recorded image. Because of the finite resolving power of the micro

scope there is a quantization of the image co-ordinates, and thus of the struc

tural information. This simply accounts for the well-known fact that the 

system acts as a low-pass filter for the spatial frequencies to be transmitted. 
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The image can thus be split up into a finite number of image elements, each 

corresponding to the size of the smallest object detail to be observed multiplied 

by the magnification. 

The next consideration is to further specify the metric information by 

assigning a variable measure to each element in the form of a scale of distin

guishable intensity steps. This proper scale is determined by a property 

of the observer or the detector he uses, or both. Because there is always 

an amount of uncertainty in every observation or measurement of a physical 

quantity, the measure can be only one within certain limits of probability. 

The maximum number of gradation steps that can be distinguished by 

a human observer in a single observation is physiologically determined, and 

practically never exceeds ten. The actual number of recognizable levels of 

gradation, a property of the recorded picture, appears to be an important 

factor in the appreciation of the picture. For the normal case of a half-tone 

picture printed on white paper, it appears that the human observer has a 

typical preference for the presence in the image of about 5 perceivable bright

ness steps, irrespective of the size of detail or the nature of the picture. Images 

having a larger or a smaller number of steps are not considered good pictures, 

and are rejected as being too soft or too contrasty. They are apparently more 

difficult to use for the extraction of information than the preferred ones 

(Van Dorsten (

2
)). The value 5 agrees very well with the measured channel 

capacity for the perception of brightness of the human observer (Eriksen 

and Hake (

3
)). 

The number of possible perceivable images is finite, but very large. If the 

picture consists of m elements, each having ρ possible states of brightness, 

the total number of possible pictures equals p
m
. According to information 

theory the logarithm to the base of 2 of this number represents the informa

tion content of each of the possible pictures, m In ρ bits. We can thus con

clude that the optimal information content of a half-tone picture consisting 

of m elements will be close to 2.3 m bits. 

The foregoing outlines the digital concept of images or pictures, as sets 

of numbers defining the co-ordinates of each elementary area corresponding 

to the resolution, as well as the local intensity or optical density. Optical 

information regarding an object can be stored and handled in digital form, 

and subsequently reconverted into its analog form, the conventional picture. 

Figure 1 illustrates the connection between the digital and the analog rep

resentation of an image. The limited /?-range restricts the retrieval of informa

tion by way of vision. 

The photographically recorded image, however, suffers from similar limi-



630 A. C. van Dor s ten 

4 4> 4 6 , 7 8 7 6 ό 7 9 10 10 

Fig. 1 . - Digital and analog aspect of an image. Any image can be approximated by a 
quantized scalar function of two independent quantized place co-ordinates. 

taxions, as the recording of more than 5 gradation steps becomes progres
sively more difficult. This similarity explains the general success and adequacy 
of the photographic process. The limitations of vision and recording just 
mentioned could be overcome by the use of a linear detector for measuring 
electron densities in the image, combined with digital recording. This would 
offer the possibility of collecting and storing considerably more information 
than with the conventional analog version of photographic recording. 
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1*3. Speed of picture reading. 

If the viewing of electron micrographs with the purpose of extracting 

information by an expert is assumed to be a process not very different from 

normal reading, an interesting point arises. It has been established that 

reading at normal speed is associated with the processing of about 25 bits 

of information per second. This enables an estimate to be made of the time 

required for reading an image field of given magnification and known resolu

tion. The conclusion is that in many cases in the nonverbal communication 

of showing pictures not sufficient time is given to get the message through. 

Electron micrographs containing much information have to be studied during 

a correspondingly long time. 

1 4 . Statistical effects. 

The recognition of structure patterns, particularly near visual thresholds, 

such as acuity of vision or minimum contrast discrimination, can be assumed 

to be greatly influenced by memorized knowledge or anticipation. In general 

there is in microscopy a typical preponderance of small detail for interpre

tation, and in this connection it seems appropriate to point out a fundamental 

difference between optical images, such as photographs or the retinal image, 

and the electron optical image. The number of electrons per image element 

during the observation time is several orders of magnitude smaller then the 

number of photons, and the statistical fluctuations are accordingly larger. 

As a result, for a given electron-optical magnification and a given sensitivity 

of the recording device, the number of possible gradation steps that can be 

recorded decreases with the size of image elements chosen. This holds for 

any arbitrary recording device suitable to translate an electron density distri

bution into a half-tone picture, when there are limits of response. 

The integrated and recorded electron distribution in the image will have 

to contain the wanted number of distinguishable gradation steps as a mini

mum condition, since the subsequent photographic recording or any following 

information-converting device can only reduce, never increase the / rvalue . 

The combined effect of electron fluctuations and grain distribution fluc

tuations on the photographically recorded image is to be considered as noise, 

but as the average number of developable grains produced per electron is 

of the order of 50 (Frieser and Klein (

4
) ; Digby, Firth and Hercock (

5
)), this 

noise can be considered as being solely determined by the electrons. 
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(n2 — n1)/\/n2 + n1 = q . 

A simple calculation gives the required average number of electrons per 

object element, « e, for ^-gradation steps as : 

„.=^ + LV. 

Figure 2 shows the curves for four values of signal-to-noise ratio q. The 
value 1 gives a hardly recognizable image; q = 6 gives already a picture 
of good quality in which noise is noticeable but not disturbing. The ρ = 5, 
q — 6 picture requires 540 electrons per image element during the observa
tion time, and is a good standard. The curves of Fig. 2 can be used to find 
the minimum number of electrons per image element, /ze, necessary to elim
inate the effect of statistical electron fluctuations for a wanted number of 
gradation steps to be recorded, as a minimum condition for picture quality 

The electrons reaching each image element in a given interval of time can 

be considered as a random variable obeying a Poisson distribution, since 

the number of possibile events is large and the probability of any individual 

event occurring in the time interval and area considered is small. Under 

these conditions the mean η and the variance σ

2
 are equal to the expected 

number of events, in this case the expected average number of electrons, 

ne per image element, during exposure or observation time. The varying 

value of nc as a function of the place co-ordinates constitutes the information 

content of the image. 

For the recording of detail it is essential that the numbers of electrons 

falling on two neighbouring image elements, nx and n2, diifer in a significant 

way, that is to say with a difference considerably larger than the expected 

statistical fluctuation. The latter is the difference of two random variables, 

the respective expected number of electrons falling on the two image elements 

considered, nx and n2. Assuming that there is no correlation, and applying 

the rule that the variance of the difference (or the sum) of two independent 

random variables is equal to the sum of their variances, we conclude that the 

variance of the difference a\2 = n2 + nl9 and the standard deviation σ12 = 
= V « 2 +

 η
ι· I

n
 order to fulfil the condition that the difference be significant, 

we use the concept of signal-to-noise ratio. Considering n2—n± as the signal 

and V ^ 2 +
 n

i
 as

 the associated noise, and choosing the signal-to-noise ratio 

equal to q, we find for a single step the condition 
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Fig. 2. - Number of electrons per object element (or image element in the least dense 
area) ne, required during the time of observation for producing ρ statistically distinguishable 
density levels in the image, for different values of the signal-to-noise ratio S/N. The dot 

marks a good standard picture, with S/N= q = 6, and ne = 540. 

down to the smallest resolvable details, irrespective of the recording device 
used. 

In case of recording on a photographic emulsion the required minimum 
magnification for fulfilling the fluctuation condition follows from the sensi-
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tivity of the emulsion to electrons. Too low a magnification would lead 

to over-exposure, resulting in a considerable loss of information, or alterna

tively, with correct exposure, would give an undue amount of noise in the 

smallest detail. The fluctuation condition holds for all recording devices, 

including television pick-up tubes and image intensifiers. In the latter case 

statistical effects have a much higher probability of entering into the inter

pretation of the image, because under the conditions justifying the use of 

such a device the input intensity is low and the integration time short, so 

that the number of electrons per element during observation becomes rela

tively small. The fluctuation condition is also applicable in the case of a high-

resolution transmission scanning electron microscope. 

The assumption made that there is no correlation between neighbouring 

elements is not tenable in the case of typical phase structure, when there is 

a strong negative correlation. Usually a two-tone picture is then wanted, 

and the value ρ = 2 can be taken for the fluctuation condition. 

1*5. Extended-area contrast. 

In the further discussion of contrast phenomena we will next consider 
the contrast in extended areas substantially larger than the resolving power 
of the electron-optical system. This case is of importance for the study of, 
for instance, the quaternary structure or conformation of macromolecules, 
and for the identification of their subunits. This type of contrast is often 
referred to as amplitude contrast, or absorption scattering contrast, or, espe
cially in electron metallography, as diffraction contrast. In Lenz's treatment 
of transfer of image information in the electron microscope, in this volume, 
it appears as a second-order term in eq. (2.19). The contrast mechanism 
involved is the removal out of the imaging beam of electrons scattered over 
relatively large angles by the aperture, causing a fictitious amplitude modula
tion in the object function, the intensity distribution just behind the object. 
Historically this form of contrast has been the first observed and discussed 
(von Borries (

6
), Leisegang (

7
)). Calculation of the actual value, depending 

on the object, the aperture and the accelerating voltage, requires detailed 
knowledge of the process of electron scattering in the object. Significant 
theoretical investigations made by Lenz (

8
) and by Burge and Smith (

9
) have 

provided the necessary data within the limits of plausible assumptions and 
approximations. The most striking result is the simultaneous occurrence of 
elastic scattering over relatively large angles by the field of the nucleus of the 
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scattering atom, and small-angle inelastic scattering by the interatomic elec

trons. At current accelerating voltages and with aperture angles of the order 

of 0.01 rad as used, all electrons scattered outside this aperture by an object 

of normal thickness consisting of light elements have suffered 1 elastic scat

tering. The electrons scattered inside the aperture, thus taking part in the 

image formation, have been scattered either elastically or inelastically. The 

larger part of the inelastic group is contained within an angle of, say, 

3-10~

4
rad. Experimentally it appears that the intensity of the transmitted 

beam as observed in the image follows the same law as is found in optical 

absorption, especially in noncrystalline objects. 

By placing a homogeneous thin object into the object plane the intensity 

drops to I L9 following the relation IX = 70exp [—ρζ/ρζ0], ζ being the thickness 

of the object in the beam direction and ρ the specific density, ρζ the mass 

thickness of the object area concerned. It is to be noted that there appears 

to be hardly any influence of the atomic number; therefore in principle the 

mass distribution in the object can be determined from the recorded electron 

distribution in the image when the instrument parameters are known, but 

no element discrimination is possible. The thickness for which the exponent 

equals — 1 corresponds to a phenomenological mean free path z0 for an 

electron to be scattered outside the aperture. This mean free path is not 

very different from that for overall elastic scattering. 

Contrast is by some authors being defined as In I0fll9 but we will use as 

a definition K01 = (70 — Λ)/( /0 + Λ), the « coefficient of visibility » introduced 

by Michelson in optics, and widely used in the treatment of optical contrast 

transfer. 

For a thickness z0, K = 0 . 4 6 ^ 0 . 5 , as IJIQ then equals Ife. It is a 

characteristic thickness discriminating between opacity and translucence, and 

was given the name « clearing thickness » (Auf hellungsdicke) by von Bor-

ries (

6
). The dependence of this amplitude or scattering absorption contrast 

on accelerating voltage, aperture, and mass thickness enables, as mentioned, 

to determine the third dimension of the object in terms of density per unit 

area for extended areas, a procedure often called quantitative electron micro

scopy (Zeitler and Bahr (

1 0
'

n
) ) . 

Figure 3 shows the voltage dependence of Κ for given ρζ and aperture a. 

This curve illustrates all relevant features of extended-area contrast in 

a semi-quantitative way; it holds in good approximation for a carbon film 

of 1.50· 10~

5
 g/cm

2
 and a rather small aperture of the order of 1 mrad. 

The Κ values for voltages higher than 100 kV are estimates, as no accurate 

experimental or theoretical data were available. The voltage scale is relativ-
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Fig. 3. - Extended area contrast as a function of accelerating voltage. For detailed expla
nation see text. According to a tentative empirical scaling rule the contrast Κ is a function 
of (Κ·ζ~2·α2) (van Dorsten (

1 2
)). I, II and III, regions of respectively low-voltage, con

ventional and high-voltage microscopy. In the latter region the contrast is practically pure 
phase contrast in areas small enough to be illuminated coherently. 

istic. The Κ value 0.46 corresponds to the « clearing voltage » Vc, for which 
the mass thickness equals the clearing thickness. 

Increasing the mass thickness ρζ or the aperture α shifts the curve as 
indicated by the arrows. The regions I, II and III are typical for low-voltage, 
conventional and high-voltage microscopy. At very low voltages even the 
thinnest objects appear black on the screen and internal structure is not or 
hardly observed; phase contrast is practically absent, as too few electrons 
are scattered inside the aperture. The contrast is pure amplitude contrast. 
At very high voltages thin objects appear transparent; there is hardly any 
amplitude contrast, but the relatively large fraction of elastically scattered 
electrons passing through the aperture can produce a considerable degree 
of phase contrast. Conventional electron microscopy has established itself 
in the intermediate range of voltages, where both forms of contrast are avail
able. In general practice there is the typical preference for the slightly under-
focussed image, with a balance between the two forms of contrast and an 
additional enhancement of contours by Fresnel diffraction. 

The extended-area contrast discussed in the foregoing remains of consid
erable interest in the electron microscopy of macromolecular objects, for 
which detail substantially larger than the resolving power of the microscope 
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can already present serious contrast problems. The contrast wanted in this 

case is pure amplitude contrast, with the recorded electron density in the 

image as a measure for the local mass thickness in the corresponding object 

area. Phase contrast of the rather coarse structure has to be avoided by 

proper focussing, but the Fresnel diffraction at the larger detail cannot be 

disregarded, as it improves the visibility of contours in slightly defocussed 

images. As pointed out, the optimal visual impression requires the information 

content of the image to be considerably lower than the amount of information 

that can be recorded by means of a suitable linear detector. As a conse

quence, digital recording and adapted methods of data processing do seem 

an attractive alternative to merely viewing pictures. On the other hand, 

the remark can be made that some possibilities of the sense of vision deserve 

more attention in electron microscopy. 

One of them is stereoscopic observation: two pure amplitude contrast 

pictures of the same area taken at a suitable relative angle can provide accurate 

information about the third dimension (Cole (

1 3
) , Helmcke (

1 4
) , Nankivell (

1 5
)). 

One requirement for good stereoscopy is sharpness, and it seems possible 

to « de-blurr » normal pictures by means of image-processing methods 

(Kovàsznay and Joseph (

1 6
)), and to use the resulting modified pictures for 

stereo evaluation. 

A second facility of the sense of vision, less well known, is the perception 

of correlation in « near fit » superimposition of pictures of random grain 

distributions. It can be used to estimate or determine the amount of noise 

in such objects, and is illustrated in Fig. 4. The method consists in making 

two independent pictures of the same area, and superimposing the two pic

tures in the form of diapositive transparencies in such a way that there is 

a small rotational error in the relative position. The resulting picture sug

gests the presence of ring-like arrangements of object spots, having a common 

centre at the common point of the two separate pictures. This apparent 

centre may lie inside or outside the picture. In case there is a relatively large 

amount of noise in the form of large numbers of spurious specks, for instance 

photographic granularity, the real object granularity reveals itself by what 

could be called the correlation pattern. If two identical diapositives, made 

from one single picture, are superimposed, there is an additional correlation 

for the noise; comparison of the two cases shows the amount of noise (*). 

(*) The method was found by accident in 1956 by the author and his co-worker at 
that time, H. F. Premsela, at Philips Research Laboratories (Eindhoven, Holland), and 
communicated at the Stockholm Electron Microscopy Conference in the same year, but 
was not included in the proceedings. 
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Visualizing random grain structure is a marginal case of extended-area 

contrast. The method just described gives a largely qualitative and statistical 

answer to a statistical question. The typical pattern is only seen between 

the approximate limits of two values of an apparent radius R. If the average 

particle size is d, the average distance between particles D (supposed D>d)y 
and the small angle of rotation 99, the range of R is roughly defined by: 

d\cp< R< D/φ. The study of individual particles belongs to the case of small-

area contrast to be treated in the next Section. 

2. 

2 1 . Small-area contrast. 

In Sect. 1 the information collecting process in the electron microscope 

was considered to be mass thickness sampling in object areas significant for 

the coarser structure of the specimen. If the sampling area is gradually 

reduced to a size approaching the electron-optical resolution limit, the atomic 

nature of matter becomes progressively more influential in the electron den

sity distribution in the image. The usual procedure in the theoretical treat

ment of electron images of thin objects is to make use of an essentially optical 

model, either a pure phase object or a combined phase and amplitude object. 

Fig. 4. - Correlation method for identifying random grain patterns in noisy pictures and 
visualizing the amount of noise. Two independent pictures resulting from a repeated ob
servation of the same object area are superimposed with a deliberate rotation error of 
e.g. 3°. This causes a typical visual impression of seeing ring-like arrangements of spots 
centred around a point inside or outside the picture, the common point of the two pic
tures. The occurrence of such a correlation pattern is a proof of at least partial identity 
of the two observations. If two identical pictures of a single observation are superimposed, 
the noise appears as a correlation pattern also. Comparison of the two cases is an indi
cation for the amount and nature of the noise. The object is: clusters of tungsten atoms 
deposited on a SiO film in a gas discharge. A: one single observation; A + B: superimpo
sition of two independent observations; A + A: superimposition of two identical single 
observations. Comparison of A + Β and A + A shows that the recording noise, mainly 
photographic grain, has a much finer structure than the granularity of the object. 

Magnification: 136000X. 
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In the object function, that is the wave function immediately behind the 

object, the amplitude modulation is largely a fictitious one, because the elec

trons missing in the image are not absorbed in the object but by the physical 

aperture in the objective lens. The optical model does not account for elastic 

and inelastic scattering processes affecting the larger part of the transmitted 

electrons. The present treatment is based on general wave theory and origi

nates from Bremmer (

1 7 1 8
) . The special adaptation to the electron-optical 

case has been described in a paper by Bremmer and van Dorsten (

1 9
). 

The problem has been simplified by not taking into account the image 

formation itself. Instead, the structure of the wave field immediately behind 

the object, forming the input effect of the subsequent electron-optical imaging 

system, is derived. The region concerned is the Fresnel region in which the 

resulting wave amplitude can be considered to result from the interference 

between the geometrical-optical primary wave and the diffracted or scattered 

wave generated in the object; this concept is closely connected with the 

representation by Rubinowicz of Kirchhoff's diffraction theory of image 

formation (Rubinowicz (

2 0
)) . Furthermore the main difference with existing 

phase contrast theories consists in taking into account the inelastically scat

tered electrons, as well as the elastically scattered ones. The problem lies in 

the borderland of optics, diffraction and scattering, which more or less 

specifically apply to coarse structure, periodic structure and statistically 

determined structure, respectively. The phase structure of the wave after 

passage through the object can be expected to show resolvable periodicities 

of the order of size of interatomic distances as well as coarser ones, as first 

pointed out by von Borries and Lenz (

2 1
). An extensive experimental and theo

retical investigation of the imaging of such structures has been made by 

Thon (

2 2
) and is reported by him in his volume. 

For practical electron microscopy the simultaneous occurrence of ampli

tude contrast and phase contrast presents serious problems in interpretation. 

In the following approach the structure of the wave field in and closely behind 

the object will be described. The complex wave amplitude in this region 

resulting from interaction between the electron beam and the atoms con

stituting the object defines a shadowlike object function, which will be called 

the real object function. The idealized image of this real object function 

would show already most of the characteristics of the actually observed 

image. The latter, of course, could be worked out in principle by one of the 

known methods, of which the contrast transfer theory developed by 

Hanszen (

2 3
) seems the most logical. Perhaps the most general theoretical 

treatment is the one given by Lenz in this volume. 
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2*2. Structure of the wave field immediately behind the object. 

To derive the real object function the stationary phase method is appli

cable. The pertaining Schrodinger-function results as the sum of the primary 

wave constituting the incident electron beam and the single spherical waves 

generated in the scattering centres. 

For the simplest case of perpendicular incidence of the beam on the 

object the supposedly coherent primary beam can be represented as : 

ψρΐ = AN0 exp [ik0z] ; 

the optical axis is the z-axis. The factor AN0 indicates the proportionality 

with the electron density N0, and k0 stands for the de Broglie wave number 

2π/λ0 of the incident electrons (Fig. 5). The scattered wave generated by 

any single scattering centre Q has the form 

V p r ( 0 Be x p ^ P ] m) 

QP is the distance to Q, Β a scattering factor, and f{ds) the dependence on the 

scattering angles θ§ between QP and the incident beam. The wave number ka 
equals k0 for elastic scattering; for inelastic scattering ka<k0. The general 

case with ka complex includes absorption, but this does not occur in fully 

amorphous objects. The summation of all scattered waves can be approxi-

z = - d 
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Fig. 5. - Transilluminated object with in the exit plane the point P, for which the resulting 
wave amplitude is to be derived; Q arbitrary scattering centre; L line, in the direction of 

incidence, of stationary phase of the scattered waves for all points Q. 

41 
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mated for small scattering angles. For objects not exceeding a thickness 
1
2
/λ0, with / a characteristic length to be observed in the object, the main 

contribution can be calculated directly using the saddle-point approximation, 
which is applicable because there is a stationary phase: the phase of the 
scattered wave as a function of the position of Q appears to have a minimum 
value for all points Q on the straight line L parallel to the incident beam. 

The first approximation in which the summation over the discrete scattering 
points is taken over an assumed continuous density ns(Q), yields the expres
sion for the real object function observed in the plane ζ = 0, for the case 
of only one type of scattering, either elastic or inelastic: 

i-e(xP,yp) + B—f(py 

• J ' 

. 2πί 

0 

} άζns(P, ζ){\-ε(Ρ,ζ)}exp [i(k0-ka)C]\ . (1) 

- Ζ 

Here the place function e(Q) has been introduced, which accounts for 
any observable attenuation of ψρτ on arrival in Q. For a plane object with 
boundaries the planes ζ = — d and ζ = 0, this factor will obviously be ap-

f
Q 

proximately proportional to \ns(x, y, z). 
-a 

Phenomenologically, as observed in the final image, the losses have to do 
with electrons absorbed by the aperture or those playing no role because 
of a considerable degree of chromatic aberration. The term (1 — ε) between 
the brackets in (1) accounts for the primary wave partially attenuated by 
scattering, whereas the integral term stands for the total contribution of all 
scattered waves. The integral is to be taken all along the line L over the 
thickness d of the object. 

2 3 . Special case of pure phase modulation. 

This case occurs when the expression between brackets in (1) is of the 
form 1 + ΐάφ, which in our approximation equals exp [idq>]; it means prev
alent elastic scattering in relatively small angles with ka = k0, that is in thin 
objects observed with fast electrons. For this case, typical for high-voltage 
microscopy, when ε is very small and may be neglected, one gets: 

ο 

V(P) = v-pr {1 + Β ψ AG)jdC nt{P, f )} , (2) 
-Z 
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Β being real. In the saddle-point approximation used, the factor / results 

from the total contribution of all scattering centres, assumed to be contin

uously distributed and lying in a plane perpendicular to L defined by ζ = 
= const, and being illuminated sufficiently coherently. In practical cases, 

with discrete scattering centres, the mutual interferences as well as those 

with the primary wave are confined to a small area around the point of 

intersection of L with the plane concerned. The radius of this region is 

comparable to some sort of Fresnel fringe width of size V ^ 0' ^ being the 

distance between the point observed, P , and the plane. 

It is to be noted here that the degree of coherence of the incident wave 

plays an important role. Because the dominating phase structures appear 

only as image structure as a result of axial or zonal defocussing (spherical 

aberration) of the objective lens, the interpretability or object-similarity of 

the image requires an optimal degree of coherence, giving still a good display 

of first-order interferences, but causing the higher orders to be largely can

celled by phase-shifted superposition. This corresponds to an illuminating 

angle at which in the defocussed image of an edge only one Fresnel fringe 

distincly appears. 

2*4. The occurrence of amplitude modulation in the real object function. 

We next consider the case of inelastic interaction, in which ka< k0 and Β 
is, in general, complex. This causes the term proportional to Β in (2) to become 

also complex, and this means that any phase modulation will necessarily be 

accompanied by an amplitude modulation. Neglecting, as before, the loss 

factor ε leads to the following expression in the place of (1), in which the 

splitting into a real and an imaginary part is clearly represented: 

ο 

V W = Vpr 1 

0 

/2π1*/(0)[ 
ka 

άζη8(Ρ, ζ) c o s {(k0- ka)+ a r g B) . (3) 

-d 

The real part of the expression in brackets, that is the amplitude modulation, 

will dominate because in the intensity \ψ\
2
 this part contains a first-order 

contribution in the scattering parameter B, whereas the imaginary part con-
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2*5. Appearance of phase structure. 

Going back to elastic scattering processes we note that according to (2) 

only integrals of the type JdCns(P, ζ) play a role. These integrals depend 

on the inner potential but not on its distribution in the beam direction. 

tains only a second-order contribution in B. Apparently this means that 

we have a typical example of an amplitude modulation as a result of the 

interferences between inelastically scattered electrons. The pertaining Fourier 

integrals (with finite integration intervals, determined by the thickness of 

the object) become particularly influential in case the object structure in the 

direction of the incident beam shows periodicities of the order of 2n/(k0 — ka). 
This periodic distance can be approximated by a length λΙ/Δλ0, with Δλ0 
representing the increase of the de Broglie wavelength associated with energy 

loss by inelastic scattering. A further condition for the possibility of observa

tion of this effect is that the chromatic aberration shall not be too large, in 

order that the slowed-down electrons are not much defocussed. 

This type of interference that can also be characterized by k0—ka = kl, 
kt = 2π/1 being the wave number of the periodicity concerned, is of a type 

well known in general wave optics. It occurs, for instance, in the diffraction 

of light by ultrasonic waves. This type of optical diffraction was predicted by 

Brillouin as early as 1921, and observed experimentally several years later 

(Brillouin (

2 4
'

2 5
)) . Interference by more or less coherent interaction effects 

of electrons having suffered inelastic energy losses in electron microscope 

images of thin metal foils have been observed by Watanabe (

2 6
) . 

In general, observations on energy loss indicate distinctly discrete values 

of ka in a number of cases. The conditions for interference require well-

defined kl values, which will occur in amorphous substances with a statistical 

distribution of some kind, in case the thickness of the object is at least of 

the order of λ
2
[Δλ0. In carbon, with characteristic losses of about 20 eV 

per inelastic interaction, the required minimum thickness is of the order 

of 400 Â for single scattering at conventional voltages, and accordingly 

smaller for multiple scattering. In crystals which generally show effects of 

strong coherent scattering, this type of interference can be expected to show 

phenomena of this kind as a result of a sort of resonance. Experiments 

combining high resolution with energy filtering could probably further clarify 

this point. In amorphous objects the occurrence of granulation, also in the 

parafocal region, might probably be explained along these lines. 
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The integrals are analogous to those in optical cases where the path of 

integration is to be taken along a geometrical-optical ray, when ns(P, ζ) 
represents the local value of the refractive index. Such integrals become 

important in cases where the path through the medium does not exceed the 

mentioned Fresnel length 1
2
/λ0. In practical electron microscopy the resolu

tion limit d0 will define the minimum characteristic length that can be observed. 

The condition for the object thickness, d < ά\\λ^ is to be fulfilled in order 

to justify application of the theory outlined here. 

Structural features of the object, in particular in the beam direction, 

cannot be expected to reveal themselves in the case of pure phase modulation 

unless there is some amplitude modulation at the same time. As ns appears 

only as a summation in the beam direction, the phase modulation, even 

after conversion into amplitude modulation by deliberately achieved or 

resulting amplitude modulation, when phase contrast appears in the image, 

cannot supply direct structural information in single images. There is there

fore no possibility for stereo observation of phase structure. 

The interesting question may arise whether phase structure corresponding 

to interatomic distances can be expected to show up in cases when summa

tion over, for instance, 50 atomic distances takes place, or whether a steady 

mean value is reached. The answer to this question has been given by 

von Laue (

2 7
) in order to explain X-ray pictures of multiple layers of uniform 

granular matter. Increasing the number of layers does not at all smear out 

the relative differences in intensity; the overall periodicity is conserved, even 

when individual grains cannot be identified in the shadow image, and stereo 

observation appears to be impossible. This phenomenon seems important 

for the interpretation of micrographs of macromolecules. Phase structure, 

coming to the fore already on very slight defocussing, may easily lead to 

false interpretations, and may greatly distort the amplitude part of the image. 

It is therefore important to be able to discriminate between the two forms 

of image structure. The best criterion for a phase structure is the dependence 

of the spatial frequencies in the image on focussing, and the disappearance 

of this structure altogether in the near-focus (parafocal) region (van Dorsten 

and Premsela (

2 8
)) under favourable operating conditions, especially the 

absence of axial astigmatism. 

2*6. Objects exceeding in thickness the Fresnel length l
2
/À0. 

A theory for this case has been developed by Bremmer (

1 8
) , following a 

method that can be used in all cases involving the well-known Sommerfeld 
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integral for the spherical wave function 

__exp[ikaQP] ψ
 ~ QP 

In the treatment concerned use is made of the symbolic expression for the 
factor η8(Ρ,ζ){\—ε(Ρ,ζ)} in (1), namely: 

exp •η$(Ρ,ζ){ϊ-ε(Ρ,ζ)}, (4) 

where Ζ ί2 = 3

2
/9x

2
 + 3

2
/ 8 j

2
 stands for the transverse two-dimensional Laplace 

operator relevant to the point P. Such a symbolic expression passes into an 
explicit expression, e.g. when the function h(xp, yP, £), to which it is to be 
applied, is represented by its Fourier integral: 

-}- oo + oo 

h(xP,yP7 C)=jdkxjdkyg(kx, ky, ζ) exp [i(kxxP + kyyP)]. 
— CO —00 

Applying the operator then simply means the substitution Δ 2 = — k\ — k?y. 
The expansion of the exponential function in (4) leads to a corresponding 
expansion of the real object function, with the first term in: 

exp 1 + Ι - 4 + . . · , (5) 

yielding once more the fore-mentioned saddle-point approximation. For a 
characteristic length /, zl2 means, as an order of magnitude, a multiplication 
by /~

2
. The simplest case occurs when the exponential in (5) may be neg

lected altogether, which involves the condition 

Jfl 1 
ka /

2 < 1 

Considering the fact that kâk0 and \C\<d, the condition becomes d<fc0/
2
, 

which is equivalent to the condition previously found that the thickness of 
the object should not exceed the Fresnel length β/λ. 

The expression (1), corrected following (4), includes the diffraction phe
nomena, because the exponential in (4) becomes especially prevalent for 
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structure in the direction perpendicular to the direction of incidence, that 

is in the plane of the object. Given an object having periodic structure in the 

x-direction, the corresponding representation of the density of the scattering 

centres, 

shows that not only single lengths /, but also fractions l/n play a role. 
The foregoing condition requires that for all values of n, d

2
 <c (1/η)

2
/λ0, 

and therefore cannot be fulfilled rigorously. The occurrence of the associated 
diffraction phenomena is fully accounted for by the exponential in (4). The 
presence of higher harmonics of the spatial frequence 1// is inherent to the 
distribution of the scattering centres as determined by the atomic nature of 
matter, that is with narrow, sharp maxima resembling delta functions. 

2*7. Defocusing effects. 

The general theory of Fresnel fringes leads to the expectation that at a 
distance ζ behind an object plane, object structures with periodicities of the 
order of magnitude of V^Qz present themselves prevalently. Attention to 
this phenomenon was first drawn by von Borries and Lenz (

2 1
) in con

nection with the well-known extra focal granular appearance of thin foils 
mentioned earlier in this paper. A quantitative treatment of this effect is 
possible using an earlier described method by Bremmer (

1 7
) . 

Suppose the real object function, the wave function in the plane z = 0, 
is given in phase and amplitude by a complex function u0 as : 

The corresponding wave function in the region ζ > 0 can be represented, 
again using symbolic expressions, as 

in which zJ2 = 3

2
/θχ

2
 + d

2
fôy

2
 is, as before, the two-dimensional Laplace oper

ator. The negative sign in the exponential accounts for the fact that the 
wave function in the region ζ > 0 results exclusively from waves travelling 

w0(x, y) exp [— ikvt], with k = 2π/λ0 . 

u(x, y, z) = exp [ikzVl + zî2/A:

2
] u0(x, y) exp [— ikvt], (6) 
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in the positive z-direction. The general expression (6) can be simplified if 

only structures lx = 2n/kx and ly = 2n/ky are considered, which are large 

compared to the wavelength. This renders zJ2/£
2
 a small quantity, because 

k
2 k% + ky 

I
2
 4- /

2 
« 1 

The expression (6) can now be approximated by the first two terms of the 

binomial expansion of the roots : 

u(x, y, z) = exp [ik(z — vt)] exp 
2k

 2 
u0(x,y). (7) 

This simple expression explains, for instance, at once the diffraction fringes 

near an edge, as it yields the corresponding Fresnel integral. In order to 

investigate the effect of special spatial frequencies 1// in the object, we put 

w0(*> y) = l—zu^xfl, yII) = 1 — εηλ(ξ9 η) , 

in which ε, for unit amplitude of the incident wave, determines the order of 

magnitude of the change in wave amplitude and phase caused by the object. 

The function ul9 as well as its derivatives to the dimensionless variables ξ 
and η, are now of the order of magnitude of unity. Expression (7) transforms 

into: 

y, z) = exp [ik(z— vt)] \ l — ε exp — Δ' 
2kP*

2 
(8) 

with the new transverse Laplace operator Zl2 = θ

2
/θ£

2
 + 3

2
/ 3 ^

2
. In the Fresnel 

region, for small ζ values when 0 < | z | < /

2
/ A ° , the wave function distinctly 

shows local object structure, whereas in the Fraunhofer region, for larger 
values of z, waves originating from the whole illuminated area of the object 
interfere. In the former region the parameter zf2kl

2
 = (1/4π)λ0ζ/Ί

2
 is still 

small, and the expression (8) can be replaced, using the exponential expan
sion, by: 

u(x9 y, z) = exp [ik(z — vt)] ^1 — eux 
ιεζ 

2kf
2 εζ* 

WT
2i 

with the once iterated transverse Laplace operator zl2 = ( θ

2
/ θ |

2
 + θ

2
/θ^

2
)

2
. 

Taking into account the terms up to the second order in z/kl
2
 and to the first 
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order in ε, we find the following expression for the corresponding intensity: 

£Z £Z

2 

\u(x, y9 z ) |

2
 = 1 —2ε Re ux + ~<î A2(Im U l) + ^ z l2

2
(Re W l) . (9) 

This expression describes the experimentally observable effects of defocusing 

very clearly. The phase structure determined by Im ^ exists only for z=^0 

and thus becomes invisible at exact focus. The intensity changes sign with z, 

in other words there is reversal of contrast by going through focus. The am

plitude part , determined by R e w l5 does not change in magnitude or sign 

in the neighbourhood of ζ = 0. The positive sign of the third term can be 

understood, as Δ 2(Im > 0 indicates a convex curvature of the equiphase 

planes, which means a focusing effect with increasing intensity for z > 0 . 

Furthermore (9) also brings out the influence of the presence of characteristic 

lengths in the object. For a given structure function ηλ{ξ, η), the intensity 

can reach maxima for specific spatial frequencies. The following is a simple 

example of the case of periodic phase structure of a sinusoidal grating: 

u^x/l, y J I) = i cos j = i cos (2πξ). 

The original expression ( 8 ) for this case becomes 

u(x, y, z) = exp [ik(z—vt)] 11 —is exp 
2 / π

2
 ζ 

kl
2 

cos (2; 

and the intensity, approximated to first order in ε, 

| / |

2
 = 1 - 2ε sin cos (2πξ) , 

the optimum occurs if 

sin 
(2π

2
2 

± 1 , or Ρ 
2πζ 

k(n + 1) (« + * ) ' 
n integer . 

To conclude, we can say that defocussing to an amount ζ will make periodic 

structure of the order of size of V2\z well observable, but in addition also 

higher spatial frequencies. The reproduction of such structure in the image 

depends entirely on the contrast transfer process in the imaging par t of the 
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3. 

3 1 . Contrast enhancing procedures by means of specimen treatment and image 
conversion and image processing. 

In this Section we will consider the processes influencing contrast and 

abstract from the object itself as much as possible. What we have vaguely 

defined in the Introduction of Sect. 1 as the amorphous object may consist of 

material of arbitrary density. In all cases where the specific density is suffi

ciently high, there are no contrast problems for the electron microscopical 

recognition of size, shape and possible structure down to dimensions of the 

order of 5 to 10 times the theoretical resolution limit of the microscope. 

Contrast problems arise in the case of objects consisting of the lighter ele

ments, such as natural and synthetic macromolecular specimens and organic 

polymers in particulate or filamentous form. The density may vary from 2.6, 

for compact globular particles such as plant viruses or certain enzymes, to 1, 

for polystyrene and even slightly smaller values for loosely built proteins 

consisting of a considerable number of globular subunits forming the qua

ternary structure of a larger particle. It is to be noted here that the support 

film mostly used, the carbon film, has a density of about 2. 

It has been mentioned in Sect. 1 that for the type of object considered and 

the size of detail to be observed the indicated method of retrieval of structural 

information is through amplitude contrast. Phase contrast, extensively dealt 

with in this volume by other authors, in this case has to be avoided or at 

least reduced to the smallest possible degree by very accurate focussing in 

the parafocal region, that is with a focussing error not exceeding 100 to 200 Â. 

It may be remarked here that according to simple diffraction theory the natural 

depth of focus, the region in which no physical changes in the image are 

observable, is of the order of 5 0 Â in conventional electron microscopy; 

for this reason, statements sometimes found in legends of micrographs such 

as àf= —10 Â, or even Δ / = 0 . 0 Α , have no sense, as the reference point 

electron microscope. For example, the Abbe or Rayleigh condition for the 

image-side aperture has to be fulfilled; the objective aperture acts as a low-

pass filter for the spatial frequencies to be transmitted and therefore deter

mines the ζ values for the parafocal region, in which phase structure is not 

or hardly observable. 
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has an uncertainty of the order of 50 Â. The available focussing steps in 

a high-resolution instrument, however, should permit an accuracy of 50 Â. 

3*2. Staining. 

Increasing contrast by specimen treatment has been known since the 

early days of electron microscopy. The biological material studied then did 

require fixation for the preservation of structure under the conditions of obser

vation and the most widely used osmium tetroxide (Palade (

2 9
)) , a highly 

reactive compound, is retained at reaction sites, which appear with high con

trast in the image on account of the high electron scattering power of the 

heavy metal. 

Osmium tetroxide was found to react with fatty acids, phospholipids and 

related organic compounds: the primary sites of reaction appear to be the 

C = C double bonds, the uptake being about one atom of osmium per double 

bond (Stoeckenius and Mahr (

3 0
)) . Other biologically significant compounds 

such as nucleic acids require different staining agents, for instance phos-

photungstic acid or uranyl acetate. Strong effects can be forcibly obtained: 

in certain cases the mass of isolated particles could be increased by a factor 

of 4, as reported by Hall (

3 1
) , who in the same investigation demonstrated 

the usefulness of embedding particles in dense material, salts of heavy metals 

already in use for staining. After the work of Brenner and H o m e (

3 2
) this 

method became a standard technique known as negative staining, as the 

counterpart of the positive staining first described. The object and some 

of its structure reveals itself by the absence of dense material and appears 

in reverse contrast. Properly applied the method permits visualizing particles 

including their possible surface corrugations and in some cases porous struc

ture, tubular formations and further structural features. For a reason to 

be mentioned later the method is, however, not a high-resolution method in 

the strict sense. Positive staining, and to a lesser degree also negative staining, 

can affect structure by chemical interaction. The staining process may in some 

cases reveal structure caused or strongly influenced by its very application. 

3*3. Anomalous contrast. 

A discussion of negative staining in connection with contrast would seem 
incomplete without mentioning an interesting contrast anomaly described 
bu Miiller and Meyerhoff (

3 3
) . They found that particles of various nature 

embedded in phosphotungstate showed a remarkable loss of absolute con-
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trast, compared with identical particles in the same specimen, lying in an 

area of the support film free of tungstate. Although there have been some 

controversies on the reality of the effect, that was given the name anomalous 

contrast by the authors, its observation was found to be correct beyond any 

doubt in a number of cases. Visually observed contrast phenomena can be 

frequently associated with properties of the sense of vision, as for instance 

the Mach effect, the subjective but remarkably strong increase of contrast 

at contrast boundaries. The anomalous contrast, however, is also found 

in extended areas remote from any boundary. It appears with particulate 

objects of diverse nature, small inorganic crystals as well as polystyrene 

latex globules or virus particles. A tentative explanation satisfying the non-

physicist authors in first instance, based on the assumption of the building-up 

of positive electric charges under the influence of secondary electron emission 

from the phosphotungstate during exposure to the electron beam, creating 

hypotetical « microlenses », was refuted by Lippert (

3 4
) . Although the effect 

of electric fields cannot be ruled out completely in many cases, the first explana

tion given does seem very improbable. An alternative explanation suggested 

here is to consider the phenomenon of anomalous contrast as caused by the 

dual nature of the electron scattering in the type of object concerned, making 

it a typical two-component medium. One component is the heavy atoms 

causing practically exclusively elastic scattering over relatively large angles, 

the other the light elements, for which the low-angle inelastic scattering events 

outnumber the elastic ones by a considerable factor. As follows from scat

tering theory, confirmed by experiment, the ratio between inelastic and elastic 

scattering interactions is largely independent on the electron energy but 

strongly dependent on the atomic number. For Ζ = 25 the ratio is unity, 

and the following simple expression holds in good approximation : nin/ncl = 
= 25/Z. A quantitative treatment in any special case would require more 

explicite data on the scattering processes involved than are presently available 

from theory and experimental work, and in addition an exact physical descrip

tion of the object: dimensions in the beam direction, mass thickness distribu

tion and atomic composition, data that are usually either unknown or only 

known as rough estimates. However, even without detailed analysis it will 

be clear that in the dense parts of the specimen, where both components 

are present, there will be on the average at least one elastic interaction with 

a heavy atom and several inelastic interactions with the lighter component 

for each incident electron. As a result the average transmitted electron will 

have suffered an angular deviation of the order of 10~

2
rad and an energy 

loss equal to a multiple of the average energy loss per inelastic interaction, 



Contrast phenomena in electron images etc. 653 

that is nin times 20 eV, if the light component is taken to be carbon. If it is 

further assumed that the mass thickness of the light component is of the 

order of the clearing thickness, we know from theory that nin is about 4, 

and thus the energy loss about 80 eV. Due to the elastic scattering the frac

tion of these electrons passing through the objective aperture will fill the 

whole aperture uniformly. If the microscope is focussed for electrons having 

the energy of the incident beam this group of electrons is rather strongly 

defocussed to circles of confusion of a size of several hundreds of Ângstroem 

units. If for example, the accelerating voltage is 80 kV, the focal length of 

the objective 1.8 mm and the image-side semi-aperture angle 1 . 5 x l 0 ~

2
r a d , 

the diameter of the circles of confusion for electrons having lost 80 eV is 

about 400 Â, if the coefficient of the chromatic aberration is taken to be 

0.7 times the focal length. 

Because in reality nin shows a statistical distribution, there is a whole 

range of sizes of the chromatic circles of confusion, causing a practically 

uniform background of slightly decelerated electrons. If the area of the com

pound scatterer has a sharp boundary, there will be a focus-dependent gradual 

fade-out from dark to light in the image on the screen, with a noticeable 

maximum of intensity inside the light area close to the boundary. This edge 

effect can be easily observed in many micrographs of negatively stained areas 

appearing semi-transparent. If the stain appears dark, as a result of excessive 

mass thickness or a small objective aperture, or both, this edge effect disap

pears. Small areas enclosed by the stain, either holes or embedded particles 

of relatively low density, show up with increased intensity on account of the 

overshooting of the decelerated electrons, and this means the possibility of 

anomalous contrast in such areas. 

According to the explanation just given, conditions favourable for the 

occurrence of anomalous contrast are : semi-transparent areas consisting of a 

combination of heavy and light elements, a sufficiently large objective aperture 

(or no aperture at all), and focussing for the electrons having suffered no 

energy loss. There is also a noticeable influence of the accelerating voltage. 

Increasing the voltage reduces the effect as the result of the decrease of the 

elastic scattering cross-section and the decrease of the mean scattering angles, 

both of which reduce the relative number of inelastically scattered electrons 

falling inside the objective aperture. The effect of anomalous contrast disap

pears largely when the image is strongly underfocussed and the decelerated 

electrons are thus brought closer to focus. In fact, when anomalous contrast 

appears , the image is difficult to focus, a property found more or less with 
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practically all negatively stained specimens. The resulting pictures exhibit 

nearly always a typical partial unsharpness. 

3*4. Shadow casting. 

Evaporating heavy metal at a small angle onto the support film carrying 

the specimen, introduced by Williams and Wyckoff (

3 5
) , has become an indis

pensable method of increasing contrast and simultaneously revealing local 

differences in the physical thickness of the object. Observed as a negative 

print the effect produced resembles the effect of oblique illumination of a 

corrugated surface. The type of picture produced is too well known to be 

discussed into detail here, but it can be said that the method is not a fully 

satisfactory high-resolution method because the one-sided deposit of metal, 

in order to be effective, has to have a minimum thickness exceeding the 

resolving power of the electron microscope by a considerable factor. The 

visible effect, therefore, is more suggestive of the result of a snow storm than 

of the immaterial touch of light, detail being covered, profiles smoothed. 

A firm belief in the simplicity of the principle has led the electron micro-

scopists to choosing the heaviest metals for shadow casting, even metals 

requiring very high temperatures for evaporation. The formation of small 

aggregates during evaporation or during exposure to the electron beam in 

the microscope can be the cause of disturbing structure in the metal coating. 

Apparently, nucleation followed by the growth of separate small crystals 

takes place. In some cases the use of alloys or the simultaneous evaporation 

of two different metals reduces this unwanted effect as a result of continuous 

changes in the ratio of the two components in the condensing material, which 

renders the formation of possible crystal phases more difficult. A combina

tion of gold and palladium, for instance, is much better in this respect than 

gold, which is notorius for aggregating very easily in the beam. Good results 

are found with a combination of tantalum and tungsten; platinum simul

taneously evaporated with carbon is the method of choice of many electron 

microscopists. Apart from these empirical facts, one might expect the oc

currence of similar phenomena as observed with negative staining and 

described in the foregoing, when objects consisting of light elements 

such as carbon are treated with heavy elements for shadowing. Effects of 

this kind have been receiving little attention but do indeed exist. There 

are good reasons to believe that, in fact, they determine the ultimate limits 

of resolution of the shadow casting methods. As an example we will report 

here on some observations in connection with an investigation on shape 
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and possible structure of small particles of special biological interest, r ibo-

somal subunits, that can be isolated from certain bacteria. These particles 

which appear as globules measuring about 300 À have been studied by 

Nanninga (

3 6
) in their isolated form, using the best standard of shadow 

casting technique. The particles isolated in pure state by ultracentrifugation 

were freeze-dried upon a carbon foil prepared by evaporation on a freshly 

made cleavage plane of mica, and supported by the network of a holey 

formvar film. The shadowing was done by a simultaneous evaporation of 

carbon and platinum in high vacuum under a fixed angle of approximately 

50 degrees. A careful examination of the resulting micrographs reveals fea

tures requiring further explanation, see Fig. 6. The most striking observation 

when studying the micrographs is, that whereas the ribosomal particle itself 

shows not very well-defined boundaries and a distinctly unsharp outline at 

the side of maximum thickness of the shadowing material, the outline of the 

shadow on the support film is remarkably sharp. From the shape of the 

sharp shadows of several particles in the field of observation, having random 

orientations in respect of the direction of shadowing, it appeared to be pos

sible to conclude to an icosahedral shape of the particle. The various shadows 

appear bounded by straight line sections forming parts of polygons and 

were shown to agree very well with this shape, as was proved by means of 

a cardboard model in a parallel beam of light. 

A question arising from this observation is: how can a particle showing 

itself with a not well-defined outline produce a sharp shadow? The possible 

answer is that it is, as in the case of negatively stained macromolecular 

objects, again the two-component nature of this particular object that is 

causing a high proport ion of inelastically scattered electrons from regions 

containing maximum amounts of both the light and the heavy component. 

Thus the most densely shadowed parts, which are the most elevated and there

fore thickest parts of the compound specimen, cannot be focussed sharply 

as a result of chromatic aberration. On the other hand, the areas in which 

the shadow on the support film can be seen are the thinnest and least dense 

part of the specimen. The total amount of the light component measured 

in the beam direction in these regions is too small to cause multiple inelastic 

scattering, so that the corresponding image area is hardly affected by chromatic 

aberration. 

A second feature, frequently observable at careful examination, is the 
presence of « ghosts » in the image, areas slightly brighter than the back
ground in the negative print and surrounding the particles. These areas 
show approximately the same shape as the particles, but larger by a factor 



Fig. 6. - Freeze-dried 50 S ribosomal subunits of Bacillus Subtilis, 290000 x . Shadow: 
platinum/carbon at about 50°, (Nanninga (3 )). The shadow appears sharper than the par
ticle itself. Note « ghosts », areas slightly brighter than the background, the position of 
which changes when the specimen is tilted or rotated with respect to the beam: a) specimen 
plane approximately perpendicular to the beam; b) tilted 30°; c) tilted and rotated. The 
ghost areas are outlined in black on the duplicate pictures on the right. The effects are 
attributable to multiple inelastic scattering and single elastic scattering at the light and 

heavy components of the specimen respectively. Full explanation in text. 
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of the order of 2. The effect apparently occurs as the result of a superim

position of a defocussed image of multiply inelastically scattered electrons 

and a focussed image of elastically scattered electrons. The sharpness of the 

boundary can be seen as the result of the fact that the energy loss curve for 

a sequence of, say, 4 or 5 small-angle scattering processes will be considerably 

more peaked than the curve for a single inelastic scattering event, and the 

energy width of such groups of electrons must be very small. The effects just 

described may seem of a very subtle nature ; they do, however, determine the 

lower limits of observation in practically all high-resolution work with shadow 

casting as the basic technique. A suggestion presenting itself as a logical 

consequence would be the use of lighter elements for shadow casting. It is 

known that the helical structure of the protein coat of tobacco mosaic virus 

can be hardly observed using the best of heavy-metal shadow casting. We 

could, however, observe that chromium shadowing did reveal this structure, 

even under the presence of considerable granularity. The difference with 

tungsten shadowing is striking; the latter shows a very small granulation 

but hardly any surface structure on the virus rods, Fig. 7. The problem of 

optimal shadow casting, however, does remain of a complex nature, as the 

metal used may adhere to the object at preferred sites, some sort of decoration 

effect taking place. 

Fig. 7. - Tobacco mosaic virus rods, about 200 000 x . Influence of material used for 
shadow casting: a) tungsten; b) chromium. Chromium gives a coarser granularity than 
tungsten, but is more effective than the latter in bringing out the fine structure of the 

helical protein coat. 

42 
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3 5 . Atomic injection. 

A relatively recent new idea worth mentioning is applying the heavy 

staining component by atomic injection, as proposed by Manley (

3 7
). First 

experiments were done with cesium. A beam of cesium ions having an energy 

of between 50 and 800 eV was directed onto an unstained biological specimen 

inside a vacuum system; a density of between 1 and 3 atoms per square 

Ângstroem was obtained in a time varying from 2.5 to 7 minutes at a beam 

current of 15 · 10~

6
 A/cm

2
. As the author points out, the ions are probably 

neutralized to neutral atoms close to or at the surface by recombination with 

an electron, so the expression atomic injection seems well chosen. The final 

place of acceptance of the implanted atoms will depend on atomic and 

molecular properties of the specimen, as well as on the energy of injection, 

which latter can be varied at choice. The method evidently prevents surface 

migration and aggregation of the staining agent. Staining effects could be 

demonstrated, but a full evaluation of the method has not yet been made 

and any indication of its limits of usefulness would be conjectural. 

3'6. Choice of electron optical parameters. 

For a given specimen the contrast, as mentioned in Sect. 1, depends on 
two electron optical parameters: the objective aperture and the accelerating 
voltage. Reducing the voltage drastically appears to be far more effective 
for increasing contrast than choosing a smaller aperture. The latter method 
suffers from the disadvantage that diffraction unsharpness is introduced when 
the aperture is substantially reduced beyond the optimum value, apart from 
the practical problem to keep a very small aperture sufficiently free from 
contamination. The possibilities of low-voltage microscopy, with voltages 
between 6 and 15 kV were investigated by Wilska (

3 8
) and by Van Dorsten 

and Premsela (

3 9
). High-contrast pictures of extremely thin specimens con

sisting of light elements, mainly carbon, were obtained at the cost of some 
loss of resolution, evidently caused by the presence of a large proportion of 
inelastically scattered electrons in the image. Real pioneer work to improve 
the low-voltage electron microscope was done by Wilska (

4 0
) , who showed 

that the use of an electrostatic projector lens of special design, adjusted to 
act as a filter lens, could greatly improve picture quality by elimination of 
the inelastically scattered electrons. Trying to attain high resolution and 
energy filtering at the same time at moderate and low voltages does seem 
a highly interesting goal for future development. 
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3 '7. Image conversion. 

Converting the image on the fluorescent screen of an electron microscope 

into a video signal by means of a simple television camera and reproducing 

it on a television picture tube could be regarded as a technical curiosity 

offering the possibility of presenting electron microscope images simultaneously 

to larger groups of observers, until Haine and Einstein (

4 1
) pointed out that 

specially adapted pick-up devices could in principle improve the transfer of 

information from object to an observer, in particular when the luminance 

of the image was too low for good direct visual observation. The authors, 

making use of the effect of electron bombardment induced conductivity, 

showed that a target of amorphous selenium exposed to the image forming 

beam inside the microscope column, and scanned with a low-voltage beam 

as in a vidicon pick-up tube, could be used. In later years more practical 

solutions were developed, avoiding the use of delicate devices inside the poor 

vacuum of the projection chamber of the microscope, and enabling operation 

of the electron microscope at extremely low electron densities in the image. 

One of these devices consists of an external plumbicon television pick-up 

tube optically coupled to a small transmission fluorescent screen inside the 

microscope column by means of a fiber optics window (van Dorsten, Broerse 

and Premsela (

4 2
)). This system constitutes at present probably one of the 

best compromises between performance on the one hand, and complexity 

and cost of equipment on the other. A more sophisticated system is based 

on the use of the so-called SEC (secondary emission conductivity) tube; a 

All methods for increasing contrast in the typical low-density thin amor

phous object discussed thus far suffer from limitations in connection with 

resolution or contrast, or both. They also do influence the beam-specimen 

interactions, sometimes making the interpretation of images uncertain. The 

subject of contrast improvement, however, is by no means exhausted if one 

looks into the last link in the communication chain, the part between the 

final electron image and the ultimate visual perception. With a given specimen 

and a given electron optical system, the ebct ron density distribution in the 

final image is completely determined and the remaining possibilities of 

influencing contrast for the observer are lying entirely in the detector used 

and its adaptation to the human visual system. The use of some devices 

and methods in this final link of the chain will be briefly described and 

discussed. 
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description and a full discussion of the observation methods involving a 

video chain is given by Ktibler in this volume. 

The new element in our discussion of contrast phenomena in the class 

of objects concerned is that, using a video technique, control of contrast 

becomes available. The electronic part of the television chain allows adjusting 

the number of brightness levels from black to white transmitted through 

the chain, and also, within limits, the total intensity range. The important 

aspects of image intensification with such systems will be left out of the discus

sion here. 

Reducing the number of levels within a given range means increasing 

contrast at the cost of a decrease of the metric information mentioned in Sect. 1, 
and a possible loss of structural information, depending on the proper

ties of the object. It will be clear that contrast manipulation allows empha

sizing certain features by suppressing other features. The process is basically 

irreversible, as lost information cannot be regained. 

The user of the microscope, however, will not always be thinking in terms 

of information according to the definitions of information theory. He will 

be mostly concerned with the meaning of his observations in a particular 

field of application. His interest is in the semantic information as distinct 

from the signal information considered thus far. Making use of prior knowl

edge about the object, he may want a yes-or-no answer to a question regarding 

the presence of a certain feature, being prepared to accept the loss of informa

tion irrelevant for this restricted purpose. It will be obvious that such a 

destructive analysis of results has to be done in the last part of the communi

cation chain, that is after the image formation. As mentioned in the discus

sion of statistical effects in Sect. 1, the preponderance of small detail for inter

pretation is typical for microscopy, and manipulating of contrast exclusively 

in the smallest detail is a physical process approaching the mathematical 

process of differentiating, in other words the use of derivatives. The use of 

such mathematical operations was given the name image processing by 

Kovâsznay and Joseph (

1 6
) and is also referred to as optical processing. Intro

duction of this principle must be regarded as a new departure in information 

retrieval from optical images. 

If we regard an image simply as a scalar function of two independent varia

bles, the place co-ordinates, this function F(x, y) can be thought to be modified 

into a new funct ion, / ( jc, y), akin to the original one in the following way: 

f(x,y) = (l-c*A2)F(x,y)9 
with A 2 the two-dimensional Laplace operator and c

2
 a constant to be chosen 
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as a measure for the required effect. Performing this operation means adding 

a certain amount of negative second derivative to the picture for each of its 

elements and results in contour enhancement. If there are good reasons to 

assume that the picture obtained from an imaging system has been degraded 

by impaired resolving power or loss of contrast, or both, the operation of 

contour enhancement can improve the image by partly restoring the original 

object function and a de-blurring effect can be obtained. 

A further possible useful operation involves the first derivative. In this 

case the condition that the operation shall be independent of rotation requires 

only even functions to occur in the operator, the simplest of which is the 

square, yielding the operator c(V)

2
, with 

and c a constant. The resultant function f(x9 y) = c(V)

2
 consists of the square 

of the absolute magnitude of the gradient vector for each point. This func

tion is always either zero or positive, depending on whether the point con

sidered is in an area of constant intensity or not. 

The high values indicate high-intensity gradients, that is to say contours. 

The resulting image becomes a genuine line pattern if the function f(x, y) 
is restricted to high threshold values by clipping. The operation thus per

formed is called contour outlining. 
The principle of image processing just described in brief seems of great 

interest for electron microscopy, and especially for the observation of ampli

tude contrast in macromolecular objects. It is a real asset of a video system 

that it provides the image information in analog form as a time signal at any 

time during observation, without requiring a rapid access memory device, 

by virtue of the scanning system. Operations as mentioned in the foregoing 

can be performed entirely by electronic methods with specially designed 

circuitry. 

Because for the macromolecular object, in order to match the resolution 

of the video system, the magnification has to be high, the information content 

of the image is relatively low, and the requirements on bandwidth therefore 

moderate. This can be directly related to the cost of the equipment. 

A practical resolution limit of 5 Â can be attained using a simple 

video system equipped with a plumbicon camera, without any image pro

cessing, for high-contrast amplitude objects or phase objects. 

The pictures for final observation can be photographed from a monitor 

tube and a good deal of image processing could be done on-line, with adapted 
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circuitry. Limitations imposed by the photographic process and the visual 

system of the observer (accurate focussing and watching and control of oper

ating conditions) can, in principle, be reduced or removed. 

A more ambitious scheme would consist in using digital recording of 

a considerably larger number of brightness levels than can be recorded by 

means of the photographic process or an analog signal, in combination with 

a strong nonlinear response, for instance a cube law, in order to obtain a 

significant increase of contrast in small detail. 

Contour enhancement and contour outlining, as well as other operations 

as the case may be, can then be done by computer processing of the digital 

signal. For a comprehensive survey, see Mendelsohn et al. (
43
). 

Image processing as a new technique of data processing and information 

retrieval has received the greatest possible stimulus from space research. 

A very considerable expenditure for development in this field has already 

resulted in basic and technical knowledge worth to be studied by workers 

in related fields. The method recently used for processing the observation 

data from the planet Mars, obtained by means of the Mariner spacecrafts, 

as described by Leighton and co-workers (

4 4
) , are certainly worthy of the 

attention of electron microscopists. 

In conclusion it can be said that, of the contrast enhancing procedures 

discussed for low-contrast objects in electron microscopy, low-voltage micro

scopy with energy filtering, and optical processing offer a better outlook 

than staining and shadow casting methods. The motto for progress could 

be: more contrast with less staining. 
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Contrast Calculations 
for Small Clusters of Atoms 

C . R . H A L L 

Cavendish Laboratory, University of Cambridge - Cambridge, England 

1. Introduction. 

The diffraction theory of electron microscope image formation can be 

used to predict the contrast due to any object, provided that the scattering 

factors of the atoms and their arrangement within the object is known. A 

number of papers have already appeared reporting calculations of image 

intensities and in some cases comparing them with experimental observations. 

The calculations of Eisenhandler and Siegel Q) however neglected the com

plex nature of the scattering factor, while in the case of the calculations of 

Heidenreich (

2
) a real scattering factor was again used and in addition there 

was some doubt about the exact structure of the graphite sample used for 

the experiments. Zeitler (

3
) on the other hand has shown that the imaginary 

part of the scattering factor is important in giving rise to contrast from 

heavier atoms near exact focus. Reimer (

4
) has recently calculated the image 

contrast due to single atoms and small clusters of atoms (up to 19 atoms) 

of platinum, using a complex scattering factor. The present calculations (most 

of them carried out as par t of a project with Professor R. L. Hines while 

he was on leave in Cambridge 1968-69) are for clusters of gold atoms, which 

can easily be prepared for experimental observation by evaporation in vacuum. 

The experiments carried out by Professor Hines provided some support for 

the calculated image contrast (Hall and Hines (

5
)), and more recent experi

ments, providing better confirmation and which use the calculated intensities 

to obtain information about cluster thickness, are to be reported elsewhere 
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((Hines and Hall (
6
)). The results described here are in general agreement 

with those of Reimer and should be typical of the contrast of materials in 
this part of the periodic table. 

2. Outline of the method of calculation. 

The atomic scattering factor for gold as a function of angle α was eval
uated for 80 keV electrons by the standard phase shift method. This gives 
a scattering factor / with an amplitude / ( a ) and a phase η(<χ). The wave 
exp[2nik-r] scattered into the objective aperture at (α, φ) from an incident 
plane wave exp [2mk0-r] by an atom at #*; in the object has an amplitude A 
given by: 

A =^/(a) exp [ίη(οή] exp 2m(k0 — k)vj Η — j - à L — + 

+ -~2j~
cos2(

P\' ί
1
) 

ΔΖ. is the amount of defocus, and cs and ca are the spherical and astig
matic aberration coefficients respectively. For an object consisting of a single 
atom the amplitude S(Q) at ρ in the image due to these scattered waves is 
found by adding the contribution at ρ from all parts of the aperture. Com
bining this with the amplitude of the unscattered wave gives a total image 
amplitude 1 + £ ( ρ ) : the image intensity is therefore given by | 1 + 5 ( ρ ) |

2
. 

In principle the evaluation of Ξ(ρ) involves a two-dimensional integra
tion over the aperture for each point in the image. However if ca is put 
equal to zero (no astigmatism) then for an aperture of semiangle oc0 and a 
single atom on the axis we have: 

S® =
 2^ff(a)J0 (27) exp [*,(.) +

 2
A L - a d a . (2) 

0 

This single integral can be evaluated on a computer much more rapidly than 
the previous double integral, and the resultant 5(ρ) is circularly symmetrical. 
The total amplitude at R in the image plane due to atoms at 17 in the object 
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plane is now simply given by: 

A = l+2S(\R-r}\). (3) 
3 

(For convenience positions in the image are represented in object co-ordinates.) 
The image intensity is given by the square of the modulus of A as before. 

Thus to compute the image contrast expected using a microscope with 
a particular cs and aperture size a 0, S(Q) is first found by eq. (2) as a function 
of ρ for a range of values of AL, using the given values of <x0 and cs. These 
values of Ξ(ρ) are stored as two sets of tables within the computer (one for 
the real and one for the imaginary part) . By interpolation eq. (3) can sub
sequently be evaluated for any given set of η and R for each of the defocus 
values for which Ξ(ρ) is stored. Even for large numbers of atoms the evalua
tion of eq. (3) is rapid so that a large number of atomic configurations can be 
investigated once the initial calculations of S(o) have been carried out. 

It is also possible to investigate, with the use of very little extra computer 
time, the effect of changing the phase of the scattered radiation by a constant 
amount relative to the unscattered radiation. This corresponds to the effect 
of a simple phase plate with a small hole in the middle. All that is necessary 
is to change the phase of ^S(\R — ri\) before finding \A\

2
. The treatment 

Τ 
of a phase plate more complicated than this requires the addition of an extra 
phase term inside the integral in eq. (2), so that S(Q) has to be evaluated for 
each phase plate geometry and strength. This results in a loss in generality 
and a considerable increase in computation time. For these calculations a 
value of 1.3 mm was used for cs except where stated otherwise. 

3. Results of calculations. 

3 1 . Single atom images. 

By carrying out calculations for a range of values of a0, the aperture size 
which gives the best calculated contrast for a single atom was found to be 
about 0.01 radians semiangle. This is approximately the size given by the 
criterion that the extra phase shift introduced at the edge of the aperture 
should not exceed 3π/2. 

Reducing the aperture below this value reduces the image contrast and 
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increases the image size, as would be expected. On the other hand increasing 
the aperture has very little effect upon the size of the image or its contrast. 
This is because the additional Fresnel zones included by the larger aperture 
have a relatively small area due to the a

4
 variation in phase caused by the 

spherical aberration. Thus these zones contribute relatively little to the am
plitude but tend to cancel each other out giving rise to minor oscillations 
in the image contrast and size as the aperture increases above the optimum. 

The main results of the single atom contrast calculations are summarised 
in Fig. 1 a), where it can be seen that the best normal (dark) contrast, which 

(Z 0.85F 

0 ' 0 2 ' 0 4
 L _

Ô 6 0 ' 02 ' OA ' 0 6 
Radius in nm. 

Fig. 1. - Radial intensity curves for a single atom using the optimum aperture, a) A , AL = 
- - 60 nm; B, AL = 0; C, AL = 80 nm. b) A , AL = 0, / real; B, AL = 80 nm, / real; 
C, AL = 0, with the phase of the scattered wave increased by π/2. (Courtesy of Phil. Mag.) 

occurs at 80 nm defocus, corresponds to an intensity at the image centre 
15% below background, and that the image diameter is about 0.4 nm. At 
exact focus there is some contrast, but the centre of the image is light, being 
some 4 % above the background, and the image diameter is again about 
0.4 nm. The maximum bright contrast occurs at a defocus of around 

— 60 nm, when the contrast is still about 4 %, but the image diameter is 
now about 0.6 nm. The effect upon the single atom image of using a real, 
rather than complex scattering factor is shown in curves A and Β in Fig. 1 b), 
which corresponds to curves Β and C respectively in Fig. la). It is evident 
that the imaginary par t of the scattering factor has little effect either upon 
the optimum contrast or upon the contrast at exact focus. Curve C in 
Fig. 1 b) is the optimum contrast found when the phase of the scattered wave 
is shifted by various amounts relative to the unscattered wave: it is obtained 



Contrast calculations for small clusters of atoms 669 

Phase 
sh i f t 

"0 2 A 6 8 10 1 12 x 1 0 z 

A n g l e in r a d i a n s | 
Fig. 2. - Phase across objective aperture of the wave scattered by a gold atom for 80 keV 

electrons, cs = 1.3 mm and 80 nm defocus. 

it contributes relatively little to the total change in phase. Thus the contrast 
at exact focus in Fig. 1 a) and b) is due mainly to spherical aberration rather 
than a complex scattering factor. 

3*2. Pairs of atoms. 

These calculations were carried out for pairs of gold atoms at a range 
of separations: a number of values of cs were used and for each the corre
sponding optimum aperture size for single a tom image contrast was used. 

A L = 8 0 n m . c s = 1-3 m m . 

at exact focus with a phase shift of π/2. It is seen that the contrast thus 

obtained is very little greater than that obtained under normal conditions 

at 80 nm of defocus. The reason for this can be understood from Fig. 2, 

which shows the total phase shift of the scattered wave across the aperture 

at 80 nm defocus. Because the defocus and the spherical aberration act in 

opposite senses the relative shift in phase of the scattered radiation across 

much of the aperture is of the order of π/2, the optimum value. Defocus 

and spherical aberration thus combine to give rise to fairly effective phase 

contrast. The reason for the small effect of the imaginary part of the scat

tering is that, as can be seen (it gives the phase shift at zero angle in Fig. 2), 
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The resulting images are no longer circularly symmetric and a two-dimen

sional representation of the contrast is needed. This is most conveniently 

achieved by evaluating the contrast at a number of points on a grid by the 

method outlined previously and displaying the results on a cathode ray tube. 

By adjusting the controls of the tube the effective contrast of the image can 

be varied: in general the contrast of the images shown here is greater than 

would be expected from an image with the calculated contrast using normal 

photographic recording. In Fig. 3 simulated images for four different values 

of cs are shown, together with the atomic spacing used in each case. For 

each cs there are three images corresponding to the different amounts of 

defocus noted beneath each. These particular results were selected as showing 

the atom spacing at which the existence of two distinct images can still just 

be recognised. This spacing was found to be approximately proportional 

to c~l, a result which applies also to self-luminous objects. This increase in 

effective resolution at smaller values of c~ is of course achieved with an in-

ΔΙ_= 180 160 K O η m 
c £ = 5 m m d = 0.5 η m 

A L = K O 120 1 0 0 n m 
c g = 2.5 m m d - 0.A η m 

A L = 1 0 0 8 0 6 0 n m A L = 6 0 4 0 2 0 n m 

ς. = 1.3 m m d = 0 . 3 6 n m c s= 0 . 3 m m d = 0 .28 n m 

Fig. 3. - Cathode ray tube display of contrast due to two gold atoms at different sepa
rations d, defocus AL and cs 
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creased aperture size, with the result that the contrast is more sensitive to 

defocus. Thus while in the upper pictures a change in focus of 20 nm on 

either side of the optimum has no great effect upon the contrast, in the images 

for cs = 0.3 m m the contrast changes from dark to light in this distance. 

Thus a microscope with this cs and this potential resolution would have 

to be operated with some care in order to use the best degree of defocus, and 

it would have to be sufficiently stable to prevent the contrast being lost as 

a result of fluctuations in focal position. 

3*3. Larger clusters of atoms. 

Images of larger clusters of atoms will not in general be circularly sym

metrical, and in principle it is necessary to calculate the contrast over a grid 

of points as before. However, this becomes fairly expensive in terms of 

computer time for the larger clusters, and it has proved possible in practice 

to get a good understanding of the contrast of the more symmetric islands 

and to study its variation with the different parameters by plotting the con

trast along a single radial line. In each case the atoms in the single layer 

clusters have been taken to be close-packed with the arrangement and spacing 

(0.29 nm) found in the 111 planes in the solid. Subsequent layers have been 

added so as to give the face centred cubic structure. 

In Fig. 4 a) the contrast along a line passing through one of the atoms 

in a three-atom cluster is shown. The curves shown are for the best light 

and dark contrast which is obtained by defocus, and the best dark contrast 

given by defocus and phase shift. As in the case of the single atom there is 

little contrast at exact focus, and the maximum contrast of each type arises 

at roughly the same defocus distances found for the single atom. Also as for 

the single atom the phase plate makes little difference, indicating that a con

siderable amount of phase contrast is again produced by the combined effects 

of spherical aberration and defocus. The best contrast corresponds to an 

intensity at the centre of the image which is 2 0 % below background, which 

should be readily visible. 

Calculations have also been made for a flat hexagonal island of seven 

atoms, and the remaining curves in Fig. 4 are for this configuration along 

a line passing between two outer atoms : this contrast is very similar in mag

nitude and behaviour to that along a line passing through an outer atom. 

The contrast at exact focus is again weak, the best bright contrast, 10% above 

background, occurring at —lOOnm defocus. The image which would prob

ably be interpreted as the best dark contrast is given by 80 nm of defocus 
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and has a minimum intensity 10% below the background: in this case the 
image is roughly the same size as the object. 

For this cluster the imaginary par t of the scattering factor and a shift 
in phase of the scattered radiation are both more important than for a single 
atom. Figure 4 c) shows the effect of using a wholly real scattering factor. 
The contrast at exact focus is reduced, and the best light and dark contrast 
are both modified slightly as well. A phase plate is found to increase sub
stantially the best dark contrast: curves for three combinations of phase 
shifts and defocus which give contrast near the optimum are shown in Fig. 4 d). 
This presumably arises because the scattering from the larger clusters is con-
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Fig. 5. - Radial contrast from a cluster of 13 atoms with 6 atoms on top. (Courtesy of 

Phil. Mag.) 

show the intensity along a radial line for a cluster of 19 atoms (13 + 6) 
and of 64 atoms (37 + 27) respectively. The image at exact focus of the 
19 atom island is smaller than the object, while the optimum contrast of 
about 20 % occurs at 80 nm of defocus, when the object and image sizes 
are similar. Reversed contrast again occurs on the other side of focus, being 
at best 15% above background at — 160 nm defocus. For the largest 
cluster, radius about 1 nm, the contrast oscillates as the focus is changed, 
the form of the image frequently having little resemblance to the object. 
Dark and light centre contrast is found on both sides of focus, the centre 
being surrounded by rings of alternating but weaker contrast. The cluster 

4 3 

centrated at smaller angles within the aperture, where defocus and spherical 
aberration have less effect, and where a phase plate can thus be important. 
An island of this size thus ought to be made more visible by a simple phase 
plate. The effect upon this contrast of reducing cs and correspondingly 
increasing the aperture size is to increase the contrast but to cause it to oscil
late more rapidly with defocus (Reimer (

4
)), as with the pairs of atoms in 

Fig. 3. The results for larger clusters show a similar trend. Figures 5 and 6 



674 C. R. Hall 

1.2 

1.1 

c 
ω 

1.0 

pf 160nm\ 

\ f \ \ 
\ / \ \ 

Λ i . V 

ï 0.9 

0.8 

0.7' 

- ,-320 n m 

6 4  a t o m s 

/ \ 
/ V'" \ 

0 l ι" 0.5 ^ - Λ " Ί / ί < - ' " > # v / X f r / ^ / 2.5 
i ' ^ - • ^ * / R a d i u s 

i n n m . 

> 

\ 

\ / 

V 
/\ w / / \\ / / 

/ V / 
x
-100 / 

n m / 

/ •240nm 

. . . . /*\ / 

/ 

Fig. 6. - Radial contrast from a cluster of 37 atoms with 27 atoms on top. 

in these latter calculations is roughly similar in size to the gold islands in the 

micrographs in Fig. 7 (e.g. island A). It can be seen that the « bullseye » 

contrast of some of the islands at different amounts of defocus is similar in 

form to that plotted in Fig. 6. It is not possible to attempt a detailed compar

ison as the calculations have not been taken as far as the nominal amount 

of defocus used to take the micrographs, the thickness of the clusters is not 

known and the aperture was somewhat larger than the optimum. 

A general impression of the way in which the contrast of small islands 

will vary with defocus is given by Fig. 8, which shows the intensity at the 

centre of the 3, 7 and 19 atom clusters over the focal range ±300 nm. These 

curves are slightly misleading since the maximum intensity change at the very 

centre of the image may not correspond to maximum overall contrast. Thus 

from Fig. 8 it might be inferred that 140 nm of defocus would give maximum 
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Fig. 7. - Micrographs of a 
group oi gold islands at a 
number of different amounts 
of defocus. (Courtesy of 

Phil. Mag.) 
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Fig. 8. - Contrast of the centre of a cluster as a function of defocus. (Courtesy of Phil. Mag.) 

island visibility for the 19 atom cluster, when in fact the image is smaller than 

the object and would also be less visible than the image at 80 nm of defocus. 

However the defocus for best contrast is fairly close to the value obtained 

from Fig. 8. 

3*4. Effect of astigmatism. 

The effect of astigmatism is to introduce an extra phase change in the 
scattered wave of the form (injlX) Cao? cos 2φ (see eq. (1)). As a conse
quence the amplitude in the objective aperture is no longer circularly symmet
rical, and strictly a two-dimensional rather than a one-dimensional numer
ical integration over the aperture is required for each value of ca and each 
defocus. However a good impression of the effect of astigmatism upon 
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image contrast can be obtained without the use of a lot of computer time 

by using an approximate formula given by Born and Wolf (7). This formula 

can be obtained more straightforwardly by expanding the factor 

in eq. (1) to become 

exp 21 
caoc2 cos 2φ 

1 + γ λ CaOC2 COS 2φ 

The first term simply leads to the amplitude scattered in the absence of 

astigmatism. The second gives rise to an astigmatism amplitude which can 

be integrated analytically over the angular co-ordinate in the objective aperture 

to leave a single radial integration for the computer as before. The extra 

contribution to S(Q) in eq. (2) is then: 

Fig. 9. - Calculated contrast of a seven atom cluster at the amounts of defocus indicated 
in nm including the effects of spherical aberration and astigmatism. 
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This amplitude contains a term cos 2ψ, where ψ is the angle between ρ, 

the radial direction in the single atom image, and the direction from which 

φ is measured. Consequently the single atom image is no longer circularly 

symmetrical. It can also be seen that this extra amplitude is proportional 

to ca, so that it can be evaluated with ca=l and stored as before, the 

interpolated number being multiplied by the particular value of ca of interest 

when it is combined with the original amplitude to give the total amplitude. 

The higher terms neglected in the expansion give amplitude contributions 

with higher symmetry and therefore tend to give contrast which is more nearly 

circularly symmetrical. The image of a cluster of atoms is found by adding 

the amplitudes in the image plane as before. 

As an illustration of the effects which might be expected under extreme 

conditions, the intensity of a hexagonal cluster of 7 atoms with ca = 42 nm, 

displayed in the same way as Fig. 3, is shown in Fig. 9. On a small scale 

the astigmatism has an appreciable effect on the form of the image, so that 

for example at exact focus the cluster looks like a pair of small dots at a sepa

ration of 0.6 nm. 

4. Conclusions. 

a) The contrast from a small object varies considerably with defocus: 

in order to interpret fine detail on micrographs correctly it is necessary to 

take a through-focus series of exposures to obtain an adequate amount of 

information. Single micrographs taken at an unknown defocus can be mis

leading. 

b) For very small objects it seems that a simple phase plate will not 
give much in the way of extra visibility: for coarser structures however the 
technique could still be useful. 

c) The calculations suggest that it should be possible, using existing 
microscopes, to see single atoms as well as small clusters: 10% of contrast 
should be visible. The problems which need to be overcome seem to be: 

i) Substrate preparat ion: the contrast from the graphite substrate 
visible in Fig. 7 obscures the smaller clusters. A single crystal substrate, as 
opposed to an amorphous film, should not give any contrast if the Bragg 
reflected beams are excluded by the aperture. The contrast in Fig. 7 is prob-
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ably due to surface contamination introduced during the substrate preparation 

prior to the island deposition. 

ii) Mechanical stability needs to be extremely good if very fine detail 

is not to be blurred out. In addition the electrical stability has to be higher 

than that of many microscopes at the moment : the stability required depends 

upon cs and upon the aperture size, but for cs= 1.3 mm and the optimum 

aperture of 0.01 rad and thus a maximum desirable ripple in AL of say 10 nm, 

with an objective focal length of 2 mm, a stability of better than about 3 

in 10

6
 is needed on both the lens currents and the accelerating voltage. 

iii) Finally, electron noise in the beam which reaches the recording 

plate gives rise to spurious contrast on a small scale, the smaller the scale 

the greater the contrast. (For a review see Valentine (

8
)). At the maximum 

magnification given by most microscopes (10

5
 or a little more) this contrast 

becomes comparable with that expected ( ~ 10 %) from atoms and small 

clusters on a scale roughly equal to the image size expected from a group 

of a few atoms. This will need to be overcome either by increasing the mag

nification or by using less sensitive plates which require more electrons per 

unit area to produce an image. 
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Some Aspects of Lorentz Microscopy 

R . H . W A D E 

Centre d'Etudes Nucléaires - Grenoble, France 

Magnetic-field distributions are usually imaged in transmission electron 

microscopy by off-focus techniques. In the first of these three lectures an 

attempt is made to situate Lorentz microscopy in the general background of 

phase microscopy. The second lecture deals with the interpretation of the 

off-focus images in trying to define the conditions under which a geometrical 

approach gives a good approximation to wave optics. The experimental 

attempts to solve the domain wall problem are reviewed in the third lecture 

in which we indicate why and where these attempts fail. 

The field of Lorentz microscopy still awaits its full justification which 

will come when domain wall, ripple and stripe domain structures have been 

fully solved. This will be achieved only after careful consideration of the 

optimum working condition. We hope that this series of lectures taken with 

those of Wohlleben may contribute to form the foundations of this future 

success, or if the worst comes to the worst to define clearly where the failure 

lies. 

1. Introduction to Lorentz microscopy. 

1 1 . Image contrast in phase microscopy. 

The action of a transmitting object on an incident plane wave can be 

described by a transmission function f(x,y) where 

f(x, y) = V(x, y)IV0(x, y) . 
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V0 and V represent respectively the wave functions in a reference (x, y) plane 

in the absence and presence of the object. For our purposes the incident 

electron illumination is the plane wave exp [ikz] directed along the z-axis 

incident on a thin object situated in the (xc,yc, 0) plane. The disturbance on 

the exit surface of the object is then given by V. The quantities \ f\ and a r g ( / ) 

are the amplitude and phase of the object transmission function / ( I CJ C) . 

In the case of a one-dimensional periodic object f(xc) = f(xc + ε) we can 

rearrange the Fresnel integral to give the disturbance ψ(χ, z) in a plane at 

distance ζ below the object in the form 

y (χ, ζ) =*exp ĵ J ^ An exp ilnx "J · exp £ ΐίπλζ — (1) 

where the Fourier series expansion of the object function is : 

and 

f ( x c ) = Σ
Α
η
 e x

P [*2πχ0η/ε]. 

+ e/2 

An = - I àxcfixc) exp [— i2nxcn\e\ 
ε J 
- ε / 2 

All of classical microscopy of a periodic object is contained in eq. (1). 

We find a reproduction of the object function fix) in any defocussing plane 

satisfying the condition ζ = 2ms
2
/λ where m is an integer and m = 0 cor

responds to the in-focus image. For a pure phase object f(xc) = exp [i<p(xc)]9 
no contrast is visible in these planes. In light microscopy various techniques 

have been developed to render such objects visible. These methods utilize 

the fact that the diffraction image formed at the focal plane of an imaging 

lens corresponds to the object spectrum An. Any manipulation in the focal 

plane, F of Fig. 1, altering the amplitudes An will produce a corresponding 

change in the image. 

As an example we consider a weak unidimensional symmetrical phase 

object of periodicity ε. 

f^Xc) = exp [i(p(xc)] = ^ c n exp [ί2πηχ0/ε] ~ 1 + 2i2bn cos2nnxC/8 . (2) 

- ω ι 
The image intensity \f±\

2
 is unity. In the Schlieren method of introducing 

an image contrast all spectra on one side of the zero order are blocked off 
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by the screen Dv The image function becomes 

Â(
x
) = 1 + i^bn[cos(2nnxc/s) + isin(2nnxc/s)] , 

ι 
oo 

\f21
2
 1 — 2 2 bnsin (Innxcje) . 

ι 

The effect of the screen D1 in the back focal plane F has been to introduce 

an intensity distribution in the image plane / proportional to the derivative 

of the object phase function φ(χ0). 

0 L· F I 

D*ff rocrion 
o p é r e r a 

Fig. 1. - A periodic phase object Ο is imaged at / by the lens L. The diffraction image 
formed at the focal plane F shows discrete maxima with amplitudes An corresponding to 
the appropriate Fourier components of the object spectrum. The diffraction apertures 

D19 Z>2, D3, D4, can be used to introduce contrast into the final image. 

Other dispositions of the screen are possible. Those in use in classical 

optics are shown in the Fig. 1. The screen position D2 intercepts the zero-

order maximum and one side of the diffraction image (oblique dark field); 

the screen Z>3 intercepts only the central maximum (dark field). The bright-
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field method commonly used in electron microscopy (D4) allows only the 
central maximum to pass into the image. N o resolution is possible, only 
local variations of the zero-order diffraction maximum are detected. 

The phase contrast method first used (Zernike (1942)) is of considerable 
interest in that it produces an intensity fluctuation in the image directly pro
portional to the phase structure (p(xc) of the object. This method makes use 
of eq. (2) in which the phase of the constant term, or rather the corresponding 
zero order term in the object spectrum, is modified by an advance of π/2. 

CO 

| / 3|
2
 ~ 1 + 4 2 bn cos (2πηΧο/ε) . 

ι 

The contrast is increased if the quarter wave plate used to effect the phase 
change is also partially absorbing. 

The diffraction spectrum of an isolated or a nonperiodic object, con
sists of a continuous amplitude distribution rather than of the discrete maxima 
associated with a periodic object. Figure 2 shows schematically the diffrac
tion amplitudes given by these different objects. A screen AB can be placed 
between the discrete maxima of the periodic object Fig. 2a) so as to exclude 
a certain number of terms An from the image function. In the cases b) and c) 
the edge Β of the screen intercepts a non-zero intensity in the diffraction image. 
The image function will contain a contribution due to diffraction from the 
aperture edge. 

a / by cy 

Fig. 2. - Showing a) a periodic object, b) an isolated object and c) a nonperiodic object. 
Below each is shown the corresponding diffraction image. In a) the aperture AB placed 
between the discrete maxima does not itself contribute to the final image. In the other 

cases the edge Β is illuminated and this will modify the image intensity distribution. 
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1 2 . Abbe theory of image formation. 

It is useful at this point to present briefly the Abbe theory of image for

mat ion; this theory considers that a lens forms an image of an object by 

a two stage process. The formation of the diffraction image at the back focal 

plane F of the lens L (Fig. 1) is considered to be stage one. The diffraction 

amplitude f(s) is related to the object function f(xc) by: 

where we have considered the lens to have an infinite aperture. The final 

image f(x') is associated to the diffraction image by the relation 

which forms the second stage of the imaging process. The relations (3) and (4) 

can be demonstrated directly by successive applications of the Kirchhoff-

Fresnel diffraction integral to the initial object function f(x) using a function 

of the form exp [— imPjkf] to represent the action of the convex imaging 

lens. The expressions (3) and (4) above associate the image function f(x') 
to the object function f(x) by a double Fourier transformation. Since such 

a transformation is known to reproduce the initial function f(x) we can write 

f(x
!
) = f(xM) where M is the magnification of the system. 

The relations (3) and (4) show that a lens has the double property of 

displaying a harmonic analysis of an object in its focal plane F and of re-

combining this spectrum to form an image in the plane / . The action of an 

aperture in the focal plane F has its mathematical equivalent in an appro

priate limitation of the range of the integral (4), or, in the case of a periodic 

object, of the summation (1). 

In classical light optics phase objects are usually rendered visible by using 

the kind of manipulation which we have described in Sect. l ' l . The best 

amongst these techniques is the phase contrast method since it reproduces 

in intensity the phase structure of the object. As we shall presently see these 

techniques are seldom applicable to the case of a magnetic object imaged by 

electron microscopy. 

(3) 

- c o 

(4) 

•CO 
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1*3. Magnetic object as a phase object for electrons. 

The role of a magnetic object in electron optics can be introduced via the 

concept of refractive index. We consider an electron wave interacting with 

a static electromagnetic field defined by the vector potential A and the scalar 

potential V; the magnetic and electrical fields Β and Ε are defined by the 

relations Β = curl A and Ε = grad V. 

Β C 

a) b) 

Fig. 3. - a) Illustrating the application of Fermat's principle to the passage of a ray be
tween A and B. Amongst the possible paths are those marked 1 and 2. b) The two rays 
emitted by a source at S follow the paths 1 and 2 coming together to interfere at C. 
The enclosed magnetic field Β influences the interference by the phase difference which it 

produces between the two rays. 

We make use of the analogy between Fermat 's principle of geometrical 

optics and the classical mechanics Maupertuis ' principle. Fermat 's principle 

states that the actual trajectory taken by a light ray between a point A and 
A 

a point B, Fig. 3a), is such that the line integral jn-dr taken along the pos-
B 

sible trajectories between A and Β is minimum. Maupertuis ' principle 
asserts that the path taken by a particle between the points A and Β 

A 

is such to minimise the action integral jp-dr taken along all possible paths; 
Β 

the momentum vector ρ in the presence of the vector potential A is not co-

linear with the velocity ν 
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(e is the electron charge). In what follows we limit our interest to the in

fluence of the vector potential A. Consequently we put V= constant. Since 

ν = Vle(E0 + V)jm, where E0 is the accelerating potential, we can write the 

action integral in the form 

A A 

jpdr =j dr · [V2me(E0 + V) — eA-u] , 

Β Β 

where u = vfv. 
The phase of a wave at Β taken with respect to the phase at the point A9 

A 

is given according to Fermat 's principle by the integral 2n/XJn-dr taken 
Β 

along the ray connecting A and B. The formal analogy between the two 

afore-mentioned principles allows a de Broglie wave to be associated with 

the movement of a particle between the points A and Β which will be separated 
A 

by the phase delay Ιπ/hjp-dr, where h is Plank's constant. One can con-
B 

sider that the medium between A and Β possesses an anisotropic refractive 

index 

-M- -(XelhyA-u. 

We now consider the situation schematised in Fig. 3b) in which two 

coherent electron beams issuing from a source S, come together to interfere 

at C after following the different trajectories 1 and 2 in field free space. The 

interference at C is determined by the phase difference Δφ between the two 

beams which expressed in terms of the refractive index is 

f/i-dr—jn-dr = y · Δ Γ — 2 π · | ffl-dS. 

Δ Γ is the path length difference between the trajectories 1 and 2 whilst the 

second term is proportional to the flux Φ enclosed between the two trajec

tories. It is this term which is responsible for the action of a magnetic field 

region as a phase object for an electron beam. 

In the case of a plane wave incident on a magnetic film of thickness a 
situated in the (xc,yc,0) plane, the phase difference cps between two points 
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x
{
ç
]
 and x

(2)
 (yc constant) is given by: 

The enclosed flux rule expressed by (5) enables us to construct the phase 

representation of a domain wall and of a periodic object. The flux density 

distributions of these two objects are shown in the upper part of Fig. 4. The 

Fig. 4. - The one dimensional field distributions across a domain wall and a periodic 
object are represented in a) and b) respectively. Below are shown the corresponding phase 

representations constructed according to the enclosed flux rule (5). 

phase has in both cases the symmetry property (ps(xc) = <fs{— Xc)- The Fourier 
transform relation (3) can be used to show that for the phase object 
exp [i2nq)s(xc)] the real and imaginary parts of the diffracted amplitudes are 
also symmetric. They have in fact the form shown in Fig. 5. 

We remark that no spatial separation between the real and imaginary 
diffraction amplitudes occurs in the example shown in the figure which cor-
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Fig. 5. - Diffraction amplitude envelopes of phase objects of the types shown in Fig. 4 
which possess the symmetry property <ps(xc) = <ps(— xc). 

responds to the case of a strong phase object. Zernike phase contrast cannot 
be applied to such an object. It remains possible by the use of the diffraction 
aperture to make a Schlieren type observation. However as Wohlleben 
shows (1967) the image intensity distribution is extremely sensitive to the 
aperture position and for a nonperiodic object the intensity is also perturbed 
by diffraction from the edge of the aperture. 

When As < ε (see Fig. 5) the zero-order maximum of a periodic object 
is much enhanced with respect to the other diffracted maxima. The object 

44 
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function can be written in the form^_(xc) of eq. (2). This then is the case of 

a weak phase object. The diffracted amplitude of a nonperiodic object has 

a continuous lateral spread. An illumination source of finite width causes 

the direct beam (s = 0) to overlap the diffracted beams (s φ 0) so that even 

a very narrow phase plate will not act separately on the direct and diffracted 

amplitudes. The phase plate itself gives a diffracted intensity in the final 

image plane. In addition there are severe practical difficulties associated with 

the fine scale of the magnetic scattering. In brief it seems difficult to apply 

this method to the types of magnetic object with which we are mainly con

cerned here. 

In what follows we limit our attention almost exclusively to the out of 

focus method of introducing image contrast. This method is scarcely used 

in classical optical microscopy since in general no simple relation exists be

tween the image intensity distribution and the object phase function. A mere 

casual glance at the images of periodic objects published by Fert and his 

collaborators (1961) offers a convincing proof of this fact. The method remains 

however for lack of something better the method most exploited in the so-

called Lorentz microscopy which might be regarded by an unkind classical 

microscopist as poor man's phase microscopy. 

2 1 . The relationship between wave and geometrical optics. 

The Kirchhoff-Fresnel diffraction integral, which represents the wave op
tical diffraction amplitude at a distance ζ = d from an object, can be writ
ten in the form 

where in the case of Fresnel diffraction by a magnetic object the phase q>e 
is given by 

2. The validity of geometrical optics. 

(fc(Xd, Xc) = 
(Xc — Xdf 

+ <Pe(Xc) (6a) 
lid 
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whilst for Fraunhofer diffraction 

<Pc(Xd, Xc) = —-r + 9s(Xc) , (6*) 

f being the focal length of the imaging lens. In the above (ps(xc) is given by 

eq. (5). Alternatively q>8(xc) can be written q>8(xc) = (dxcoc(xc)/A where oc(xc) 
Jo) 

is the local deflection suffered by the electron beam. In the case of objects 

of the type shown in Fig. 4 we can write 

<Ps(xc) = J jdxcf(xc) · (7) 
~(0) 

ocp is the maximum deflection suffered by the electron beam and f(xc) = 
= oc(xc)/ocp can be regarded as the normalised local deflection. In the case 

of the domain wall, Fig. 4a), we take the origin of co-ordinates at the wall 

centre. 

The principle contribution to the integral (6) comes from the region or 

regions in the neighbourhood of the stationary phase points xt for which 

d(pc/dxc = 0. The Taylor expansion of φ0 around x\ up to the second order 

is given by: 

(Ax )
2 

(pc(xd, Xc) = ydxd, x%) + Axc<p'c(xd, χι) Η γ-φ"(χ&, χύ + ··· > (8) 

where Axc = xc— x%- Since the second term on the r.h.s. of eq. (8) is zero 

the stationary phase approximation to the integral (6) consists of substituting 

therein 

(fc(xd, Xi) Η 2—Φ<>{χα,
 Xi

> 

for qpc(xd, Xc)- This yields 

CO 

V's Ρ (
x
d ) = Σ

 e x
P [ί2πψο(χα, xt)] \dxc exp [in (Δχ0)

2
φ"0(χα, Xi)] . 

V Id Xi J 

The integral in the above expression is put in the form of a standard 

Fresnel integral j d^ -exp [inq
2
/2] by writing q = AxcVWc-

 T h is l e a ds to t he 
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form 

2 exp [ί2πφ0(Χ(ΐ, Xi)]/V<p"c(xd, xt), (9) 

where the positive and negative signs hold respectively for q?c > 0 and yc < 0. 

The diffraction amplitude in the case of Fresnel diffraction is obtained by 

substituting the expression (6a) for cpc into (9) above. This yields 

with xt defined by the relation 

Xd = Xi + d'0t(xi). (11) 

The demonstration of the relation between the stationary phase approxi

mation and geometrical optics is readily made since the relation above resulting 

from the condition φ'(χ<ι9 xi) = 0 defines the classical electron trajectories. 

An electron passing the point xt in the specimen is deflected through the 

angle oc(xi) and intersects that point Ρ in the observation plane with co

ordinates (xd,d) which satisfies the relation (11) above. 

As shown in the Fig. 6 a beam element άχι dit the object plane gives rise 

to an element in the observation plane of width dxd = dxi (1 + d-oc
r
(xi)). 

In the case of an incident beam of intensity Ip the conservation of total cur

rent leads to the following expression for the intensity / at Xd*. 

Slxa) = ^ = ^ = |1 + d-cc'(Xi)r • 
Ip QXd 

In general several geometrical trajectories, (x1 P, x2P, x%P) in Fig. 6, may 

intersect at the point P. In this case the geometrical optics intensity is found 

by summing the contributions from each trajectory: 

^(xd)^l\\ + d'Oi'(xi)\-\ (12) 

Comparison of the eqs (10) and (12) shows that the geometrical optics 

approximation gives an intensity distribution identical to that of the stationary 

phase method if a single term x% contributes to the intensity J{x£). That is 
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o b s e r v a t i o n 

p l a n e . 

Fig. 6. - The geometrical image intensity at Ρ is obtained by considering that the total 
current is conserved in the element around the ray xzP. The element of width άχ{ at the 
object is transformed by the difference in local deflections within the object to the width 
dxd at P. Other trajectories x2P, χλΡ may contribute to the intensity at P. 

only the one trajectory coming from the point χι passes through the point Xd* 
If several trajectories cross at Ρ their mutual interference is taken account 

of by the stationary phase approximation, but not by the geometrical inten

sity expression which merely adds intensities. 

2*2. Reduced parameters in the wave and geometrical optics equations. 

The local electron beam deflection oc(xc) is given by 

oc(xc) =-^λαΒυ(χο) , 

where By(xc) is the y component of the magnetic field in the specimen. In the 

case of a domain wall aligned along the y axis By(xc) = Bp 'fixc/co^ where 
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OJ1 is the domain wall half-width and 2ω1 = ω. The wave and geometrical 

optics expressions (6) and (12) contain the parameters: λ the electron wave 

length, ζ = d the off-focus distance, a the film thickness, By the film magnet

isation and the domain wall width ω. This embarassing number of parameters 

can be reduced in the following way. We write oc(xc) = ocP 'f(xcfu>i) as in 

eq. (7) and we note that f(xc/coi)-> 1 for χ>ωλ whilst the wall is centred 

at χ = 0 where f(0) = 0. Writing X = χ0/ωχ and Jf= χα/ω1 the diffraction 

integral (6) can be written in the forms: 

(13) 

Fresnel diffraction 
+ CO 

¥ · ( Λ Ο = / ? J d X - e x p ^ 2 ^

2 ( y
~

, / r )2
 + β^Χ)^ 

— CO 

Fraunhofer diffraction 

ν, ( Λ 0 = / î JdZ-exp [ί2π(~β2Χ^ + ^ F ( Z ) ) ] . (14) 

— CO 

The geometrical intensity expression (12) can be written 

^ ) = | 1 + #
2

) · / ' ( Ζ ) | - ι . (15) 

2 . These expressions now contain only the two reduced parameters β· 
= ω

2
/λζ and β\ = ωα^/Α, which together with the wall phase function F(X) 

give a complete description of the problem. The reduced parameters are 

therefore extremely important in all problems of magnetic imaging. All of 

the problems which we discuss are treated in parametrised form. The param

eter βΐ gives the strength in fluxon units of a magnetic object which can be 

described by the funct ion/ (X) , i.e. β% = \-A0j(hle) where the magnetic in-

homogeneity ΑΦ — ΔχΔΒ gives, in the case of a domain wall of width ω 
separating two domains of internal flux density Bp directed along ± yc in 

a film of thickness α, ΔΦ = ωαΒρ. 

2*3. The application of Wohlleben's criterion. 

Wohlleben (1966) has applied the Heisenberg relation Ax^Ap^h 
between the uncertainties in the electron position in the field region and the 
acquired lateral momentum ρλ to show that the detection of a magnetic flux 
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inhomogeneities Δ Φ in the range ΔΦ<Α/^ is possible only by abandoning 

the geometrical approximation in favour of a wave optical treatment. The 

quantity hje is the flux quantum in the Gaussian system where h is Plank's 

constant, and e is the electron charge. The impact position of the electron 

beam deflected through ax by the object is given in the Fraunhofer diffrac

tion plane by χψ =L-p1/p0; L is a constant (in practice it is the effective 

camera length) and p0, the component of electron momentum perpendicular 

to the object plane, is considered constant for small deflections oc1=p1/p0, 
see Fig. 7. 

Fig. 7. - A measurement of the deflection ax carried out by detecting the impact position x
{
v 

of the electron in an observation plane a distance L from the object is equivalent to meas
uring the lateral momentum p 1. 

A measurement of x^ is equivalent to a measurement of px. The object 

and image functions are related by a Fourier transformation which implies 

a Heisenberg like relation between the uncertainties of x^ and x£\ In off-

focus images the position χψ in the observation plane is given by the rela

tion (11) written in the form xty = x^ + d-oc1. The object and image func

tions are related by a different transform, that described by the Fresnel in

tegral. 

2*4. The generalised criterion. 

Attempts to find a criterion equally applicable to Fresnel as to Fraunhofer 

diffraction have been based on the stationary phase approximation to the 

Fresnel-Kirchhoff diffraction integral. We have seen in Subsect. 2.1 that the 
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stationary phase approximation is equivalent to the geometrical optics 
approach under the restriction that only a single trajectory passes through 
each point in the image plane. A discussion of the validity of the stationary 
phase approximation then implicitly considers the validity of geometrical optics. 

Cohen (1967) argues that for a given observation point only the object 
region χι — Δχ/2< χι< x% + Ax/2 contributes appreciably to the intensity 
ψ(χά) given by eq. (6). Structure within the interval Ax will not be resolved. 
In order to resolve two points in the sample separated by the distance Δχ 
the waves originating at each of these points must be at least π/4 out of phase 
so that destructive interference occurs at the point xa in the image plane. 
This leads to an inequality which we can write in parametrised form: 

(ΑΧ)ψ0/χΧί) + β
2
\>1. (16) 

Since the radius r of the first Fresnel zone is given in the stationary phase 
approximation by r

2
= \/φ"(χι) we can give a more direct interpretation of 

the derivation of the inequality (16). It is supposed that r(Xi) necessarily 
represents an uncertainty in position of the point X% in the specimen since 
all of the zone r around X% contributes to the intensity at Jf. The attainable 
resolution AXi has a lower limit given by ( Δ Ζ « / Γ )

2
> 1. Substitution for r 

yields (16). 

Guigay and Wade (1968) aim to determine the conditions necessary to 
ensure that the wave and geometrical optics image intensities are the same. 
The second-order Taylor expansion of the phase is valid only in a limited 
region AXl = \X— Xt \ around the stationary phase point Χι. The remaining 
terms in the expansion assume a greater importance as Δ Ζ 1 increases. We 
impose as condition on the extent of AXl that the second order term must 
be greater than that of the third order. This yields for Δ Ζ 1 

Δ Χ 1 < 3 | / ( Χ 0 / / ( ^ ) | . 

Furthermore the diffraction integral can be limited to a region AXl which 
represents a sufficient number of Fresnel zones to give a good approximation 
to the complete range of integration. For the stationary phase method to 
be valid it is necessary that Δ Ζ 1 > Δ Ζ 2 . This requirement leads directly 
to the inequality 

β
2
ο\ί"(Χ)\<\β

2
 + β

2

0Γ(Χ)\
ΐ
· (17) 

Neither of the criteria (16) and (17) are entirely satisfactory: that of Cohen 
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2*5. Another formulation of the generalised criterion (*). 

The total phase of the Fresnel integral expressed in terms of the reduced 

parameters and normalised co-ordinates (13) is: 

φΙΧ,.Λ") = 2π | V - ^ ) 2 + / W ) 
We limit our discussion to the domain wall problem. For a given point JT 
in the observation plane the first Fresnel zone around the object point X has 

a radius r

2
 = \j(p"c(X) according to the stationary phase approximation. The 

complete phase expression φ0 gives for the difference in phase between the 

points (X+R,JT) and (X,JT)\ 

Αφ = ψο(Χ + r, ΛΟ - φ0(Χ> - Ή · 

Since the stationary phase method gives Αφ8 P = π we require that 

Αφ — AqSP < π . 

This inequality will be best satisfied for Αφ = π, i.e. for: 

L(X) = β*Γ* ± 2β%^(Χ) Τ 2 /?

2
<F(X+ r)-F(X)) = 1 . (18) 

The upper signs hold for the diverging case, the lower for the converging case. 

2*5.1. Application to the centre of the wall image. - At the wall centre 
f(0) = 0 and F(0) = 0 so that we can write (18) in the form of the condition 

fi*r* + 2filF(r)-*l. (19) 

The first term on the l.h.s. is the geometrical intensity. All wall models have 

(*) Derived from unpublished work carried out in collaboration with J. P. Guigay. 

because it does not really treat the validity of the stationary phase method 

which is only used to calculate r; that of Guigay and Wade because if φ' 
should be zero as it is at the centre of a domain wall it is necessary to con

sider the higher order terms in the expansion. 
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F(X)->X
2
/2, 

F(X)->X- const , 

for X< 1 

for X » 1 

In Fig. 8 we plot F(r)/r
2
 against 1/r

2
 for the function F(r) = In cosh(r) . 

This corresponds to the wall model t a n h ( X ) . The plot shows that F(r) 
rapidly approaches the limiting value of r

2
/2 except for 1/r

2
 very small. Other 

F(r) 1/r' 

ι ζ , 1 / rz 

A plot of F(r)/r
2
 against 1 / r

2
 for the wall model /(X) = tgh (X) for which 

F(r) = In cosh 0). Other wall models give similar curves. 
Fig. 8. 

wall models give essentially the same curve. Writing F(r) = r
2
/2 for l / r

2
> 1 

leads to the inequality 

β
2
±β

2
ο>1 (20) 

the same behaviour in tha t : 
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The satisfaction of the inequality (20) ensures that (19) is fulfilled. The 

inequality reduces to Wohlleben's criterion when β
2
 < 1 which corresponds 

to the Fraunhofer diffraction condition. When A - ^ 0 both β
2
 and β\ become 

very large and the inequality is satisfied. The negative sign holds for the 

converging wall image ; β
2
 = βΐ corresponds to the summit of the caustic 

where geometrical optics predicts an infinite intensity. The inequality (20) 

cannot be fulfilled at such a point giving a formal demonstration of the 

physically obvious fact that geometrical optics breaks down in such a region. 

Alternatively we note that for a given value of 1/r

2
 we can write 

F(r) = r
2
\2 — k(r)-r

2
\2. We can thereby express the condition (19) in the form 

&(r ) -c (0) ->0 , 

where c(0) is the contrast at the wall centre. This condition is satisfied either 

for small contrasts or for small h which imposes a condition on (β
2
 ± βΐ) 

similar to (20) above. 

2*5.2. Application to the complete wall image. - It is not possible to ex

press the condition (18) in a simple form for positions away from the wall 

a) b) 

Fig. 9. - The phase difference L(r) defined by eq. (18) plotted as a function of the po
sition in the image plane, a) A diverging wall with 1(0) = 0.5; this imposes β\ = β". 
The parameter βΐ is varied from 0.01 to 20 to cover the range from a weak to a strong 

phase object, b) A converging wall with 1(0) = 2. 
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centre. We present therefore a numerical evaluation of L for the wall model 

f(X) = t anh(X) . In the case of a diverging image we put β% = β
2
 which im

poses a central intensity of 0.5. In Fig. 9a) we plot L against Jf for various 

values of the parameters β%, β
2
. Comparison of the corresponding wave and 

geometrical image profiles indicates that for 0.8 < 1.2 the two treatments 

can be considered in agreement. Similar curves are shown for the converging 

case in Fig. 96) with β
2
 = 2β

2
. 

Since the least favourable value of L in a given wall image is not far 

removed from the central value the condition (20) which we have applied to 

the image centre seems to offer a good estimation of whether geometrical 

optics may be valid throughout the wall image. In view of the simple form 

of the inequality (20) it is convenient to adopt it as a criterion. 

2*6. Application to periodic objects. 

The phase φ0 of the Fresnel integral 

has the additional property that F(X) = F(X + 1). A necessary condition for 
the application of the stationary phase approximation is that the width r 
of the first Fresnel zone be much less than the periodicity of the object which 
gives the condition 

The periodic function f'Ç^V) has a mean value of zero so that for the con
dition (21) to be everywhere satisfied it is necessary that \β

2
\ » 1 or in terms 

of the defocussing distance ζ < dx where d1 = ε
2
[λ. The caustic surfaces be

low the object will have a saw-tooth form with the distance of the cusp given 
by d0= l/oc

r

max. If άλ> d0 geometrical optics must be limited to the region 
ζ c d0 whilst for dx< d0 the condition z<d1 must be satisfied. We may re
mark that ζ = dx corresponds to the first position of uniform image inten
sity as the object is defocussed by the imaging lens. Since the ζ periodicity 
of the image intensity is a wave optical effect predicted by eq. (1) it is evident 
that geometrical optics is forcibly limited to the region ζ<άλ. 

2π ^ ( Χ - Ν) 2 + β
2
Ε(Χ) 

(21) 
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3. Experimental investigations of magnetic structure. 

3 1 . The domain wall. 

Most experimental attempts to measure domain wall widths have used 

the Fresnel image. For the present we will treat only this type of image. 

Independently of geometrical or wave considerations we can conceive two 

types of observation: measurements of position and measurements of inten

sity. 

3*1.1. Position measurements. - Most early attempts involved looking for 

some geometrical property of the image which may be related to the domain 

wall width. Fuchs (1962) used the geometrical optics relation d0= 1/α'(0) = 

L «01 

Fig. 10. - The caustic surface ACB associated with a domain wall has its cusp C sl dis
tance d0 = 1/α'(0) = cojocp from the object plane. A ray from xt deflected through the 
angle at- is tangent to the caustic at P. The central maximum predicted by wave optics lies 
at C below C. The surface of maximum intensity given by wave optics is distinct from 
the geometrical caustic. The extreme rays 1C and 2C represent the perfect lens case for 
which all the rays between 1C and 2C are focussed at C. The caustic surface becomes a point. 
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= ωχΙ(χρ which determines the position of the caustic cusp C, Fig. 10. The 

deflection is measured in a separate diffraction experiment and d0 must also 

be measured. In addition for defocussing distances z> d0 the caustic surface 

divides into two branches the position of which as a function of ζ allows 

the wall structure to be determined through the relation f'{X) — β
2
/β

2
,. Fuchs 

carries out this operation graphically; the experimental plot of « / m ax against ζ 
gives the caustic surface the tangent of which at the point Ρ cuts the object 

plane at X\. The angle OL% SO determined plotted against X% gives the wall 

structure. 

We know intuitively and the inequalities (18), (20) demonstrate formally 

that geometrical optics breaks down in the region of the caustic surface where 

it predicts infinite intensities. The wave optical maxima lie below the caustic 

surface; Guigay shows that the wave optical cusp may be much below 

the object. It would be of interest to carry out experiments of this type but 

using a wave optical interpretation since experimentally it is interesting to 

work in the region of the caustic cusp because of the high intensity available 

in this region. 

A simpler method was used by Wade (1966) in which abstraction being 

made of the internal wall structure it is noticed that measurements of the 

widths Wc and Wa of convergent and divergent wall images obtained at the 

same defocussing distance yield the wall width from the relation Wa— Wc= 2ω, 
see Fig. 11. Plots of Wa and Wc against ζ yield straight lines of different 

Fig. 1 1 . - The simplified geometrical relation between the wall width ω and the projected 
image widths Wd and Wc. 
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slope which can be supposed to be due to the effect of the finite separation 

of the source and object and also due to the real wall structure. Wohl-

leben (1967) believes that the difference in slopes may be due to the wave op

tical dependence of the image profile edges on defocussing distance. This 

belief is supported by more recent work of Reimer and Kappert (1969) who 

have made a large number of numerical calculations of wall image profiles 

taking into account the finite illumination aperture. 

Their calculations for iron films of thickness 200 Â and 500 Â, with wall 

widths 500 Â and 800 Â, correspond respectively to values of the parameter/?

2
, 

of 1.25 and 0.8. They find that the wave and geometrical optics image pro

files are practically indistinguishable in the diverging case especially when 

the smoothing effect of the illumination aperture <xB is taken into account. 

In the converging wall image the interference fringes of separation δ are no 

longer resolvable for ocB> δ/d. Geometric and wave optical profiles are rath

er similar for large ocB. They find that extrapolation to ζ = 0 of the di

vergent profile halfwidth, which is rather insensitive both to ocB and the detailed 

wall model, gives a good estimate of ω subject to a correction factor dependent 

on the wall model. 

3 Ί . 2 . Intensity measurements. - A wave optical analysis of the inter

ference phenomena found in converging domain wall images was first made 

by Boersch et al. (1960, 1961, 1962) who found the fringe separation to be 

given by δ = λ(ά + g)f2ap-g, where g is the source-object distance. This 

formula is in agreement with that of the Fresnel biprism but certain details 

of the fringe positions do not agree with the biprism formulation. The con

dition on the illumination for the fringes to be visible is ocB<ôfd. Since 

the average current intensity in the observation plane is given by j= Rn(ocB/M)
2
, 

(R is the source brightness and M the image magnification), <xB can only 

be reduced, at the expense of the image intensity. As an example we show 

in Fig. 12 an image of interference fringes in permalloy film obtained with 

an exposure time of around five minutes despite the use of a point filament 

source for which JR is greater than for conventional hairpin filament. Having 

chosen a model to represent the wall, the width of the wall ω is adjusted so 

that the intensity profile calculated using eq. (13) best fits the experimental 

microdensitometer trace. 

Hothersall (1969) by numerical analysis shows the profiles to be very 

sensitive to the illumination aperture ocB. In addition he found that the cal

culated intensity profiles can be fitted to the experimental traces for different 

wall models by suitable adjustment of the width ω. He gives an empirical 



Fig. 12. - Interference fringes at a cross-tie wall image in a permalloy film about 500 Â thick. A pointed filament was used as 
source of electrons. The defocussing distance of the image is about 3 cm. The parameter $j decreases as the apexes of the cross-wall 

images are approached. 

ο 

I 
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relation between the widths found for the different wall models. The experi

mental difficulties are not diminished by the background of incoherent elec

trons inelastically scattered in the specimen. The absolute measurement of 

intensity is rendered impossible. Hothersall side-steps this difficulty by meas

uring the intensity of the interference maxima and minima with respect to 

the mean background intensity. 

A lesson to be drawn from Hothersall 's results is that it is not very satis

factory to impose a precise wall model. It is the function F shown in Fig. 4 

with cps = βίΡ which describes the wall as a phase object. F has the fol

lowing behaviour: 

F(JT)=Jf
2
\2, / " « Ι 

F(JT)=jr—k, Jr^> l , 

where k is a constant, larger than 0.5. Guigay considers that the essential 

behaviour of the function F is contained in the two parameters ω, the wall 

width, and k which specifies the behaviour for large Ji. The values of k cor

responding to common wall models are summarized below: 

tght /T) sinC/T) 

k 0.5 In 2 = 0.69 nil - 1 = 0.57 

Guigay (1970) combines the two functions Fx and F2 defined below with suit

able weighting factors so as to vary the wall phase function F = aF1 + bF29 
where a + b = 1, in a continuous manner. 

\JT, JT<\\ 

11, JT> \ \ 

F2(JT) = jrjy/Y+jr2 9 k = \ 9 

He shows for example that the convergent wall interference fringe 
profiles shown in Fig. 13 are sensitive to k even for constant wall width. 
The physical reason for this is that the interference profile is sensitive to the 
phase of the rays coming from the domains on either side of the wall and 
that their phases depend on k, see Fig. 14. We may note that separate measure
ments of ω and k may allow F to be specified in a relatively precise manner. 

4 5 
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0 0.5 1.0 1.5 2.0 2.5 

Fig. 13. - Intensity profiles for a converging wall with β% = 0.5 at a defocusing distance 
of 4d0. The three curves correspond to different values of k. k = \, - --- - k: = 3/4, 

k = l. (Due to J. P. Guigay.) 

A measurement of ω alone from the converging wall interference profile is 
without a great deal of significance. However as we shall presently see it 
is possible to measure ω independently of k using the divergent wall image. 

Other investigations have been made using diverging wall images in the 
hope, based essentially on physical intuition, that a geometrical approach 
is valid. A formal justification must be sought in the generalised crite
rion (18), (20). 
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Ρ 

Fig. 14. - The phase profiles φ1 and φ2 correspond to different wall models which have 
the same width ω. The extrapolation to X = 0 of the linear portions of the curves give 
the values kx and k2 respectively. The rays 1,2,3 which interfere at Ρ have relative phases 
which differ for the two wall models. The interference profiles will then be different as 

shown in Fig. 13. 

value of J(0) calculated geometrically is often valid for any defocussing 

distance. They also proposed the use of this ratio, for reasons complementary 

to those of Warrington, in the measurement of domain wall widths. A con

firmation of this property is offered by the numerical calculations of Guigay 

and Wade and of Reimer and Kappert . The latter workers have encountered 

experimental difficulties due to inelastic background electrons which falsify 

the ratio. 

3*1.3. Inversion procedures. - Several attempts have been made to cal
culate the angular deflection within the domain wall region directly from an 
image intensity profile. The first method is that used by Fuchs in which oc(X) 
is found graphically from a trace of the caustic surface, see Subsect. 3*1.1. 

Warrington (1964) noticed that the value of J(0) is insensitive to the 

illumination aperture. He suggests that a measurement of </(0) could be 

useful to obtain ω. Suzuki et al. (1968) have used both this method and a 

profile fitting. Wall widths obtained by the two methods disagree. Guigay 

and Wade (1968) show that although a sufficiently small defocalisation is 

often necessary to enable the entire image to be treated geometrically the 
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where X and JV* are related by J
r

i =Xi-\- d - a p Q . Integrating both sides 

of (22) yields: 

The point A is in the uniform intensity region away from the wall image. 

The eq. (23) yields a curve of the form shown in Fig. 15a) where the straight 

àX = J{JT)'aJr, (22) 

(23) 
A 

X. 

X 

X 

Fig. 15. - Showing the relationship between Xt and JY] obtained from eq. (23). Curve 1) 
holds for a uniform intensity region whilst curve 2) scans across a wall image, b) The 

profile of the local deflection d-(x(Xt) obtained from the curves 1) and 2) of a). 

Another method exploited independently by Petrov et al. (1968) and by 

Cohen and Harte (1969) constitutes an inversion of the geometrical intensity 

profile for the case of a diverging wall. The geometrical intensity expres

sion (15) is obtained from the relation dxcIp = άχαΙ(χα) expressing the con

servation of total current, see the Fig. 6. In the case of a domain wall image 

with normalised background intensity J{JV) we have: 
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line (1) holds in the uniform intensity region and the curve (2) is produced 

as the wall image profile is scanned by JTi. The curves (1) and (2) yield the 

curve of Fig. 15Z>) showing, d-oc(X), plotted against X which constitutes the 

solution to the problem. 

The presentation above is essentially that of Petrov. The treatment of 

Cohen and Harte differs in that the solution is found numerically. 

3 2 . The ripple problem. 

Although little quantitative work exists on this subject it seems generally 

accepted that the electron microscope will act like a filter in that a given 

defocussing will enhance a certain spatial periodicity present in the object. 

It is a well known fact that for a given object periodicity the spherical aberra

tion of the objective lens can be compensated by a defocalisation in such a 

way that the well known lattice resolution test does not constitute a proof 

of the quality of the objective lens. 

Equation (1) contains the defocussing term [ί2πζη
2
λ/2ε

2
] the phase 

of which can be expressed in terms of the diffraction angle θ in the form 

2ζθ

2
/2Λ. The phase shift introduced by spherical aberration is 2nCs0

4:
/4À. 

In the presence of spherical aberration eq. (1) will contain the term exp [ίρ] 
where 

ρ = γχ(ϋβ*-2ζβ*). 

We notice immediately that the in-focus image (z = 0) will be perturbed 

by the spherical aberration term. A defocussing of zs = Cs6
2
/2 allows the 

object function to be recuperated. In the case of an atomic lattice of period 4 Â, 

zs = 500 Â for λ = 4· ΙΟ"

10
 cm and Cs & 0.1 cm. 

In general we will find a repetition of the object function for ρ = 2nm 
where m is an integer. For a phase object the corresponding image will be 

without contrast. Maximum contrast is found for ρ = (2m—1)π/2. This 

yields 

Zs = CS0
2
~ (2m - l)λ/Θ

2
. (24) 

We see from (24) that the effect of spherical aberration is to displace the 

origin of the classical ζ periodicity by the distance Cs0
2
. For magnetic de

flections and for object periodicities in the range 10~

5
cm we have 

0 ~ 1 O

_ 5
H - 1 O ~

4
 rad. Taking the least favourable value θ = 10~

4
 rad yields 
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Cs6
2
 ~ 2 · 10"

7
 cm (we put Cs ~ 20 cm) and λ/θ

2
 ~ 4 · 10~

2
 cm. We can there

fore ignore the effect of spherical aberration on the defocussed image which 

will be adequately represented by eq. (1). 

In order to test the filtering action of the defocussed image we sup

pose a phase function of equally weighted sinusoidal terms. We consider 
Ν 

the range A 2sm2nxcfne, where A is supposed small so that we are dealing 
ι 

with a weak phase object. The intensity in the Fresnel image can be expres

sed as 

 ̂ Λ ^ ·

 π
^ζ . 2πχ 

I(x, ζ) = 1 + 2A > sm · sm . 
ι n

l
E

&
 ne 

The defocussing planes of maximum contrast for the periodicity n-e are 

given by ζ = (2m— 1)η
2
ε
2
/2λ. We have calculated numerically the image 

intensity for the range N= 10, for ε = 10~

5
cm, i.e. the sine terms have a 

periodicity range from (10

_ 5
-f-10

- 4
) cm. We choose values of ζ to give 

maximum contrast. 

The results show the intensity to well reproduce the smallest periodicities 

but that the larger periodicities are almost completely masked. We conclude 

that it may be rather difficult by direct observations to detect the entire 

periodicity range in an object containing a dispersion of spatial frequencies. 

The theory of image transfer combined with optical diffraction should be 

fruitful for treating this sort of problem. 
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Magnetic Phase Contrast 

D. WOHLLEBEN (*) 

University of California - San Diego, CaL, U.S.A. 

1. Introduction. 

Lorentz microscopy is the general designation for a variety of techniques 

by which microscopic static magnetic field distributions can be studied 

through the deflection of electrons by the Lorentz force. A few papers con

cerned with magnetic fields in vacuo appeared more than 20 years ago 

(Ardenne 1943, Marton 1948) but most of the work in the past decade was 

motivated by the need of the computer industry for information on the ferro

magnetic structure of thin films. It was shown in 1959 by Hale, Fuller and 

Rubinstein (

x
) and by Boersch and Raith (

2
) that ferromagnetic domains can 

be observed with high resolution in the conventional transmission electron 

microscope. This technique led immediately to the discovery of the ripple 

structure within domains and has since been very helpful in qualitative studies 

of wall configurations, ripples and stripe domains. However, a rather exten

sive effort to measure quantitatively the field distribution in domain walls 

and ripples met with disappointing results. Later, the technique failed even 

qualitatively to detect the Abrikosov flux line lattice in hard superconductors 

and the long period magnetization oscillations in antiferromagnetic chro

mium and rare earth metals, structures which should be easily resolved spa

tially in the conventional transmission electron microscope. 

The main difficulty in high resolution Lorentz microscopy is the weakness 

of the interaction of the electrons with the magnetic field. This interaction 

(*) Supported by the Air Force Office of Scientific Research under Grant No. AF-
AFOSR-631-67. 
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was initially described by the classical Lorentz force. However, when suffi

ciently weak interactions are considered, quantum effects play an important 

role. Then the Lorentz force must be replaced by some quantum-mechanical 

equivalent, which incorporates field integrals rather than the fields themselves. 

The proper field integral for Lorentz microscopy is the magnetic flux. The 

flux causes a well-defined co-ordinate dependent phase shift in the incident 

electron beam, which is measurable and which describes the effect of a static 

magnetic field distribution on the electrons completely. Thus Lorentz micro

scopy is nothing but phase contrast microscopy with electrons for a special 

class of objects. Some well-known techniques to produce contrast from 

phase objects in electron optics are defocusing, the knife edge (Foucault) 

tecnique, dark field, Zernike phase contrast, low angle diffraction and inter

ference microscopy. They all can be applied to study magnetic objects. In 

fact, the simple objects of Lorentz microscopy are probably the best available 

in electron microscopy for a quantitative study of the relationship between 

phase contrast and phase object: 

Firstly, presumably the electron scattering on magnetic fields is com

pletely elastic, contrary to electrostatic scattering on condensed matter, where 

the elastic and inelastic contributions are hard to separate experimentally. 

Secondly, the derivation of the magnetic phase shift caused by conven

tional Lorentz objects is very simple. It does not suffer from the numerous 

complications of the calculation of the electrostatic phase shift which are 

caused by the three-dimensional periodicity of the lattice and by badly known 

atomic wave functions. 

Thirdly, whereas the study of electrostatic phase shifts on an atomic scale 

is complicated in practice by the severe distortions introduced by the in

strument at the high spatial frequencies involved, the spatial frequencies 

associated with conventional Lorentz objects are several orders of magnitude 

smaller, so that the imaging process can be considered as ideal. 

Thus it seems that a good understanding of Lorentz contrast should be 

very helpful on the way to quantitative information retrieval from phase 

objects in general. 

For a given object area the average magnetic phase shift can be either 

large or small compared to π (strong or weak object). In the following we 

introduce the quantum signal to noise ratio, i.e. the ratio of the number of 

transmitted electrons which are measurably affected by the magnetic object 

to those which are not. This ratio is roughly equal to the square of the 

involved magnetic flux measured in units of the quantum of flux hje (h is 

Planck's quantum of action, e the electronic charge). If this ratio is larger 
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than one (strong object), the laws of classical geometric optics are more or 

less applicable. However, for sufficiently small flux (weak object), the signal 

to noise ratio can become smaller than one. Then diffraction effects dominate 

the contrast. They cause some complications in the mathematical analysis 

of the relation between contrast and object, which, however, are not insu

perable. A more serious experimental difficulty associated with weak objects 

is the near cut-off of the electron scattering probability at the quantum of 

flux. This causes the need for a drastic increase of the illumination time over 

the classical value in order to record any information at all, independent of 
the mode of detection. There is an equivalent cut-off of the electrostatic scat

tering probability, since atoms and not too thick films are weak objects in 

the above sense. Thus the difficulty is a very general one. 

At the present time it seems that experimental progress towards higher 

resolution in Lorentz microscopy will be difficult and can only come after 

some deeper theoretical understanding. Therefore basic concepts are em

phasized in these lectures. No attempt is made to review past work. Practical 

examples are drawn in only when needed as background for theoretical discus

sion. Unfortunately, the discussion is not even theoretically complete, since 

there was no space to treat partial coherence. However, the treatment of the 

coherent case is sufficiently fruitful to produce some important guidelines 

for future experimental work. In particular, it is hoped that the concepts 

of scattering probability and signal to noise rat io, which are new to phase 

contrast microscopy, will obviate to experimenters the necessity to pay much 

attention than in the past to increasing the source brightness, to using detec

tors with better linearity than photographic material, and to recording the 

information in the regions of maximum contrast of the image space, even 

if that means facing the worst diffraction effects. 

In Sect. 2 the Schrôdinger wave function is derived in the presence of 

the magnetic object and is incorporated in the Kirchhoff integral. In Sect. 3 

the geometric approximation to Lorentz contrast is derived, and the fluxon 

criterion is established to determine the limit of validity of that approximation. 

Section 4 presents a discussion of the most obvious diffraction effects in Lorentz 

microscopy. The quantum of flux appears directly in the image of domain 

walls in the defocused and the Foucault mode. Section 5 gives a derivation 

of the particle scattering probability and the signal to noise ratio in the image 

space. In Sect. 6 it is shown that the maximum contrast due to a given flux 

inhomogeneity in the defocused mode is nearly equal to the square root of 

the quantum signal to noise ratio for both strong and weak objects. In Sect. 7 

the number phase uncertainty relation is applied to determine the best pos-
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sible accuracy of the measurement of a phase shift as function of the illumina

t ion time. The domain wall is treated as an example. In Sect. 8 two ways 

to separate experimentally electric and magnetic contrast are proposed. 

2. Electron wave function in the presence of a thin magnetic object. 

The following is a derivation of the connection between the nonrelativistic 

Schrodinger wave function of the electron in the presence of a thin magnetic 

field distribution and the wave function without this field. Two approxima

tions are made, which reflect realistically the experimental situation: 1) The 

Kirchhoff boundary conditions are assumed to hold (i.e. ψ = 0 and Vip = 0 

on an integrating surface except over a small part of it). 2) The electrons 

propagate nearly parallel to the optical axis, before and after the magnetic 

object. 

The derivation avoids the ad hoc use of the Aharonov-Bohm effect (

3
'

4
) 

which suffers from conceptual difficulties, since the choice of the geometric 

trajectories in the path integrals of the vector potential remains unjustified. 

Instead, well-understood concepts of wave propagation are employed, based 

on the Kirchhoff formalism and its stationary phase approximation. 

Let the single component stationary Schrodinger wave function of the 

electrons be 

Φ) = X(r) exp [iq>(r)] (χ, φ rea l ) . (1) 

If there are no electric or magnetic fields, ψ satisfies 
E

= * n \
 ( 2) 

Equation (2) is identical with the Helmholtz equation 

( V

2
 + k

2
)yi = 0 (k = 2π/λ = ρ0/ή) . (3) 

It is well known that if ψ satisfies eq. (3), and if ψ and ¥ψ are given on a 

closed surface S, ψ and Vf can be calculated everywhere inside S by the 

Kirchhoff integral 

ΦΡ) = Ο)"1Jdr, [r~l exp [ - ikrsp] Vy>(rs) - y (r8) V ( r ^ exp [ - ikr8p])] (4) 

s 
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In practice, in an electron beam with small angular spread, ψ(ν) is calculated 

from the values of x(rs) and cp(rs) on a finite planar cross-section perpendicular 

to the beam in another parallel cross-section further down the electron path. 

If one chooses the z-axis of the co-ordinate system parallel to the mean 

momentum in the beam, one has d(p(r)/Sz & k, since kx, ky <^kz < k. If one 

also assumes realistically | \7χ |<Α;, i.e. that the amplitude of the wave func

tion changes unnoticeably over the electron wavelength, eq. (4) reduces to 

Φι) = ( ^ " J d r , ikxir^r^ exp [i(krtj + φ(η))] . (5) 

j 

Here, η = (χ, y, Zj) is a co-ordinate vector with its tip in the plane J, and 

cm = Zi — Zj. If a magnetic field Β is switched on somewhere in space, it 

will in general give rise to a finite and co-ordinate dependent vector potential 

everywhere in space, even in regions where Β — 0 . Then the Hamiltonian 

eq. ( 2 ) will go over to 

J T = (2m)-\— ihV + eAf . (6) 

In this case ψ', the eigenfunction of J f ' , no longer satisfies the simple Helm-

holtz eq. (3). This makes the Kirchhoff integral eq. (4) in general inappli

cable for a calculation of ψ' from one plane to the next. Fortunately, however, 

if the fields are sufficiently weak ψ' can still be calculated with eq. (4) even 

in the field region, if this equation is used in conjunction with a series of 

appropriate gauge transformations of the vector potential. 

The vector potential has the following properties: 

In the field region: 

B(r) = VxA(r) (ΒφΟ). (7) 

Outside of the field region: 

A(r) = VA(r) (Β = 0 , Λ scalar) . ( 8 ) 

It is well known that if eq. ( 8 ) holds, then 

y>'(r) = Vo(r)exp[ieA/h\. ( 9 ) 

ψ0(τ) is the wave function without field. Therefore, in those regions of space 
where Β = 0, the wave function ψ'(τ) can be simply calculated by first setting 
A = 0 and finding ^0(r) via the Kirchhoff integral, and then writing down 
ψ'(τ) according to eq. ( 9 ) . In the field region itself, a similar procedure can 
be adopted if the fields are so small that the vector potential changes only 
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slowly over one wavelength, or if 

λ(β/ή)  êAi/dj  «  k  (ι, j = χ, j , ζ ) . (10) 

This condition (which is related with the condition for applicability of the 

WKB approximation) is easily fulfilled in Lorentz microscopy. The field 

region can then be subdivided by many equidistant parallel planes such that A 
can be considered constant between two neighboring planes. Since A = const 

implies that eq. (8) is valid again, the wave function ψ'(ν) can be calculated 

successively and unambiguously across the field region in the same fashion 

as outside the field region with eqs (5) and (9). 

Consider Fig. 1. The weak static magnetic field distribution is contained 

in a thin sheet between two parallel planes Β and C. The distance abc = a 
is in general larger than the thickness of any film which might carry the 

magnetic field sources, because it must contain the external stray fields as 

well. The regions above and below the sheet are field free. A beam of fast, 

monoenergetic coherent electrons penetrates the illuminating plane A, the 

field sheet and the observation plane D. The wave function ψ^υ) in the 

plane Β is calculated from ip0(ra) and Vip0(ra) with eq. (5) while holding A = 0 

and is then transformed to its form ψ' in the presence of the field by eq. (9). 

Next consider the propagation of the wave through the field sheet. Whereas 

there are no restrictions on the distances aab and aca, # is subjected to 

a<k/k%9 a^k\k\. (11) 

Here kx and ky are the largest lateral momentum components in the image 

space in the presence of the field. This condition assures that there is no 

contrast due to the magnetic field at the plane C. It also makes it possible to 

evaluate eq. (5) explicitly from Β to C with the stationary phase approxima

tion. 

First assume Β = 0. If during the integration of eq. (5) the distance rbc 
has changed such that kArbĉ>\ while still Arbc/rbc <l the integrand will 

have undergone many oscillations with no noticeable change of amplitude. 

Clearly, the only lasting contributions to the integral come when the expo

nential does not oscillate during a variation of the integration variable, i.e. when 

3ç>c/0x& = O, d(pc/dyb = 0 (<pc = krbc + <p(n)). (12) 

This is the condition of stationary phase. It determines the center co-ordinate 

rl of a small area of the plane Β from which ip0(rc) is built up. The extent 

of this area is determined roughly by the beginning of oscillations of the 
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Fig. l. - Reference planes in a beam of fast electrons with small divergence, scattering 
off a weak object. 



720 D. Wohlleben 

exponential, i.e. by 

Δφ0 - <pc(rl + Δι·) - 9c{r%) π/2 . (13) 

If cr
1
 < k and kx,ky k, an expansion of 99c(r&) about r° to second order 

is sufficient far beyond Δφ0 = π/2. Thus the contributing area has the shape 
of an ellipse with two orthogonal axes Δχ° and Ay% determined by 

The distance rbc can be expanded 

rte = (a*+ (xb - xe)
2
+ (yb -yc)

2
f «. a + (2a) -

1
 {(xb - x c)

2
+ (j„ - y cf ] . (15) 

Inserting eq. (15) in eq. (14) yields 

^xlf=n(kla + d\ldxlT\ (ày°bf = W + SV/^S)- 1
 · (16) 

Now, since Β^/θχ ^ fc^, B^/Bj ̂  ky, if /c^, /r^ < fc, it is easy to show that 
the second derivatives of φ must be of order k%, k

2
. Therefore, the condi

tion (11) on a implies that the second derivatives can be neglected in eq. (16). 
The limit of integration of eq. (5) then simply becomes a circle with radius 
{πα/kf = (αλ/2γ, and eq. (5) yields for ip0(rc), the wave function at rc without 
field 

ψΌ(χ, y, 0) = ΐχΌ(χ, y, a) exp [i(ka + φ0(χ, y, a))] . (17) 

Here it is assumed that χ and φ change so slowly with x and y that 

It must be emphasized that the wave function ip0(rc) is exclusively deter
mined by amplitude and phase of the wave function in a small circle with 
area παλ/2 centered at r£. It is independent of ψ(τ) anywhere else in the sheet. 
Moreover, the wave functions in and rc are identical in the absence of a 
field, apart from the geometric phase shift ka. Finally, a calculation of ip0(r

r

c) 
in the neighborhood of the point rc can depend on y>0(r&) in the circle around r\ 
only, if \r'c—rc\^(aÀ/2)% i.e. ψ0(η) and ip0(rc) depend on each other only 
within a cylinder with radius {μλ/lf and axis (y% — rc). 

Treating now the case of finite Β in the sheet, it is assumed that eq. (10) 
holds. The sheet is subdivided by 7 V » 1 parallel planes at distance a/N. 
Assume A(r) = An = const within a cylinder of radius (αλΫ between neigh
boring planes (Fig. 2). The problem of calculating ψ'(τη) from ^'(*w-i) is the 



same as calculating ip0(rc) from ^oC
1
"^ except that the result which corresponds 

to eq. (17) must now be gauge transformed according to eq. (9). With this 
procedure a magnetic phase shift Δ99 is picked up at every plane. 

A ç w = Ά - (VA)n · ~ Έ - (18) 

The total magnetic phase shift from r° to rc is a sum of Ν such terms which, 
for sufficiently large Ν goes to the integral 

0 

Αφ(χ,γ) = ^άζΑζ(χ,γ,ζ)_ (19) 

a 

46 
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This path integral determines the phase unambiguously because A affects ip' 
only locally according to eq. (6) so that ip' and therefore also A outside the 
cylinders around the line (r° — rc) do not have any effect on the build up 
of Ψ'(Γ0). Thus the wave function ψ'(η) in the presence of the field follows 
from Ψ'(Γ®) according to 

ο 

W'iTc) = ίψ\4) exp / Jto + 1 J azAz{rl-rc)} 

or 

ψ'(χ, y, 0) = ΐφ'(χ9 y, a) exp 

Using eq. (9) 

? \ka + ~jdzAz(x, j , z ) | 

y>0(x, y, 0) exp <>y,0) • i-Λ(χ,y,0)\ = iy>0(x.y, a) exp i^A(x,y, a) + 

ο 

ι + I jdzAz(x, y, z) 

(20) 

(21) 

The path integrals A must be referred to a common value, for which 

A(0, 0, 0) is chosen here : 

a x,y 

A(x, y, a) = A(0,0,0) + J J d z ^ ( 0 , 0 , z) + 1 (*dr£ / , fl), 

ο o'o 

J , 0) = /1(0,0,0) + ?;jdr'c A(x',/, 0 ) . 

0,0 

(22) 

For the reasons just discussed, the difference between A(09 0, 0) and yl(0, 0, a) 
on both sides of the sheet near the origin is again unambiguous. Before in
serting these expressions into eq. (21), a final gauge transformation is per
formed by multiplying both sides of eq. (21) with exp [— (ieA(x, y, 0)/h)]. 
This corresponds to adding a function —A(r) = — VA(r) which is chosen 
such that in the space between planes C and D it cancels completely that vector 
potential A(r) which arose from Β in the sheet. This gauge transformation 
permits again the use of the Kirchhoff formalism in the image space between 
C and D. I t also changes the vector potential in the sheet and above, but 
cannot cancel it in all spaces simultaneously. We call this gauge the Kirch
hoff gauge. The wave function in rc in the presence of the magnetic field is 
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V>"(rc) = Ψ
!
(Χ, y, 0) = ΐψ0(χ, y, a) exp A(r)dr + ka\ (23) 

The contour integral in eq. (23) runs around a rectangle with corners (0, 0, 0), 
(0, 0, a), (x, y, a) and (x, y, 0). It is clearly gauge invariant. Stokes law 
connects this contour integral with the enclosed magnetic flux Φ 

j)dr · A(r) = Jd/« B(r) = 0(F). (24) 

L F 

F is an area bordered by the contour L. In the present case, F is completely 

specified by the choice of rc = (x9y,0). Finally, in view of eq. (17) one 

obtains 

W"iTc) = Wo(rc) exp [i(e/K) <P(rc)]. (25) 

In the Kirchhoff gauge, the Schrodinger wave function behind a weak mag
netic object is simply the wave function without magnetic object with a phase 
shift proportional to the magnetic flux in the object. 

The wave function ψ"(τα) in the plane D, which is reproduced by the in
strument in the photographic plate, follows from y>"(rc) (eq. (25)) via the 
Kirchhoff integral eq. (5): 

ψ'(Τα9ρ*,Φ,Κ)= (ρο/Λ) fdrcy>0(rc,PQ)r7a
 e x

P + e0(rc)]]. (26) 

In this equation, ψ" is written to depend explicitly on all experimental variables, 

i.e. on ra, Po = (2mEY and Φ and also on h. 
The measured quantity is the time integrated probability current density 

j(rd), which is given by 

jdtj(rd) = ç(rd) /0) - (
27
) 

h 

Since υ «s ftk/m does not depend noticeably on ra if k > kx, ky, the infor
mation on the flux distribution is extracted solely from the probability density 

Q(rd, Φ , p 0, h) = \ψ>(τα, Φ, p09 Λ)|
2
 . (28) 

obtained from eqs (21) and (22). Written in the Kirchhoff gauge (denoted 
by double primes) it is 
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Equations (26) and (28) constitute the basis for all calculations of Lorentz 
contrast. According to eq. (26), ρ(να) depends in general on the magnetic 
flux distribution everywhere in the sheet. Of course different regions of the 
sheet can contribute with very different weight, depending on the distance aca 
between the planes C and D (« defocusing distance »), on the flux distribu
tion 0(rc), on the initial energy E=p\\2m and on the magnitude of the 
quantum of action. 

3. Wave optical vs. geometric Lorentz contrast. 

We shall now study the effect of varying h in order to find the correspond
ence limit of eq. (26). In order to simplify the discussion, a one-dimensional 
magnetic object is chosen as example, which is illuminated by a plane wave. 
The phase of ψ"(τ6) can be written as 

f ^ = ? W + W W - (29) 

With a plane incoming wave propagating parallel to the z-axis, and in the 
absence of electrostatic scattering, <p0(rc) = const. Let the magnetic field in 
the sheet have only a y component, By, which depends only on x. Then 

X 

φ(χ) = α^Βυ(χ')άχ'. (30) 

ο 

Consider the stationary points x
Q

c in the integral eq. (26). They follow with 
eqs (29) and (30) from 

Μφβξ ο = (x°c-xd)(Po!d) + aeBy(x°c) = 0. (31) 

Here ac<z, the defocusing distance, was renamed acd = d and krcd was ex
panded as in eq. (15), which is permissible if dk^>\. Equation (31) always 
has at least one, but can have several solutions. The number of solutions 
and their values depend on By(x), d and p0. However, note that they do not 
depend on hi Therefore the stationary points must somehow retain their 
significance in the correspondence limit. On the other hand, for each solu-
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tion x°c, the area of contribution of ip"(rc) to \p"(ra) is determined by an ex

pression analogous to eq. (13) 

Δψΰ = <pc(x°c + αχ) — (p0(x°c) ™ π/2 , 1 
(32) 

(Ax~x—x°c; çĉh-
1
(porcd+e0)). j 

A<pc, and therefore Ax does depend on h. In order to find the behaviour of 

the wave function in the classical limit, let h~>0. Clearly, whatever the 

choice of p0 and d, and whatever Φ(χ), the limits Ax of the contributing areas 

centered at the stationary points will shrink. The wave function in rd will 

depend less and less on the wave function in the neighborhood of the r°, until 

finally, in the limit h = 0, it will be determined by ip(r°c), the wave function 

at the stationary points only. While the contributing area shrinks, the number 

of mutually independent areas in the integration plane C increases at the 

same rate. Then the probability current can be considered to run in very 

many separated fine straight cylinders from plane C to D. These cylinders are 

identified with the geometric trajectories. The appropriate transformation of 

the probability density from C to D is then to map an area element of C, 

dfc > Xy (which contains many independent areas Id) along the trajectories 

defined by eq. (31) into the corresponding area element dfd in D, such that 

the probability current element f d P = ^ d / i s conserved: 

(fâ)àfe = e(raWa. (33) 

In the one-dimensional example 

Q(X°c) dx°c = ρ(χα) dxd, (33a) 

with eq. (31) 

Q(?ca) / ^ r \ _ (..doe SBOfyy
1 

Equation (34) is the equivalent of eq. (28) in the correspondence limit; in 
other words, it is the formula for geometric optical contrast in Lorentz micro
scopy. 

Equation (34) can of course be derived more directly from classical con
cepts. For the one-dimensional example, the classical Lorentz force in the 
sheet is 

Fx(x, z) = (p0e/m)By(x) . (35) 



726 D. Wohlleben 

The momentum change which an electron experiences while passing the sheet 

is with ν = pQ/m 

t0 ο 

Px(x) =jdtFx(x, z) = j(dz/v)Fx(x9 z) = eaBy(x) = p0oc(x). (36) 

oc(x) is the deflection angle. An electron which penetrates the sheet parallel 

to the ζ axis at x°c will therefore penetrate the plane D at 

Xd = x°c + oc(x)d = x® + (ead/p0)By(x) . (37) 

This equation is identical with eq. (31), from which in turn eq. (34) was 

derived with the assumption of well-defined geometric trajectories. 

The quantum of action is finite. This raises the question whether the 

somewhat cumbersome expression eq. (26) or its simple approximation eq. (34) 

is applicable in practice. It turns out that a case must be made for both. 

Initially the importance of diffraction effects in Lorentz microscopy was over

looked by most workers in the field. Common experience misled to the 

belief that quantum effects in contrast of aperiodic objects are to be expected 

only when the diffraction at the aperture of the objective lens begins to limit 

the spatial resolution. However this is only one possible effect and is tied to 

direct observation of the object: With « in focus » operation the distance 

between the observation plane and the field region is of the order of the 

sheet thickness, so that eq. (11) holds also for the «defocusing distance». 

Then the diffraction effects associated with the development of the wave func

tion from the scattering object to the plane of the observation can be neglected 

against those which are associated with aberrations in the objective lens. 

For example, the radius of the contributing area would be Axc ^ 0.5 Â for 

d = 5 Â and λ = 0.05 Â. This distance, which is also equal to the distance 

of the first two Fresnel fringes in D for an absorbing half-plane in C, is smaller 

than the width of fringes which appear in the image due to Abbe's resolution 

criterion, if an objective lens of say 5 Â resolution is used with its optimal 

aperture. However, with increasing defocusing distance d the diffraction fringes 

associated with the development of the wave function from the scattering 

object to the observation plane increase in width like the contributing area, 

i.e. like (d/l)% whereas those associated with the diffraction on the objective 

aperture remain the same, namely fy (fis the focal length, γ the aperture angle). 

Eventually, {dXf will become larger than fy. 
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To be sure, it was well known among specialists that the width of diffrac

tion fringes increases with the square root of the defocusing distance. Already 

in 1943 Boersch (

5
) had followed experimentally the development of Fresnel 

fringes in the image space behind the opaque half plane and in 1952 Glaser (

6
) 

published more general theoretical drawings of the development of the 

Schrodinger wave function through the image space. These aspects of wave 

propagation have limited practical importance for in focus operation of the 

electron microscope and were therefore less known among material scientists. 

Lorentz microscopy was the first practically interesting case of electron phase 

microscopy at large defocusing distance. More recently, the quantitative 

experiments with phase contrast of amorphous objects by Thon (

7
) have 

drawn attention to the valuable information in out of focus images of elec

trostatic objects as well. 

There is of course a large body of knowledge about phase contrast in 

light optics, much of which is concerned with the exact analogon of phase 

contrast in electron microscopy, although on a different scale. An impor

tant review article on light phase contrast with diffraction effects was writ

ten by Wolter (

8
) in 1956. 

The onset of quantum effects in the contrast of practical Lorentz objects 

can be estimated without regard to a particular experimental detection mode 

with the Heisenberg uncertainty relation. Consider Fig. 3. Two trajectories 

emerge from the plane C at x1 and x2 after having penetrated the field dis

tribution sketched below. Since the fields in χλ and x2 differ, there is a cor

responding difference in lateral momentum 

According to Heisenberg, the accuracy of a simultaneous measurement of 

the canonically conjugate variables χ and px is 

Apx = eaAB. (38) 

ApxAx>h. (39) 

Inserting eq. (38) into (39) yields 

A0>h/2e ( Δ Φ =Axa AB/2) (40) 

if B(x) is approximately represented by the first term in the Taylor expansion 

in the interval Αχ. ΑΦ is here the flux associated with the difference of Β 
between xt and x2. It will be redefined in Sect. 5. The quantity h/e is a 
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Fig. 3. - Application of the Heisenberg uncertainty relation to electron scattering from 
weak magnetic objects. 



Magnetic phase contrast 729 

universal constant with the dimension of magnetic flux, h/e = 4.7· 10~

7
 G c

2
. 

We call ΔΦ, the flux associated with the difference of the fields between xx 
and x2, the «inhomogeneity of f lux» . 

Suppose Δ Φ = h/2e. Then eq. (40) says that if the lateral momentum 

px is measured with accuracy Apx<.px(x1)—px(x2), it is impossible to 

measure also, on the same electron, where in the interval Ax the electron 

came from. Inversely, if the co-ordinate of penetration of an electron χ is 

measured with accuracy Ax < x2— xl9 the uncertainty Apx of the momentum 

of this electron is larger than the difference of deflection at the ends of the 

interval. However it will be shown later, that measurements of χ and px 
can be made with any desired accuracy, if the information is extracted from 

successive measurements on many electrons. 

Equation (40) was initially (

9
) interpreted to mean that for ΑΦ < h/2e 

the geometric approximation eq. (34) was inapplicable for contrast calculations. 

This rule is in general verified, in particular in all high-contrast modes, and 

the quantum of flux h\2e often appears directly in the image, as will be shown 

next. There are, however, cases where the geometric approximation is never 

valid, even if ΑΦ > h/2e (in and on the caustic mantle), and also cases where 

it is valid even if ΑΦ <c h/2e (outside the caustic mantle). The latter case 

will be discussed by Wade during these lectures (

1 0
"

1 2
). 

Note that according to eq. (40) the onset of diffraction effects is inde

pendent of the energy of the incoming electron. This is a consequence of the 

peculiar velocity dependence of the Lorentz force, which makes the magnetic 

momentum transfer independent of the velocity (eq. (36)). In contrast to this, 

an application of the Heisenberg uncertainty relation to electrostatic deflec

tions results in a resolution criterion where the transition from wave theory 

to geometric theory does depend on the incoming energy. 

4. Practical manifestations of diffraction effects in Lorentz microscopy. 

4 1 . Domain walls in the defocused mode. 

Very soon after introduction of the technique the possibility to measure 

the magnetization distribution in ferromagnetic domain walls and ripples 

attracted much attention. These structures extend over several 1000Â and 

are therefore well within the spatial resolution of the transmission microscope. 



4. - Contrast in the image plane behind a permalloy film as function of the defocusing 
distance. 



Magnetic phase contrast 731 

Figure 4 shows a series of images taken from the same region of a perm

alloy film at increasing defocusing distance with a near point source in the 

illuminating plane A. N o magnetic contrast is found in focus (d = 0). At 

small defocusing distance d, the domain walls begin to show up as fine dark 

or bright lines which broaden nearly linearly with increasing d. At still larger d 
the bright lines begin to split into several parallel bright fringes. The width 

of these fringes remains constant with respect to other distances between 

details in the film, while their number increases linearly with d. These fringes 

are the most obvious quantum effects in Lorentz microscopy. In first approx

imation they can be regarded as biprism interference fringes, and each such 

fringe can be loosely interpreted as the projection of one fluxon hjle from the 

magnetic sheet into the image p lane: 

Consider Fig. 5. Assume a ferromagnetic film in the sheet of thickness a. 
A wall of zero width runs at the center of the Figure (at χ = 0) along a line 

perpendicular to the paper, separating two domains with homogeneous 

field Bp parallel and antiparallel to the wall. The geometric trajectories 

emerging from the near point source S at distance g above the films are de

flected by an angle + ocp or — ocp, depending on which side of the wall they 

penetrate the film. Then two wave trains overlap in the triangle below the 

film which seem to come from two virtual sources S' and S" at mutual distance 

2ocpg in the illumination plane and intersect each other with the angle 

2 | = 2ocpg/(g + d). The width of the fringes which result from the inter

ference of these wave trains is (with eq. (36)) 

δα = λ/2ξ = X{g + d)f(g2ocp) = h(g + d)f(g2eaBp). (41) 

One can refer the fringe width back into the plane C 

àc = ôd>g/(g + d) = h/(2eaBp) . (42) 

Clearly, the magnetic flux covered by the projected fringe width is 

ΔΦ =BPAA= Bpaôc = h/2e . (43) 

Independent of magnification and the electron energy, there is one fringe per 
fluxon hjle in the image of the film. Thus, the geometric approximation clearly 
breaks down when information on a scale finer than the fluxon is to be ex
tracted from these regions of high contrast behind convergent walls. This 
is one example which confirms the original interpretation of eq. (40). 
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Fig. 5. - The appearance of the quantum of flux h/2e in the defocused image of a con
vergent domain wall. 

It is instructive to follow the contrast in the region behind the convergent 

wall as a function of the wall width and of the magnitude of the quantum 

of flux in order to clarify the relationship between the fundamental wave 

mechanical contrast (eqs (26) and (28)) and its geometric approximation 

(eq. (34)). 
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Fig. 6. - The caustic mantle behind a convergent domain wall. 
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Assume that the transition from + Bp to — Bp in the above domain wall 

is not a step function at χ = 0, but occurs gradually over a characteristic 

distance Ax = w, the wall width (Fig. 6). Then the intensity in the image is 

also a continuously varying function of xa and can, in the geometric approx

imation, be calculated from eq. (34). At certain points of the image plane 

it can happen that 

8B(x^ldx°c = -p0/dae. (44) 

Then the geometric approximation predicts an infinity at xa, the point de

fined by eq. (37). This point is called a caustic point. 

Looking back at eq. (31), which defined the stationary points, it is clear 

that eq. (44) implies d
2
q)J(dx°c)

2
 = 0, i.e. that the defining equation of the 

geometric trajectories does not change with a small change of xc. It follows 

that the caustic point is illuminated not by one, but a series of densely spaced 

stationary points x°c. Since eqs (31) and (44) are independent of h, the caustic 

points remain well defined and therefore ought to retain some physical signif

icance if h is finite. The significance of caustic points to an evaluation of the 

Kirchhoff integral is that the limit of integration can clearly no longer be 

found from eq. (14), since eq. (44) is also equivalent to  ê
2
(pdëxd

2
 =  0. -| To 

find the integration limit near caustic points one has to go back to eq. (13) 

and expand Αφ0 to third order, or in general, to the next highest order deriv

ative d
n
(pjdxd

l
 which does not vanish in x°c. Clearly the limits of integration 

will be unusually large when cpc changes so slowly around and the am

plitude ψ"(Χ(ΐ) will build up to unusually large values in caustic points. On 

the other hand, it will never build up to infinity, as predicted by the geometric 

theory, since the contributing integration area must remain finite. Therefore, 

in caustic points the geometric approximation always breaks down badly. 

The two-dimensional locus of all caustic points in the image space is 

called the caustic mantle. It is sketched schematically for the domain wall in 

Fig. 6. There is a minimum distance d0 between object and all caustic points. 

The caustic mantle stretches to infinity asymptotically parallel to the first 

geometric trajectory which is deflected by the full angle ± The first 

nonvanishing derivative of q>c is d^Jdx^ in the tip of the caustic mantle, 

whereas everywhere else it is d
3
(pc/dxd. It would seem therefore, that the 

tip of the caustic mantle is the point of highest intensity in the image space of 
a domain wall. 

Figure 7 shows schematically the intensity distribution (eq. (28)) in an 

image plane which intersects the caustic mantle at a distance d> d0 behind 



Fig. 7. - Demonstration of the correspondence principle in the strongly defocused image 
of a convergent domain wall. 
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a wall of finite width. The quantum of action grows from 0 to a large value 

from one image to the next. All other quantities (B(x),p0, g, d) are kept 

constant. Outside the caustic mantle, which stays of course fixed through all 

variations of h, every point of the image plane is illuminated from the neigh

borhood of a single stationary point in the plane C, while inside three separate 

stationary points contribute to the intensity. Two of the latter are outside of 

t h e wall in regions of constant B(x®) = Bp and contribute nearly equal 

amounts everywhere. The third is in the wall and contributes mostly near 

the caustic points, very little at the center of the image. 

The geometric approximation is good nearly everywhere outside the 

caustic mantle, but clearly if h is finite, on a sufficiently fine scale of observa
tion it is invalid nearly everywhere on and inside the caustic mantle (except 

in those points where the geometric intensity curve intersects the « real » 

curves). The fringe width near the center of the patterns (in the region of 

what is essentially two beam interference) is simply as before half the de 

Broglie wavelength associated with the maximum lateral momentum in the 

image space, i.e. Axfr = (h/pp)-(g + d)fg = h(g + d)/g2eaBp. 
Now, at sufficiently small h, the geometric curve is a rather good approx

imation if both the geometric and the diffraction pattern are blurred by 

one fringe width. This is actually often the practical situation since the source 

of illumination is necessarily finite, not a point source, and radiates incoher

ently from different points. Thus, in practice, if it is sufficient to extract 

information on a scale larger than biprism fringe width from the pattern, 

the geometric approximation is good enough in these high contrast regions 

of the image space. The first trouble occurs when the fringe width becomes 

comparable to the « half width » of the caustic peaks, i.e. comparable to the 

region where the stationary point in the wall contributes significantly. Then 

just one bit of information can be extracted geometrically from the pattern 

about the corresponding field region in the wall. Finally, there comes a point 

when the entire diffraction pattern can no longer be approximated by a geo

metric pattern even upon blurring of both. This occurs roughly when no 

more zeros of the intensity exist in the latter. Note that the integral of the 

difference between the intensity with and without object, J d x ^ ( x , Φ) — ρ(χ,0)| 

(which contains the information) remains nearly constant down to that point, 

but then drops to zero very fast. Note also that already before this point is 

reached, the maximum intensity of the diffraction patterns near the caustic 

peaks drops very rapidly with increasing h. 
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4*2. Domain walls in Foucault mode. 

The quantum of flux can also appear directly in the image of the Foucault 

mode. Consider Fig. 8. The wave function in the image is calculated in the 

standard fashion for direct, in focus observation by a double Fourier trans

formation, first from the object plane C to the focal plane Ε (where the co

ordinate γ is proportional to the lateral momentum px in the beam), and 

then from Ε to the intermediate image plane F, (where the co-ordinate is 

u = Vxc, with the magnification V= 1 in Fig. 8). Contrast in the Foucault 

mode is achieved by stopping with the objective aperture all electrons whose 

lateral momentum px is larger than a certain value. This is simulated mathe

matically by changing the integration limits of the second Fourier trans

formation from - c o and + o o to — o o and μ' = μΡοΙ//ι, where μ is the co

ordinate of the aperture edge in the focal plane Ε and / the focal length of 

the objective 
co μ' 

W"(u)=jdxcjdY'f"(xc)ex.p[iY'(u-xc)) (y'=*y). (46) 

— CO —CO 

In the neighborhood of the geometric image of a zero width domain wall, 

bordering a large domain, the wave function in F is 

ψ"(μ) = [3π/2 + Si(a' — μ')η + / Ci(a '—μ')ύ\ exp [ioc'u] + 

- j - [—π/2 + Si(a' + μ')ιι— iCi(a'+//)w] exp [— ioc'u]. 

Here <x'= <xpk = aBpe/h and μ
1
 = μ^/= μΡο/fh- The corresponding proba

bility density in F is shown in Fig. 8 for μ = 0 and μ = ± 0Aocpf. For 
μ = 0 the Si and Ci functions depend only on the object property ocp and 
show minima and maxima at distances un = ηπ/α'= nh/(2eaBp) from the 
geometric edge uw. Around uw the width of the transition of ρ from nearly 
zero to nearly ρ0 is determined essentially by the Si functions which have a 
first maximum at u = uw-\-buix. Thus, since Δ Φ=Awx aBp=h/2e, the width 
of the transition from dark to light covers a flux quantum h/2e in the film 
as in the defocused mode. This situation is of course also independent of 
magnification and electron energy. It will be complicated in a finite wall, 
and ψ" can then no longer be found analytically. However, it seems obvious 
that the intensity in the image will go from nearly zero at ux to nearly ρ0 at u2 
(i.e. the pattern will show nearly infinite contrast) only when the phase shift 

4 7 



Fig. 8. - Diffraction on domain wall in the Foucault mode. 
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due to the object changes at least by π between x± and x2. Otherwise the 

intensity difference will be smaller than ρ0. Again, with geometric concepts 

the wall cannot be located better than somewhere within a flux quantum hjle. 
Fraunhofer diffraction on periodic magnetic objects (

1 2 1 3
) is a third case 

where the quantum of flux manifests itself directly in the image. This is 

discussed by Wade in this volume. 

5. Phase shift, scattering probability and signal to noise ratio. 

It was shown in the last Section that when the magnetic flux inhomogeneity 

under study decreases to the order of a quantum of flux, the geometric ap

proximation to Lorentz contrast (eq. (34)) breaks down in high contrast 

areas and the wave theory must be used. There is a one to one correspondence 

between the wave mechanical probability density (eq. (28)) and the magnetic 

flux distribution in the object plane. Therefore the information on the flux 

distribution can be in principle obtained with any desired accuracy by matching 

the calculated to the measured probability density, using the flux distribution 

in eq. (26) as a parameter. This calculation, although more complicated than 

an evaluation of the geometric formula, eq. (34), can of course be done, if 

necessary on a computer. However there is another more serious practical 

difficulty: the measured probability distribution ρ(ι^) must be examined in 

ever decreasing steps Δρ, if the flux under study decreases below the quantum 

of flux. The probability density is plotted experimentally with accuracy 

AN = JV*, where Ν is the number of recorded electrons. Since Δρ/ρ = 

= AN/N = N~~*, high relative accuracy requires recording of a large number 

of particles, i.e. long illumination time. 

For instance, if the magnetization step in the zero width wall is to be 

located in the Foucault mode within an interval of one tenth of the width of 

a flux quantum (0.1 Ax in Fig. 8), at least 100 electrons must be recorded in 

the image of that interval to distinguish it from the neighboring intervals 

where the probability (average probability density) is higher or lower by 

Δρ ^ 0.1ρ0. Classically, one or two electrons would have been sufficient in 

the interval adjoining the edge, since it is known that no electrons can arrive 

at the other side of the edge in the zero probability region. In other words, 

while classically it is only necessary to make a yes-no decision in an interval 

given by the desired measuring accuracy, in the real pattern a difference of 

probability from one interval to the next must be detected which is only a 
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fraction of the classical probability. This difficulty arises wherever probability 
differences must be measured within a diffraction fringe. It is therefore inti
mately connected with the transition from geometric to wave optical contrast, 
which in turn is tied to the strength of the object under study, measured in 
flux quantum units. 

It will be shown now that the reason for this difficulty is independent of 
the mode of detection. It is simply a consequence of a cut-off of the electron 
scattering probability at the quantum of flux. The following is a derivation 
of the scattering probability from the phase shift which the incoming wave 
suffers in an elastically scattering object (

1 4
) . It applies not only to magnetic 

phase shifts, but to electrostatic phase shifts and to light phase objects as well. 

A complete measurement of the object properties in the sheet of Fig. 1 
implies the measurement of the difference of the states in the presence and 
absence of the object, y)"(r) and ip0(r), over all co-ordinates of the image space. 
A connection between these two states is given by eq. (25). Let the state 
without object have a general co-ordinate dependence of amplitude x0(rc) and 
phase (pQ(rc) which is only restricted by the condition imposed in the 
beginning, namely that all particles travel nearly parallel to the ζ axis, 
i.e. Βφ0[Βχ9 d(p0/c>y<t: k. The state with object can be split into two parts 

+ V*('). (48) 

β is a complex constant with modulus smaller or equal to one. βψ0(τ) is called 
the unscattered state. It contains no information about the object and is 
chosen as one of the components of ip"(r) for that reason only. The scattered 
state ips(r) is constructed from βψ0(?) and ψ"(τ) by the condition that the 
probability P" for the particles to be in the state ip"(r) is the sum of the prob
abilities PQ and PS for them to be in the unscattered and the scattered state 
in the presence of the object. The probability for particles to be in a given 
state is the sum (integral) of the square of the amplitudes of that state at 
all values of the independent variables. The amplitude in the co-ordinate 
representation is %(r)9 where r designates the set of three independent space 
co-ordinates. Thus 

P'=P'0+PS, \ârf\r)  =  iï\^àr %l{r) +  \âr Xl(r). (49) 

V V  V 

Equation (49) implies that yi s is orthogonal to βψ0, since inserting eqs (1) 
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and (48) into (49) forces 

(50) 

ν 

The constant β can be determined by inserting eq. (48) into (50) 

(51) 

V V V 

This equation is solved by (*) 

J I J 

V V 

(52) 

The scattering probability Σ is defined as the fraction of the particles in V 
which are in the scattered state in the presence of the object 

The volume in question is chosen to be the image space, i.e. a half space 
bordered by the plane C. Actually, in the present case the volume integrals, 
which are written with the assumption that the states depend on all three 
components of r independently everywhere in the image space, reduce to surface 
integrals (

1 4
) , because all states satisfy the Helmholtz eq. (3) in the image 

space (in the Kirchhoff gauge). This equation fixes the magnitude of the 
momentum of the electrons. Therefore all states can only depend on two 
independent momentum co-ordinates. F rom the definition of the momentum 
operator pop = — ihV it follows immediately that the state in its co-ordinate 
representation ip(r) can also depend only on two independent space co-ordinates. 

(*) Equation (51) produces also a set of spurious, unphysical solutions which arise 
because this equation is quadratic in β. These solutions do not occur when the projection 
operator technique is used. 

(53) 
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This is reflected in the well known fact that if ψ satisfies eq. (3) and if the values 

of amplitude and phase of ψ are known as functions of the co-ordinates 

on a closed surface, they are known everywhere in the volume inside, in par

ticular on another surface. Thus, in the beam of small divergence the Kirchhoff 

integral can be regarded as a mere unitary transformation of the state in 

its representation on one plane to its representation on another. Since the 

probabilities are independent of such unitary transformations, it is sufficient 

to evaluate the integrals of eq. (53) over any cross-section of the beam in V, 
in particular over the plane C. It is emphasized at this point that eq. (53) 

can handle both amplitude and phase objects or a mixture thereof. If one 

restricts oneself to a pure phase object one has in the plane C x0(rc) = x"(rc) 
so that the normalization integrals in eq. (53) are equal. 

Λ) =jàrcxl = Ρ" = Jdrc Z"
2

 Ξ 1 . (54) 

c ο 

Using eq. (1) the scattering probability becomes 

(tPsfrc) = <P"(
r
c) — <Po(rc)) · 

Here cps is the scattering phase shift. This simple form of Ec is only valid if 
I V<p I <c k. The scattering probability depends on an average of the operator 
exp [i(ps] over the plane C, weighed with the probability to find a particle 
at rc. In the plane C, the probabilities xl(rc) are independent of each other 
if | A r c| > A . It is therefore permissible to subdivide the full cross-section of 
the beam in C into a set of small areas A of any desired shape and apply 
eq. (55) to each of them separately, i.e. to calculate a number ΣΑ for any 
subarea A of the object, as long as A > A

2
, and as long as χ% is renor-

malized for A instead of C (eq. (54)). In particular, an area with a radius 
equal to the resolution limit of the transmission microscope is large com
pared to /I

2
, and a number ΣΑ can be assigned to each such area of the in 

focus image of the object. The object area can of course (and often must in 
practice) be divided into much larger subareas. The number indicates 
the number of particles which must be passed through A before a dif
ference between the wave function with and without object can be detected 
in A in principle. In other words, ΣΑ determines an absolute lower limit of the 
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necessary illumination time. Equation (55), rewritten for the area A, is 

ΣΑ = \- jdrcxl(rc) exp [i(ps(rc)] 
2 
= 1 — {<cos9v>^ + <sinç95>g^} 

A 

l - v Μ Ά ) - 1 · <56) 
A 

Here (0}OA designates an average of the operator Ο taken in the area A and 
weighed with the probability to find electrons there in the state without object. 

For small phase shift, i.e. φ8 ν can be expanded to yield v-+l — 
— (Δφ8)%Α. For large phase shift, i.e. (Αφ8)0Α ™ 2πη (where η > 1 is an in
teger), the averages of the trigonometric functions are of order n~

x
 (disre

garding certain singularities, where both averages can be zero simultaneously). 
Thus 

ν = <cos <ps)*0A + < s i n Ψ §) 1 Α {5 Ι Δ Ζ \Δ^ l}
 if ( Δ

^ { < < }
 π

 '
 ( 5 7) 

Therefore the qualitative behavior of the scattering probability as function 
of the phase shift is indicated by 

Μ:<ΆΛ«.) <58> 

For large phase shift, it suffices to send one particle through A to ascertain 
the presence of the object experimentally, i.e. the area scatters classically. 
However, for small phase shift many particles must be sent through A before 
the presence of the object can be ascertained. For (Δφ8)0Α ^ π the scattering 
probability changes from classical to nonclassical, from one to less than one. 

The scattering probability is the ratio of the probability for electrons 
being in the scattered state to that for being in the state with object. Another 
useful number is the ratio of the probability to be in the scattered state to that 
for being in the unscattered state in the presence of the object: 

Ps Σ 
ΡΓ

κ
=ϊ^Σ-

 ( 5 9) 

Since the particles in the state βψ0 do not contain any information about the 
object by definition, the number κ has the meaning of a signal to noise ratio 
for the electrons in the beam. 
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From the behaviour of Σ sketched above it follows that 

> 
1 , if (Δφ8)0Α 

> 
π. (60) 

Actually, quite generally κ & (Δφ8)1Α for the whole range of (Δφ8)0Α. Clearly, 

for (Δφ8)0Α < π some spatial analogon to phase sensitive detection in elec

tronic engineering is needed for detection since the signal to noise ratio is 

smaller than one. 

With the magnetic phase shift of eq. (25), the magnetic scattering prob

ability is 

(ΔΦ)1Α « 1 
if ( A 0 ) O ij ^ / 2 , (61) 

The magnetic signal to noise ratio is 

Γ ( Δ Φ ) . OA 

> 
if (άΦ)0Α 

> 
hjle . (62) 

It is a remarkable feature of magnetic objects that Σ and κ do not depend on 

the energy of the electrons. 

In eqs (61) and (62) the quantity (ΔΦ)0Α is the mean square fluctuation 

of the magnetic flux, weighed with the square of the amplitude of the wave 

function without magnetic object. Thus, if there is an elastically or inelastically 

scattering electrostatic object, its effect is written into (p0(rc) and x0(rc), 
i.e. eqs (61) and (62) are valid for magnetic scattering independent of other 

scattering. Now, usually the magnetic object in Lorentz microscopy is selected 

in those areas of the film where the electrostatic phase shift and the inelastic 

scattering do not depend much on rc. Moreover, the amplitude of the in

coming wave does not change much over the areas of interest either. Then 

%0(rc) = const and (ΔΦ)0Α reduces to 

(ΔΦ)Α = [ ^ -

1
J d r c0

2
( r c ) - ( ^ -

1
J d r c0 ( r c) )

2
]

i 
(63) 
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Equations (63) and (24) together give a rigorous and very useful definition 

of a magnetic flux inhomogeneity, which replaces the simple minded defini

tion of Δ Φ in eq. (40). 

5 1 . Example. 

For an example of scattering probability and signal to noise ratio con

sider Fig. 9 and 10. A monochromatic but not necessarily parallel beam of 

fast electrons penetrates a slit of width q and length / and then a homogeneous 

magnetic field Β which is parallel to the slit and is contained in the sheet of 

thickness a. The flux inhomogeneity is, from eq. (63) 

(ΔΦ) , = aqB(l2)^ = (12)-* ΦΙ. (64) 

Φ 7 is the illuminated flux. The scattering probability is 

ILLUMINATED MAGNETIC FLUX 

Fig. 9. - Magnetic scattering probability on a strip of homogeneous magnetic field. (Cour
tesy of Journ. Appl. Phys.) 



746 D. Wohlleben 

In Fig. 9 the scattering probability is plotted as a function of the illuminated 
flux Of. Note the cut-off near the flux quantum. Nearly every electron is 
scattered, if Φ 7> / ζ / 2 ^ , as expected classically. However, below 0j~h/2e, 
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the majority of the electrons is not noticeably affected by the field which they 
have penetrated. 

The signal to noise ratio (Fig. 10) is roughly equal to the square of the 

flux measured in units of the flux quantum throughout the flux range, but 

becomes infinite (classical) at certain points. It is equal to one for Φι ^ h/2e. 

6. Signal to noise ratio and maximum contrast. 

A thorough discussion of experimental arrangements which approach 

optimal resolution is impossible without a lengthy treatment of partial coher

ence, which is outside of the scope of these lectures. However, within the 

present treatment a connection of the maximum possible contrast and the 

signal to noise ratio κ is pointed out which illustrates the central practical 

importance of the latter for both strong and weak objects. 

6 1 . Strong inhomogeneity. 

Consider the following simple magnetic-field distribution in a domain 
wall: 

I Bp sign x, \x\>wf29 
(66) 

Bp2x/w, \x\ < w/2 . 

The caustic tip for this distribution is at χ = 0 and ζ = d0= p0w/2eaBp 
(from eq. (44)). For these co-ordinates, all derivatives of φ0 higher than 

the second vanish if \x\< w/2. Therefore the caustic mantle degenerates into 

one point. This magnetic field distribution can be regarded as an ideal 

cylindrical lens for electrons with focal length d0. Obviously the probability 

density in the focal point is the highest anywhere in the image space. 

Consider the ratio of the probability densities in the focal point (0, 0, d0) 
with finite wall width w and with w = 0 (*). Assume that the wall is a strong 

inhomogeneity, (A0)ŵ>h/2e. With or without object, the amplitude in 

the focal point is proportional to the limit of integration, of eq. (26) if 

Xo(

x
c) = const. Without object (w = 0), the amplitude is built up from two 

(*) The latter describes the « state without object », although these is a field distribu
tion B(x) = Bv sign χ for — oo < χ < oo. This point is clarified in Sect. 7. 
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stationary points at x°c = ±ocpd0, with a limit of integration Ax = (Àdjl)*. 
With object, the integration goes clearly over the whole wall width, plus the 

outer limit of integration of the two stationary points of the case without 

object. We define the contrast by Κ = (Q(W) — ρ(0))/ρ(0). It can be esti

mated by the ratio of the squares of the amplitudes with and without object. 

Κ ρ(νν)/ρ(0) = w
2
[2Àd0 = nawBv(ejh) = ( Δ Φ ^ · Se/h ((A0S)W > π) . (67) 

Here (A0S)W was calculated from eqs (79), (63) and (24). From eq. (62) 

it is clear that in this point of maximum contrast 

[«Κ^/ίΚΟ)]™,·*»*. (68) 

The maximum possible contrast in the defocused mode is within a factor of 

order one equal to the square root of the signal to noise ratio, or equal to 

the flux inhomogeneity measured in units of the flux quantum. 

With the image plane D dit the defocusing distance d, there will be a fringe 

with the peak intensity given by eq. (67) in the focal point. This fringe will 

have a width of order Αξ & hj2eaBv : It is clearly sufficient to send just a 

few electrons through the wall in order to detect the wall, since these electrons 

will be collected with very high probability within the fringe width around the 

focal point, if (A0S)Ŵ> h/2e. However, if one wants to measure (A0S)W with 

a signal to noise ratio of one, one must know both q(w) and ρ(0) in the fringe 

width, i.e. one must count a sufficient number of particles in the fringe cen

tred at the focal point. The requirement is 

Δρ(ιν) ρ(0). (69) 

Since AQ(W)/Q(W) = N~\;, in order to satisfy eq. (69), one has to record at 

least NWT particles in the focal fringe, given by 

Nŵ(Q{w)lQ{Q>)f^K. (70) 

The signal-to-noise ratio gives the minimum number of particles necessary 

to measure the magnitude of the flux inhomogeneity to the accuracy of one 

flux quantum in the maximum contrast point of the image space. 

The above wall distribution is somewhat unrealistic. Several other distri

butions have been discussed, most frequent the hyperbolic tangent distri

bution (Fig. 11). Any distribution other than that of eq. (66) has a full caustic 

mantle instead of a single focal point. The contrast in the tip of the caustic 
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mantle is then still the maximum possible in the image space, for reasons dis
cussed in Sect. 4, but for the same wall width it will be lower than that of the 
ideal cylindrical lens. The situation is analogous to that of a lens with strong 
aberrations. 

6*2. Weak inhomogeneity. 

The domain wall does not lend itself to an easy discussion of the maximum 
contrast in the image space if it represents a weak inhomogeneity. For that 
case a periodic structure is chosen instead, which approximates the ripple or 
the Abrikosov flux line structure 

Here τ is the wavelength of the structure. The flux inhomogeneity is, from 
eqs (63) and (64) 

With a point source at distance g above the film and x0(rc) = const, if 
(ΔΦ)τ one obtains from eqs (26) and ( 28 ) : 

ρ(Φ)/ρ(0) = 1 + 2raB0(e/h) sin (2n*gd/(g + d) r*k) sin (2nxdg/(g + d) r ) . (73) 

Thus the maximum contrast in the image space is 

4 a x = ( ( < * * ) - e(0))M0))m ax = ατΒ0(2ε/Ιτ) = (ΔΦ) , l \ e \K) « 2*«* « 1. (74) 

Again, the maximum contrast is nearly equal to the square root of the mag
netic signal to noise ratio. Since it is also much smaller than one, ρ(Φ) ^ ρ(0) 
and Δρ(Φ) & Δρ(0). For a measurement of this maximum contrast, i.e. for 
Δ ρ ( Φ ) < 2 (ρ(Φ) — ρ(0)), one must have 

B(x) = B0 sin (2πχ/τ) . (71) 

(ΔΦ)τ = B0ar/2^n. (72) 

Δρ(Φ) ^ (ρ(Φ)_- ρ(0))] 
ρ(Φ) ^ ρ(0) 

max 2 Μ , or Νίτ>(8κ)-\ (75) 

For weak inhomogeneities the inverse magnetic signal to noise ratio gives the 
minimum number of particles NtT necessary to measure the maximum con
trast in the same sense as in the case of the strong object. But in the case of 
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the weak object Nu is also the minimum number of particles necessary to 

detect the inhomogeneity anywhere in the image space. 

The contrast of any inhomogeneity is nearly classical if the defocusing 

distance is small compared to dm, where dm is the distance at which the max

imum contrast appears for the first time (

1 0 1 2
) . For this reason small de

focusing distances are often preferred experimentally (

u
) . However, such 

arrangements are very unfavorable from the point of view of the illumination 

time, because their uncertainty product is much larger than \ . For the present 

example of a weak periodic inhomogeneity, if ds = 0.1 dm, the contrast is 

about 0.2 times the maximum possible. Following the same reasoning which 

led to eq. (75) one finds that (Ntt)8 & 25(NtT)m where s and m designate the 

minimum number of particles which must be counted with defocusing distance 

ds and dm respectively in order to detect the inhomogeneity. Clearly, in view 

of the necessarily finite illumination time t, it is not permissible to work at small 

defocusing distance if one wants to attain the maximum possible information 

from the available number of particles. Similarly, from the point of view of 

illumination time the measurement of wall parameters from divergent wall 

images (

u 1 7
) is much inferior to that from convergent images. 

7. Number phase uncertainty relation in phase-contrast microscopy 

A magnetic field distribution has been measured with a certain accuracy 
if the correspondence between the measured probability density and the one 
calculated from a model of the magnetic field distribution is unambiguous 
within a difference equal to this accuracy. The problem is to determine the 
difference. Assume that the computer calculation can be done with any 
desired accuracy. Then the limit of obtainable information will be on the 
experimental side. Clearly, under otherwise ideal experimental conditions the 
limit of accuracy is given by the illumination time, since the probability can 
only be measured with finite accuracy. It will now be shown that with a 
slight redefinition of the scattering phase shift φ8, the formalism developed in 
Sect. 5 can be used to determine the best possible accuracy of the measurement 
from the illumination time. 

In deriving the scattering probability it was stated that the object manifests 
itself through a difference of two wave functions. One of the two, ^0(r), 
was taken to be the wave function without field in the sheet. This wave func
tion contains a priori information about the geometry of the beam, the energy, 
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the initial momentum distribution, etc., in other words, it is a model wave 

function which is in practice simulated by the computer and is rarely measured 

directly. It was later pointed out that ψ0 can also contain all the effects of 

elastic and inelastic electrostatic scattering. Going still further, one can 

convince oneself easily that nothing prohibits ψ0(τ) to be regarded as the wave 

function with one magnetic field distribution (containing also all effects of 

the source and electrostatic scattering) and ψ"(τ) to be a wave function with 

another magnetic field distribution (containing the same effects of source and 

electrostatic scattering as before). Then (ps is the difference between the 
magnetic phase shifts in the two models and Σ and κ can be used to determine 

the distinguishability of the two models as a function of the accuracy with 

which the probability is plotted out experimentally. 

It is intuitively plausible that the two wave functions are experimentally 

distinguishable if the number of « scattered » particles is larger than one. 

Now, χ
2
 = η can be regarded as the number operator in second quantiza

tion. The integrals in eqs (49) and (54) are then expectation values of n, 
i.e. average numbers in the respective states. Therefore to have a t least one 

scattered particle in the record one must have 

Equation (76) forces a renormalization of the integrals in eq. (54), since they 

are all connected through eq. (49). Σ and κ are independent of renormaliza

tion. From eqs (53) and (59) one has therefore simply 

(76) 

A 

(77) 

A 

(78) 

A 

Inserting eq. (56) in (59) and using the result in eq. (78) gives 

(A cos 9 9 ^ + ( A sirups 0 A
 < c o s ^ s> ^ + <sin99s>^ 

1 . (79) 

This equation shows a remarkable similarity with the general uncertainty 
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relation between amplitude and phase of a particle wave function (

1 5
) 

Μ -ι! (Δ cos Ç9)

2
 + (Δ sin <pf 1 ( Λ ζ)

 cosy * ; s i n v * 4 ·

 ( 8 0) 

The averages in both eqs (79) and (80) are over the full set of independent 

variables, including the time. In time the amplitude in the plane C oscillates 

rapidly with frequency ω = E0fh — hk
2
/2m. Thus averaged over the illumina

tion time t 

( Δ χ & = <X

2
>M-<x>At = <f>At = <">At = Ν Μ • (81) 

The other averages in eq. (79) are time independent. If one accepts for the 

minimum uncertainty product J , which is the result of Schwartz' inequality, 

rather than one, which came in through the intuitive choice in eq. (76), 

eq. (79) becomes identical with the amplitude-phase uncertainty relation, 

and also becomes a number phase uncertainty relation. 

Equation (79) then says that one must count a sufficient number of un-

scattered particles, i.e. plot experimentally the «unscattered» assumed state 

sufficiently accurately, before it is in principle possible to notice a change 

of the real state with respect to the assumed state. 

In high-resolution phase-contrast microscopy one is mostly interested in 

small phase shifts, then 

P'i^ Ρ" = P0 = at dr c Z oVc, 0 = N0At (φ8 « π) . (82) 
J %) 
t A 

This in eq. (77) gives 

N0At(^s)

2
oA> I > or N 0 At > (4κΤ

λ
 . (83) 

This general result should be compared with the special case of a weak ripple, 

as discussed in Sect. 6 (eq. (75)). 

Inserting the magnetic phase shift for Lorentz microscopy and taking the 

square root of eq. (83) 

2e(NOAtf(A0)OA>h. (84) 

When a number N0At of particles has passed through the area A during the 

illumination time /, (Δφ8)0Α in eq. (83) gives a lower limit to the set of all 

possible functional deviations %qps(rc) of the mathematically assumed 
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phase shift distribution φ8(^) from the real one which can be detected (and 
corrected for) in principle. Actually, the mean square fluctuations in eqs (80) 
and (83) depend on the representation ip"(rd), i.e. on the defocusing distance, 
or, more generally, on the surface chosen in the image space. Therefore the 
detection of the phase inhomogeneity ( Δ ^ ) 0̂ 4 with the minimum number given 
by eq. (79) is only possible on a very special surface. This point was discussed 
briefly in Sect. 6. 

7 1 . Optimal resolution of a domain wall. 

We now calculate the optimal resolution of the magnetization distribution 
in a domain wall (Fig. 6) from the illumination time. It is assumed that 
an experimental setup can be found where the uncertainty product in eq. (83) 
is at its minimum value \ . The magnetic field B(x) varies slowly over the 
resolution limit of the instrument. The wall of width w and length / covers 
an area Aw = Iw in the plane C. This area is now divided into / ?> 1 
strips of varying width Δξη parallel to the wall axis. The width of each strip 
is so small that the flux within a strip is smaller than hjle and that its varia
tion is within a strip sufficiently accurately described by 

8Φ 1 8
2
Φ 

Φ(χ) — Φ(χη) = (X— Xn) g ^ - (Xn) + ^ (

x
 ~

 x
n f β χ2 

a c)B 
(x — Xn)aB(xn) + 2 {x—Xnf ( X n ) . (85) 

Here Χγι is a reference co-ordinate in the 72-th strip. Assume x0(xc) = const 
across the wall. During the illumination time t each strip receives N0A t 
electrons : 

N0Ant = lbxn(*B)*Rt. (86) 

Here ocB is the illumination aperture and R the brightness of the source. The 
interest is in a change of B(x) from one strip to the next. Therefore the 
width Axn is chosen such that a change Δ2? can just be detected, with a signal 
to noise ratio of one. In other words, the problem is to detect the difference 
between a model where the second term on the right hand side of eq. (85) 
exists and one where it is zero. The second term represents a flux inhomo-

4 8 
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geneity Δ Φ δ which can be calculated from eq. (63): 

(ΔΦβ)2 = ( 4 5 Γ

1
ΰ

2
Δ 4 (87) 

Equation (84) determines the width Δχη for which one can get one bit of in

formation on the change of the field in the n-th interval, if the equality sign 

is chosen. Then 

CD 

c 
c 
ο 
CL 
Ε 
ο 

1 0 
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ο 

-*—' 
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ω if) 
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Ο J
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ro 

( / \χ„)

5
 = 45 (0 /2^ 

!
^/(αΰ)

2
/?/α

2 
a s 

(Xn) Τ- (88) 

π 1 1 Γ 
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t = 1 0 m i n " ' ' 
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Fig. 11. Optimal resolution of a domain wall for two illumination times. 

Clearly Δχη is an extremely slow function of the illumination time, or of the 
brightness of the source. Figure 11 shows the optimal resolution of a domain 
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wall with a hyperbolic tangent distribution. The values of the wall parameters 

and the source are those commonly encountered in practical high-resolution 

measurements. 

8*1. Separation at high energy. 

In the previous Section it was shown that the maximum contrast which 

is possible in the image space is about equal to the flux inhomogeneity 

measured in units of the flux quantum. Generally speaking, the maximum 

contrast, in the defocused mode, is about equal to the mean square fluctuation 

of the phase shift. 

This is of course also true for electric phase shifts. However, whereas 

the magnetic phase shift does not depend on the energy of the incoming beam 

(not even in the relativistic regime) it does in the electric case: the electric 

phase shift decreases with increasing energy, as will be shown next. Therefore 

it is possible to suppress appreciably the electric with respect to the magnetic 

contrast by working with high energy microscopes. 

The calculation of the wave function in the plane C (Fig. 1) in the pres

ence of an electrostatic object in the sheet between the planes Β and C can 

be done along the lines of Sect. 2. Since the energy of the incoming beam is 

assumed to be large compared to the binding energy of an electron in the object, 

the deflection is small, so that kx, ky <c kz & k, just as in the magnetic case. 

Then again within the sheet (the sheet thickness a is restricted by eq. (11)), 

the wave function in rc is only dependent on a small area of the plane Β around 

the stationary point r°. Therefore the electric potential can influence the wave 

function in rc only on the line (r%— rc). Outside of the sheet the electric 

potential is constant, and one can set V=0 on both sides of the sheet, if 

the object is grounded. The object is assumed to scatter elastically only. The 

Schrodinger equation inside the sheet is 

8. Separation of magnetic and electric contrast. 

(89) 

One has also 

h
2
^ \/2m=E0̂eV. (90) 
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Therefore one may write the wave vector in the presence of the field 
(observing eq. (90)) as 

h
2
k'

2
j2m =E0 + eV= (h

2
k\\2m) · (1 + (2mVe/h

2
k*f) , I 

(91) 
k' « k0 + mVe/h

2
k0 = k0+ Ve/hv0. J 

Here v0 is the initial velocity of the electrons. The phase shift can be cal
culated in a similar fashion as in the magnetic case by subdividing the sheet 
by many planes and calculating the wave function from one plane to the 
next. The final result is 

We(rc) = Wo(rc) ' exp [i(eaV(rc)lhH0)] . (92) 

Here y)e(rc) is the wave function in the presence of the electric field and 
_ ρ 

V(rc) =\dzV(x,y, ζ). Therefore, the nonrelativistic electric phase shift de-
à 

creases with E^, which means that the electric signal to noise ratio decreases 
inversely proportional to the kinetic energy (or inversely proportional to the 
square of the velocity). In the case of relativistic energies, eq. (92) remains 
valid. At very high energies v0->c. Then the electric phase shift depends 
no longer on the accelerating voltage either. 

At the same time the inelastic scattering, which was found to be a great 
obstacle to quantitative evaluation of high resolution Lorentz images (

4 1 1 1 6 1 7
) 

decreases with at least the same power of E0. Therefore in high voltage elec
tron microscopes electric and magnetic contrast should be much better sep
arable than in conventional electron microscopes. 

8*2. Separation by the parity operation. 

The parity of the electric field is even, that of the magnetic field odd. 
Therefore, upon reversal of the direction of the initial momentum with respect 
to the field distribution, the magnetic interaction changes sign, whereas the 
electric does not. In other words, the magnetic phase shift changes sign, 
whereas the electric phase shift does not, if one turns the film in the sheet 
by 180° around an axis perpendicular to the optical axis. This procedure 
was once used (

2
) to prove the magnetic nature of the ripple contrast. The 
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difference of the probability densities of two records taken from reserved 

films under otherwise identical conditions gives directly twice the magnetic 

phase shift, if the flux inhomogeneity is weak. This method should therefore 

be very useful for quantitative study of ripple and the Abrikosov structure in 

the presence of strong elastic and inelastic electric scattering. 
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