计算化学介绍

计算化学尺度

- •研究的尺度不同,
 - •量子力学(Ab-initio or DFT)
 - 力场(Force field)
- 从研究方向上分
 - 化学反应
 - 有机反应
 - 固体表面反应
 - 物理化学性质
 - 能带,态密度,电荷分析

常用计算软件

- 计算非周期性体系: Gaussian, Orca, CP2K
- •计算周期性体系,尤其是固体:VASP, quantum espresso, CP2K
- •从头计算法分子动力学:CP2K
- 经典力学分子动力学:LAMMPS, GROMACS

Stationary state

Transition State

STM simulation

Changes in the electronic density due to interactions, e.g., molecule adsorbed on substrate

$$E_{\rm ads} = E_{\rm tot} - (E_{\rm sub}^o + E_{\rm mol}^o) \qquad \qquad E_{\rm int} = E_{\rm tot} - \left(E_{\rm sub}^f + E_{\rm mol}^f\right)$$

$$\Delta n_{\rm int}(\mathbf{r}) = n_{\rm tot}(\mathbf{r}) - \left(n_{\rm sub}^f(\mathbf{r}) + n_{\rm mol}^f(\mathbf{r})\right)$$

Tersoff-Hamann approximation to mimic the iso-current topography

$$n_b(\mathbf{r}) = \sum_{i:\varepsilon_i \in [E_f - V_b:E_f]} \left[\sum_{\mu\nu} C^*_{\mu i} C_{\nu i} \varphi_{\mu}(\mathbf{r}) \varphi_{\nu}(\mathbf{r}) \right] \to n_b(\mathbf{R})$$

Find height at constant energy projected density

$$z: n_b(X, Y, z) e^{-2kR_0\sqrt{\Phi(X, Y, z)}}$$

		electronics
	feedback	
tin	-Ø'	-
ap		322
ample	U,	2263
ampie		

CHP on hBN/Rh (5 eV)

Core-hole Creation and Decay

XES/NEXAFS local probes for electronic and geometric properties

Unoccupied levels, symmetry resolved

One step process Finale state: core-hole

Instantaneous configuration in dynamic systems

Occupied orbitals

Two step process Final state : valence-hole

Binding of adsorbed molecules

X-ray Absorption Simulations

Interpretation of experiment, structures refinement (signal assignment), understanding of physical-chemical properties of materials.

Kaznacheyev et al, JPC A, **106**, 3153 (2002)

Computational spectroscopy (inner-shell, NMR, ..) often requires approaches beyond cluster model or PP approximation: Efficient scheme for AE in condensed matter AE linear response theory

PDOS 和 Band Structure

Figure 1. Band structure (b) and projected density of states (PDOS) and total density of states (TDOS) (c) of simple cubic WO₃ as obtained with DFT/LDA calculations. In panel c, the zero of energy has been chosen at the VBM (E_{VBM}). The crystal structure is shown in part a.

Doping bulk

电化学计算-OER ORR

• 表面的吸附计算

O2(g) *O *OH *OOH H2O(g)

 H_2 H^* H^+ e^-

